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Abstract: Self-compacted concrete (SCC) is a special type of concrete; it is a liquid mixture appropriate
for structural elements with excessive reinforcement without vibration. SCC is commonly produced
by increasing the paste volume and cement content. As cement production is one of the huge factors
in releasing CO2 gas into the atmosphere, by-product materials such as fly ash are utilized as a cement
replacement in concrete. In addition to the positive environmental impact, fly ash can maintain an
excellent fresh and mechanical property. Incorporating fly ash into self-compacted concrete is widely
applied in practice. However, its application is frequently limited by a lack of knowledge about
the mixed material gained from laboratory tests. The most significant mechanical property for all
concrete types is compressive strength (CS); also, the slump flow diameter (SL) in the fresh state
is a crucial property for SCC. Hence, developing an accurate and reliable model for predicting the
CS and SL is very important for saving time and energy, as well as lowering the cost. This research
study proposed a projection of both the CS and SL of SCC modified with fly ash by three different
model approaches: Nonlinear regression (NLR), Multi-Linear regression (MLR), and Artificial Neural
Networks (ANN). In this regard, two different datasets were collected and analyzed for developing
models: 308 data samples were used for predicting the CS, and 86 data samples for the SL. Each
database included the same five independent parameters. The ranges for CS prediction were: cement
(134.7–583 kg/m3), water-to-binder ratio (0.27–0.9), fly ash (0–525 kg/m3), sand (478–1180 kg/m3),
coarse aggregate (578–1125 kg/m3), and superplasticizer (0–1.4%). The dependent parameter (CS)
ranged from 9.7 to 81.3 MPa. On the other hand, the data ranges for the SL prediction included
independent parameters such as cement (83–733 kg/m3), water-to-binder ratio (0.26–0.58), fly ash
(0–468 kg/m3), sand (624–1038 kg/m3), coarse aggregate (590–966 kg/m3), and superplasticizer
(0.087–21.84%). Also, the dependent parameter (SL) ranged from 615 to 800 m. Various statistical
assessment tools, such as the coefficient of determination (R2), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Objective value (OBJ), and Scatter Index (SI), were used to evaluate the
performance of the developed models. The results showed that the ANN model best predicted the
CS and SL of SCC mixtures modified with fly ash. Furthermore, the sensitivity analysis demonstrated
that the cement content is the most effective factor in predicting the CS and SL of SCC mixtures.

Keywords: self-compacting concrete; mix proportion; slump flow; compressive strength; modeling

1. Introduction

Self-compacted concrete (SCC) is one of the special types of concrete with a high
viscosity without any requirement for compaction. SCC is vital in the concrete industry due
to its numerous benefits. The main idea of SCC is to increase the amount of paste volume
to increase the rheological property of the mixture. Thus, the SCC can spread completely
inside the formwork by its weight without any bleeding or segregation. Thus, the labor
cost will be eliminated. However, utilizing excessive cement leads to a higher cost of SCC
production [1–3]. SCC is an excellent choice for congestion structural elements due to its
high flowability. The high flowability and stability of SCC can be achieved by utilizing
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different mineral and chemical admixtures; fly ash and superplasticizer, respectively, are
commonly used [4]. Fly ash is one of the common replacements for cement in concrete. It
can provide lower costs by reducing the utilization of cement and improving the mixture’s
flowability due to its rounded shape. One of the advantages of SCC over the other special
concretes is that SCC does not require any special curing method; the same methods and
procedures for normal concrete can also be used for SCC [5].

In the fresh state, the slump flow diameter (SL) of SCC is an important property
that should be checked. Also, among the mechanical properties in the hardened state,
the compressive strength (CS) of SCC is one of the significant parameters in the design
of engineering structures. Other mechanical properties and the durability of SCC have
a direct or indirect relation to compressive strength, and they can be derivate from the
CS [6,7].

The term ‘water-to-binder ratio’ (w/b) refers to the ratio of water to cement plus
pozzolanic material. One of the most common and most-well known pozzolanic materials
is fly ash, which has been used to improve some significant properties of self-compacted
concrete, such as workability. The compressive strength of SCC is improved by increasing
the water-to-binder ratio [8]. Karamoozian et al. [9] noticed that, for the same water content,
increasing the cement content from 360 to 450 kg/m3 increased the compressive strength
of SCC from 48 to 52 MPa at 28 days of curing. Similar findings have been reported in
other studies [10,11]. The w/b is one of the significant factors influencing the compressive
strength of SCC, similar to normal concrete. For SCC, the ratio is normally lower than
normal concrete. A lower w/b refers to lower water content and a higher amount of binder
materials, leading to a higher CS and a more homogeneous matrix. Ahmadi et al. [12] stated
that the w/b ratio has a greater impact on the compressive strength of normal concrete
than on the self-compacting compressive strength. Naderpour and Abbasi [13] investigated
the effect of different w/b ratios on the compressive strength of SCC. It was noticed that
lowering the w/b ratio from 0.45 to 0.35 improved the CS of SCC at all curing ages (from
3 to 56 days).

Since the volume of aggregates in the SCC is about 60–70% of its total volume, ag-
gregate greatly influences the rheological and mechanical properties of SCC. Compared
to conventional concrete, lower coarse aggregate content is utilized in the production of
SCC [1,3,14]. The study by [15] showed that the coarse aggregate had a greater impact
on the CS of SCC than the fine aggregate content. However, the fine aggregate has more
influence on the homogeneity and viscosity of the SCC mixture [16].

In addition to adding pozzolanic materials, SCC production is impossible without
superplasticizers. This is due to the utilization of high cement and binder content in SCC.
Therefore, high workability (slump flow diameter) can be achieved in SCC only when
the SP content is increased. Adding SP to the SCC mixture improves the rheological
performance but has different effects on the compressive strength based on the SP dosage.
A previous study by Sor N. A. [17] concluded that increasing the SP dosage from 5.5 kg/m3

to 8.25 kg/m3 increased the compressive strength of SCC from 35 MPa to 45.5 MPa at
28 days.

As illustrated above, the compressive strength of SCC is sensitive and affected by sev-
eral parameters. Therefore, apart from experimental work in the laboratory, which is quite
costly, it is important to utilize more advanced techniques to predict the CS value through
various statistical tools and numerical equations. Soft computing techniques [18–22] are
currently one of the most common and ideal approaches for predicting measured values;
they may be a good alternative for solving linear or nonlinear problems where mathemati-
cal models cannot simply indicate the relationship between the involved parameters in the
problem [23]. Mohammed et al. [24] created a systematic multiscale model to predict the
CS of fly ash-based concrete. A total of 450 experimental data were used for modeling in
their study. For the qualifications, the Linear regression (LR), Nonlinear regression (NLR),
Multi-Linear regression (MLR), M5P-tree, and Artificial Neural Network (ANN) models
were all developed. It was concluded that the MLR, M5P-tree, and ANN models were the



Sustainability 2023, 15, 11554 3 of 40

most accurate and reliable in predicting the CS of high-volume fly ash concrete, with higher
R2 values and lower RMSE and MAE values.

In this study, two different databases of fly ash-based self-compacted concrete mix-
tures with the same parameters were prepared. The first database consisted of 308 data
samples of SCC mixtures, and it was used to predict the compressive strength; the second
one had 86 data points used to predict the slump flow diameter of SCC. Thus, the CS and
SL are were dependent parameters predicted independently using collected databases.
The independent parameters of SCC were in various ranges, which included cement (C),
water-to-binder ratio (w/b), fly ash (FA), sand (S), coarse aggregate (CA), and superplasti-
cizer (SP).

As fly ash has a wide range of applications for producing SCC mixtures, a reliable
and accurate model cannot be found in the literature regarding the efficient use of FA in
SCC mixtures for the construction industry. As a result, this study attempted to evaluate
and quantify the effect of a wide range of mixture proportions on the CS and SL of SCC,
including the cement content (kg/m3), water-to-binder ratio, fly ash content (kg/m3),
sand content (kg/m3), coarse aggregate content (kg/m3), and superplasticizer percent-
age amount.

Three different model techniques, namely NLR, MLR, and ANN, were performed to
predict the CS [25–28] and SL of SCC modified with FA using the databases collected from
the literature. Furthermore, the most accurately developed model was applied to different
CS and SL ranges. The compressive strength ranges were as follows: low-strength concrete
(LSC), lower than 20 MPa; Normal-strength concrete (NSC), between 20 and 55 MPa; and
High-strength concrete (HSC), CS greater than 50 MPa [29]. The slump flow diameter
was divided into three different classes: the SL from 550 to 650 mm (Class 1), SL between
650 and 750 mm (Class 2), and SL of greater than 750 mm (Class 3) [5]. In addition, different
assessment criteria, such as the Correlation Coefficient (R2), Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), Objective (OBJ), and Scatter Index (SI), were used to
evaluate the performance of the developed models.

Research Objectives

This study aims to evaluate the effect of fly ash on the compressive strength and slump
flow diameter of self-compacted concrete mixtures collected from literature; the following
are the main objectives:

I. Perform statistical analysis to determine the influence of concrete ingredients, such as
the cement, water-to-binder ratio, fly ash, sand, coarse aggregate, and superplasticizer,
on self-compacted concrete’s compressive strength and slump flow diameter.

II. Provide a systematic multiscale model and propose to predict the compressive
strength and slump flow diameter of self-compacted concrete containing up to 70%
of fly ash, with a variety of cement, sand, and coarse aggregate content, as well as
different water-to-binder ratios and superplasticizer percentages.

III. Apply the most accurately developed model on different compressive strength ranges
and slump flow diameter classes.

IV. As an alternative to the developed model techniques (NLR, MLR, and ANN), deter-
mine the most reliable and accurate model based on different statistical assessment
criteria to predict the CS and SL of fly ash-based self-compacted concrete.

V. The overall and main objective of the current study is to model compressive strength
as one of the significant mechanical properties of concrete and slump flow diameter
as a fresh state property of SCC modified with different FA content.

2. Methodology
2.1. Data Collection

Two databases were prepared for each targeted parameter to develop a reliable and
applicable model to predict both the compressive strength and slump flow diameter of self-
compacted concrete modified with fly ash. The independent parameters included six main
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parameters: cement content (kg/m3), water-to-binder ratio, fly ash content (kg/m3), sand
(kg/m3), coarse aggregate (kg/m3), and superplasticizer (%). For the compressive strength
and slump flow, 308 data samples [30–51] and 86 data samples [31,37,38,41,42,50–63] were
selected, respectively, as shown in Table 1. According to the literature [29,64–66], the
datasets were divided into two groups, training (by 70%) and testing (by 30%), using the
Rand Function. The training dataset included 216 samples for CS data, while the testing
data included 92 samples to check the validity of the developed models based on the
training datasets. The training and testing datasets for the SL database were determined
as 60 samples and 26 samples, respectively. Figure 1 shows the methodology of the
current study.

Table 1. Summary of collected data for CS and SL prediction in FA-modified SCC.

References Cement, C
(kg/m3)

Water-to-
Binder Ratio

(w/b)

Fly Ash, FA
(kg/m3)

Sand, S
(kg/m3)

Coarse
Aggregate,
CA (kg/m3)

Superplasticizer,
SP (%)

Compressive
Strength, CS

(MPa)
[30] 134.7–540 0.27–0.9 0–525 487–1135 600–1125 0–1.36 9.74–79.19
[31] 160–280 0.34–0.45 120–240 808–1034 900 0.1–0.6 31–52
[32] 280–400 0.55–0.87 0–120 718–1042 850 0.12–0.75 13.3–41.2

[33,34] 183–317 0.38–0.65 100–261 478–919 837 0–1 Oct-43
[35] 533–583 0.31–0.33 50–215 813–835 745–766 0.24–0.46 50–81
[36] 161–247 0.35–0.45 159–254 842–866 843–864 0–0.4 26.2–38.0
[37] 250–427 0.31–0.59 90–257 768–988 659–923 0.09–0.9 47–66
[38] 220–440 0.32 110–330 686–714 881–917 0.62–0.69 48–70
[39] 300–350 0.38–0.4 150–200 830–845 860–876 0.818–0.827 21.6–26.5
[40] 380 0.38 20 1180 578 0.398 40.4
[41] 275–350 0.34–0.36 150–325 611–707 777–901 0.795–1.25 50–72
[42] 165–275 0.37–0.58 275–385 735–796 865–937 0.836–0.74 37.92–63.32
[43] 215 0.38 215 925 905 0.15 20.4
[44] 290 0.38 290 975 650 0.45 37.97
[45] 300 0.28 300 787 720 0.33 52.7
[46] 420 0.33 80 785 860 0.3 56
[47] 350 0.35 150 900 600 1.0 37.18
[48] 360 0.28 240 853 698 0.3 63.5
[49] 344–399 0.35 100–147 814 881–882 0.116–0.146 48.75–55
[50] 225 0.35 275 908 652 0.70 41.42
[51] 480 0.38 96 819 699 0.94 53

References Cement, C
(kg/m3)

Water-to-
binder ratio

(w/b)

Fly ash, FA
(kg/m3)

Sand, S
(kg/m3)

Coarse
aggregate,

CA (kg/m3)

Superplasticizer,
SP (%)

Slump flow
diameter, SL

(mm)
[52] 450–480 0.40–0.45 0–144 890 810 4.8–13.3 650–695
[50] 500 0.35 0–275 908–967 652–694 0.7–8 630–700
[37] 220–427 0.31–0.41 90–330 686–988 659–923 0.18–0.9 670–749
[38] 550 0.32–0.44 0–110 728–826 855–935 3.2–8.43 670–675
[53] 530 0.45 0–265 768 668 0.09–4.55 660–690
[41] 83–385 0.31–0.41 165–468 624–732 794–931 1–1.25 680–800
[31] 430–450 0.36–0.39 202.5–232.2 872–808 900 1.58–2.15 680–710
[54] 465–550 0.41–0.44 83–193 910 590 0.97–11 635–690
[55] 450–500 0.39–0.43 135–225 724–789 850–926 2.5–6.15 640–680
[56] 500 0.35 150–250 900 600 10.5–11 660–680
[57] 550 0.41–0.44 83–193 910 590 9.91–11.01 633–690
[58] 180–270 0.44 180–270 788–801 829–842 0.27–0.28 720–730
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Table 1. Cont.

References Cement, C
(kg/m3)

Water-to-
binder ratio

(w/b)

Fly ash, FA
(kg/m3)

Sand, S
(kg/m3)

Coarse
aggregate,

CA (kg/m3)

Superplasticizer,
SP (%)

Slump flow
diameter, SL

(mm)
[42] 165–385 0.29–0.58 165–385 735–821 865–966 0.74–0.84 670–730
[59] 567–670 0.26–0.31 0–156 656–846 729–875 12.39–21.84 615–655
[60] 733 0.26 271.21 748 698 8.40 660
[49] 399 0.35 100 814 882 0.146 690
[61] 500 0.35 0 1038 639 6.75 665
[51] 480 0.38 96 819 699 0.94 680
[62] 437 0.34 80 743 924 0.43 700
[63] 321.75 0.36 173.25 862.45 729.18 0.545 696
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2.2. Pre-Processing

The pre-processing technique is a vital step before using a dataset. The process can
improve the performance of created models. In the current study, each independent variable
was converted to a value between zero and one utilizing Equation (1) [29,67]. The converted
values in both the CS and SL databases are demonstrated in the box plot (Figure 2).

N f =
(Ni − Nimin)

(
N f max− N f min

)
(Nimax− Nimin)

+ N f min (1)

where Ni represents the old value and N f represents the new value. The N f min is zero and
N f max is one.
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2.3. Statistical Evaluation

The data collected to predict the compressive strength and slump flow diameter
of SCC mixtures were statistically analyzed to determine the relationship between each
independent variable (C, w/b, FA, S, CA, and SP) with the dependent variables (CS and
SL). In this regard, statistical functions such as Mean, Median, Mode, Standard Deviation
(SD), Skewness (Skew), Kurtosis (Kur), Variance (Var), Maximum (Max), and Minimum
(Min) were calculated. Skewness depicts the distribution of variables, whether positive
or negative, on the right or left, with positive values on the right and negative values on
the left. A negative value for kurtosis indicates a short distribution tail, whereas a positive
value indicates a longer tail. The statistical analysis is summarized in Table 2 for both the
CS and SL datasets. The histogram of each independent variable and its relationship with
compressive strength and the slump flow are plotted in Figures 3 and 4, respectively.

Table 2. Summary of the statistical analysis of the FA-modified SCC parameters for the CS and SL
prediction.

Variables C (kg/m3) w/b FA (kg/m3) S (kg/m3) CA
(kg/m3) SP (%) CS (MPa)

Mean 283.9 0.5 128.3 813.5 900.7 0.3 36.6
Median 279.8 0.5 133 813.5 881 0.2 34.5
Mode 250 0.55 0 916 837 0 49

SD 87.78 0.13 86.4 95.24 109.26 0.28 15.08
Var 7705.83 0.02 7465.52 9070.26 11,937.73 0.08 227.5

Kurt 0.2227 −0.1085 1.0307 2.2695 0.2755 0.9795 −0.2692
Skew 0.5491 0.5752 0.4626 0.2461 −0.0674 1.1913 0.4736
Min 134.7 0.27 0 478 578 0 9.7

C
om

pr
es

si
ve

st
re

ng
th

da
ta

ba
se

Max 583 0.9 525 1180 1125 1.4 81.3

Variables C (kg/m3) w/b FA (kg/m3) S (kg/m3) CA
(kg/m3) SP (%) SL (mm)

Mean 478.3 0.37 137.7 821.5 763.5 6.97 674.9
Median 500 0.38 142.9 810.5 772 6.58 675
Mode 550 0.35 0 910 590 4.55 680

SD 122.18 0.065 91.65 82.42 113.97 5.94 31.52
Var 14,928.1 0.00428 8399.5 6792.83 12,989.31 35.33 993.62

Kurt 0.8148 −0.2208 1.2492 −0.5606 −1.2545 −0.5945 1.9597
Skew −0.8308 −0.0041 0.6296 0.0668 −0.1665 0.569 0.8086
Min 83 0.26 0 624 590 0.087 615

Sl
um

p
flo

w
da

ta
ba

se

Max 733 0.58 468 1038 966 21.84 800
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Figure 4. Histogram and Marginal plots for the slump flow diameter of FA-modified SCC with (a) ce-
ment (kg/m3), (b) water-to-binder ratio, (c) fly ash (kg/m3), (d) fine aggregate (kg/m3), (e) coarse
aggregate (kg/m3), and (f) superplasticizer (%).

2.4. Modeling

As illustrated in Figure 5, the relationships between compressive strength or slump
flow diameter and other compositions of FA-modified SCC mixtures, such as cement, water-
to-binder ratio, fly ash, sand, coarse aggregate, and superplasticizer, were obtained. Based
on the correlation matrix, a good correlation between cement and compressive strength was
observed, which was 0.632. However, a poor correlation was noted for the other variables.
The correlations were −0.748, 0.161, 0.082, −0.301, and 0.185, respectively. On the other
hand, the relationships between independent parameters and the slump flow diameter
were determined. The highest correlation between the FA and the SL was 0.572. However,
poor relationships were found between C, w/b, S, CA, SP, and SL. The relations were
−0.814, 0.397, −0.052, 0.236, and −0.705, respectively.



Sustainability 2023, 15, 11554 13 of 40
Sustainability 2023, 15, x FOR PEER REVIEW 13 of 39 
 

(a) 

(b) 

Figure 5. Correlation matrix plot between the dependent and independent variables of FA-modified 
SCC based on (a) CS and (b) SL. 

Therefore, three models were proposed below to evaluate the effect of the various 
mixture proportions mentioned above on the CS and SL of SCC modified with FA. This 
study used NLR, MLR, and ANN models to predict the CS and SL of SCC mixtures. The 
most accurate and reliable model was proposed based on the following criteria: the model 
must be scientifically valid, with a lower percentage error between the measured and pre-
dicted data and a lower RMSE, MAE, OBJ, SI, and a higher R2 value. 

2.4.1. Nonlinear Regression (NLR) Model 
Equation (2) can be used as a general form to develop a nonlinear regression model 

to determine [24,68] both the compressive strength and slump flow diameter, including 
the fly ash content and the self-compacted concrete components. The model was devel-
oped for each dependent parameter independently using the mentioned collected data-
base. NLR is an advanced representation of the MLR model that is accurate and reliable. 
However, the model has a disadvantage in the form of mathematical complications [69]. 𝐶𝑆, 𝑆𝐿 = 𝛼 (𝐶) + 𝛼 (𝑤/𝑏) + 𝛼 (𝐹𝐴)  +𝛼 (𝑆) +𝛼 (𝐶𝐴) + 𝛼 (𝑆𝑃)  (2)

where 𝛼 , 𝛼 , 𝛼  … 𝛼  and 𝛼  are the model parameters. CS, SL, w/b, FA, S, CA, and SP 
are the compressive strength (MPa), slump flow diameter (mm), cement (kg/m3), water-

C 1

w/b −0.213 1

FA −0.456 −0.497 1

S −0.148 −0.073 −0.076 1

CA −0.169 0.332 −0.470 −0.311 1

SP 0.029 −0.204 0.482 −0.048 −0.524 1

CS 0.632 −0.748 0.161 0.082 −0.301 0.185 1
C w/b FA S CA SP CS

1
0.8
0.6
0.4
0.2
0

−0.2
−0.4
−0.6
−0.8
−1.0

C 1

w/b −0.375 1

FA −0.545 0.154 1

S 0.028 0.29 −0.191 1

CA −0.391 −0.172 0.076 −0.548 1

SP 0.778 −0.467 −0.434 −0.041 −0.316 1

SL −0.814 0.394 0.572 −0.052 0.236 −0.705 1
C w/b FA S CA SP SL

1
0.8
0.6
0.4
0.2
0

−0.2
−0.4
−0.6
−0.8
−1.0

Figure 5. Correlation matrix plot between the dependent and independent variables of FA-modified
SCC based on (a) CS and (b) SL.

Therefore, three models were proposed below to evaluate the effect of the various
mixture proportions mentioned above on the CS and SL of SCC modified with FA. This
study used NLR, MLR, and ANN models to predict the CS and SL of SCC mixtures. The
most accurate and reliable model was proposed based on the following criteria: the model
must be scientifically valid, with a lower percentage error between the measured and
predicted data and a lower RMSE, MAE, OBJ, SI, and a higher R2 value.

2.4.1. Nonlinear Regression (NLR) Model

Equation (2) can be used as a general form to develop a nonlinear regression model to
determine [24,68] both the compressive strength and slump flow diameter, including the
fly ash content and the self-compacted concrete components. The model was developed for
each dependent parameter independently using the mentioned collected database. NLR is
an advanced representation of the MLR model that is accurate and reliable. However, the
model has a disadvantage in the form of mathematical complications [69].

CS, SL = α1(C)
α2 + α3(w/b)α4 + α5(FA)α6+α7(S)

α8+α9(CA)α10 + α11(SP)α12 (2)

where α1, α2, α3 . . . α11 and α12 are the model parameters. CS, SL, w/b, FA, S, CA, and SP
are the compressive strength (MPa), slump flow diameter (mm), cement (kg/m3), water-to-
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binder ratio, fly ash (kg/m3), sand (kg/m3), coarse aggregate (kg/m3), and superplasticizer
(%), respectively.

2.4.2. Multi-Linear Regression (MLR) Model

The Multi-Linear Regression model can predict the compressive strength and slump
flow diameter of the fly ash-modified self-compacted concrete with different mix design
components. The equation of MLR includes the product of significant parameters af-
fecting the CS and SL of the self-compacted concrete in exponential and constant terms
(Equation (3)). The MLR model has several advantages, including simple mathematical
operation and ease of implementation. However, this model is of poor quality because it is
highly dependent on the number of data used; fewer data points provide less accuracy [70].

CS, SL = α1(C)
α2∗(w/b)α3∗(FA)α4∗(S)α5∗(CA)α6∗(SP)α7 (3)

where the CS, SL, C, w/b, FA, S, CA, and SP are the compressive strength, slump flow
diameter, cement (kg/m3), water-to-binder ratio, fly ash (kg/m3), sand (kg/m3), coarse
aggregate (kg/m3), and superplasticizer (%), respectively. In addition, α1, α2, α3, α4, α5, α6,
and α7 are the model parameters.

2.4.3. Artificial Neural Network (ANN) Model

The ANN model [71–75] is a computer system of artificial neurons that function
as fundamental units and mimic the parallel processes to analyze data like the human
brain. The pattern of neuron connections influences the behavior of ANN networks, which
also determines the network class. The ANN model can handle a mapping problem by
estimating the relationship between input and output variables and distinguishing it from
other expert systems by learning automatically from the obtained training patterns [76].
The ANN model is a machine learning system used in construction engineering for various
numerical predictions and challenges [76–79]. The model is constructed based on three
layers, input, hidden, and output, linked by biases and weights [80,81]. Several parameters
affect the final model result, such as the number of hidden layers and neurons, the training
algorithm, and the transfer function [82]. The ANN structure can be discovered by tuning
the required parameters through trial and error.

The current study designed a multi-layer feed-forward network with SCC components
(C, w/b, FA, S, CA, and SP) as input and the CS or SL as output. In the output layer, a
sigmoid activation function was utilized. The typical process of the ANN result is shown
in Figure 6. Equation (4) can be considered as a general formula for the calculation of an
ANN output with only one node:

Output = bias +
n

∑
j=1

(x j × wj) (4)

βn = an(C) + bn(w/b) + cn(FA) + dn(S) + en(CA) + fn(SP) (4a)

CS, SL =
Node1

1 + e−β1
+

Node2
1 + e−β2

+ · · ·+ Noden

1 + e−βn
+ Threshold (4b)
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Figure 6. Typical ANN output procedure in a single node.

2.5. Metrics for Assessing Developed Models

The performance of the developed models was evaluated and characterized based
on various assessment tools such as the Correlation Coefficient (R2), Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), Objective (OBJ), and Scatter Index (SI). The
equations of these parameters are well defined in Table 3. R2 is the squared correlation
between the measured and predicted values. The greater the R-squared value, the more
accurate the model. The average error made by models in predicting the outcome of the
observation was measured by the RMSE. The OBJ function identified evaluation objectives
based on the training and testing datasets and a variety of data.

Table 3. The performance evaluation criteria for the developed models.

Parameter Equation Range Best Value

R2 [58,80]
R2 =

 ∑i

(
vp−−u

)
×
(

vi−−v
)

√
∑i

(
vp−−u

)2
×
√

∑i

(
vi−−v

)2

2
0− 1 1

MAE [24,80] MAE = ∑n
i=1(|vi−vp|)

n 0−∞ 0

RMSE [24,69] RMSE =

√
∑n

i=1(vi−vp)2

N
0−∞ 0

OBJ [58,80] OBJ =
(

ntr
nall
× MAEtr+RMSEtr

R2
tr+1

)
+
(

ntst
nall
× MAEtst+RMSEtst

R2
tst+1

)
0−∞ 0

SI [69,80] SI = RMSE
vi

<0.1 Excellent

0.1 to 0.2 Good

0.2 to 0.3 fair

>0.3 Poor

Notes: vp = predicted value of compressive strength or slump flow; vi = experimental value of compressive

strength or slump flow;
−
u = average of predicted compressive strength or slump flow;

−
v = average of experimental

compressive strength or slump flow data; n = number of the dataset (training or testing); ntst = number of
the testing dataset; ntr = number of the training dataset; nall = total number of datasets (including training
and testing).

3. Results and Discussion
3.1. Relation between Predicted and Experimental Values
3.1.1. Nonlinear Regression (NLR) Model

The Nonlinear Regression model was utilized to predict the compressive strength and
slump flow diameter of FA-modified SCC. The NLR model results for CS and SL prediction
are shown in Equations (5) and (6), respectively. The relationship between the measured
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and predicted CS and SL values is displayed in Figure 7. When predicting the compressive
strength, the training dataset was observed to have an R2 of 0.81 and an RMSE value of
5.82 MPa. The testing dataset had an R2 of 0.84 and RMSE of 7.67 MPa. In the testing
dataset, the error line was from +50 to −25%, indicating that 25% of the data fell between
0.75 and 1.5 for the predicted to measured compressive strength ratio.

Regarding predicting the SL of FA-modified SCC, the training dataset had an R2 of
0.82 and an RMSE of 11.6 mm. Also, the testing dataset had an R2 of 0.57 and an RMSE of
27.4 mm. The error line was from +20 to −6% for the training data, indicating that 74% of
the data fell between 0.94 and 1.2 for the predicted to experimental slump flow diameter
ratio.

The NLR model provided nearly the same relationship value regarding R2 based on
the training dataset for both the CS and SL predictions.

CS = 14.1(C)0.32 + 1151.8(w/b)−0.03 + 0.42(FA)0.52−4.0(S)−14.45−5.1(CA)−13.96 − 1226(SP)0.00006 (5)

No. of training dataset = 216, R2 = 0.81, RMSE = 5.82 MPa

SL = 1242(C)−0.107 + 0.0001(w/b)0.0001 + 31.4(FA)0.026−0.0004(S)−0.0004−0.0002(CA)−0.0002 + 0.00001(SP)0.0002 (6)

No. of training dataset = 60, R2 = 0.82, RMSE = 11.6 mm
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Figure 7. Comparison between the measured and predicted (a) CS and (b) SL using the NLR model
for the training and testing datasets.

3.1.2. Multi-Linear Regression (MLR) Model

The Multi-Linear Regression model is another model used to predict the compressive
strength and slump flow diameter of self-compacted concrete modified with fly ash. The
MLR model has a simple mathematical expression. Therefore, it is considered one of the
least effective models. The MLR model formula comprises constant terms and terms raised
to the power of constant variables. In predicting compressive strength, the variables and
their relationships are detailed in Equation (7). The relationship between variables in
predicting the slump flow diameter is presented in Equation (8). The relationships between
the predicted CS and SL with the experimental values are illustrated in Figure 8.

As displayed in Figure 8a, while predicting the CS of FA-modified SCC, the R2 and
RMSE were 0.81 and 6.04 MPa for training and 0.82 and 7.92 MPa for testing data, respec-
tively. The error line was from +30 to −25% for training, meaning 45% of the data fell
between 0.75 and 1.3 for the predicted to measured compressive strength ratio. Figure 8b
presents the MLR model results when predicting the SL. The training dataset has an R2 of
0.86 and an RMSE of 10.3 mm. However, the testing dataset has an R2 of 0.57 and an RMSE
of 26.8 mm. The error line ranges for training from +12 to −15%, implying that 73% of the
data falls between 0.85 and 1.12 for the predicted to measured slump flow ratio.

CS = 0.0000003(C)0.8(w/b)−0.88(FA)0.015(S)0.89(CA)1.1(SP)0.0063 (7)

No. of training dataset = 216, R2 = 0.81, RMSE = 6.04 MPa

SL = 1200(C)−0.09(w/b)0.04(FA)0.0009(S)−0.0054(CA)0.0086(SP)−0.0028 (8)

No. of training dataset = 60, R2 = 0.86, RMSE = 10.3 mm.
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3.1.3. Artificial Neural Network (ANN) Model

An Artificial Neural Network was the last model used to predict the compressive
strength and slump flow diameter of FA-modified SCC. The ANN network structure is
known to be an excellent model for prediction. The ANN model was developed for various
trials. As shown in Figure 9, the five trials (4, 6, 8, 10, and 12) were chosen based on their
RMSE and MAE values for both the CS and SL training datasets independently. Then, the
network with one hidden layer and six neurons had the lowest RMSE and MAE values in
both predictions. Therefore, the ANN network having one hidden layer with six neurons
with a Learning rate of 0.2, a Learning time of 2000, and 0.1 of momentum was selected
(Figure 10).
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Equations (9) and (10) show the ANN formula for the CS and SL prediction, including
weights and biases. Based on the training dataset, the ANN network analysis predicted
a CS with an R2 of 0.94 and an RMSE of 3.56 MPa. When the testing data were used, the
model had an R2 of 0.95 and an RMSE of 3.49 MPa. The training dataset had an error line
from +20 to −20%, indicating that 80% of the data fell between 0.8 and 1.2 for the predicted
to measured compressive strength ratio (Figure 11a). Concerning the SL prediction, the
ANN network analysis predicted the SL with an R2 of 0.93 and an RMSE of 7.5 mm when
using the training data. However, when the tested data were used, the model had an R2 of
0.997 and an RMSE of 2.2 mm. The error line for the training dataset was from +6 to −6%,
indicating that 94% of the data fell between 0.94 and 1.06 for the predicted to measured SL
ratio (Figure 11b).



3.359 2.124 2.148 3.227 −3.055 −1.632 −0.721
−1.44 −0.375 1.352 0.85 −4.672 0.748 −1.398
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+
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No. of training dataset = 216, R2 = 0.94, RMSE = 3.65 MPa.
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No. of training dataset = 60, R2 = 0.93, RMSE = 7.5 mm.
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Since the measured compressive strength values in the training dataset were divided
into three stages—LSC (less than 20 MPa), NSC (20 to 50 MPa), and HSC (greater than
50 MPa)—the ANN model was applied to all three stages, and the resulting R2, RMSE, and
MAE values were all reported. The samples were 29, 143, and 44 for LSC, NSC, and HSC,
respectively. The ANN model for LSC had an R2 of 0.76, RMSE of 1.84 MPa, and MAE of
1.34 MPa. The model result differed for the middle stage (NSC); the R2 was 0.77, the RMSE
was 3.77 MPa, and the MAE had a value of 2.624 MPa. The HSC maintained greater result
values, with an R2 of 0.79, RMSE of 4.13 MPa, and MAE of 2.98 MPa (Figure 12).
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Figure 12. Relationship between the measured and predicted CS of FA-modified SCC for different
ranges.

Furthermore, based on the training dataset, the slump flow diameter values were
divided into classes 1, 2, and 3. The number of samples was 12 in the first class, 47 in the
second class, and only 1 in the last. Due to the high sample number of class 2, the ANN
model was applied to the class. The model provided an R2 of 0.88, RMSE of 6.2 mm, and
MAE of 5.2 mm (Figure 13).
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Figure 13. Relationship between the measured and predicted SL of FA-modified SCC for differ-
ent classes.

3.2. Effective Factors

The effect of independent parameters such as cement, water-to-binder ratio, fly ash,
sand, coarse aggregate, and superplasticizer on the compressive strength and slump flow
diameter of self-compacted concrete was evaluated using the MLR model. The effect of
a single parameter was found by changing its value from the minimum to the maximum
by fixing other parameters on either the minimum value or the maximum value. The
predicted CS and SL results were recorded in both cases, fixing independent variables
at the minimum and the maximum. Figure 14 shows all the effects of both the CS and
SL predictions.
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Figure 14. Effect of (a) fly ash content, (b) fly ash with cement content, (c) coarse aggregate content,
(d) sand content, (e) superplasticizer dosage, and (f) water-to-binder ratio on the CS and SL of SCC.

The MLR model result noted that increasing the fly ash content caused an increased
CS but had very little effect on the SL of SCC. Meanwhile, increasing the cement and fly
ash content at the same time decreased the SL but increased the CS. The coarse aggregate
and sand content greatly affected the CS. Increasing the CA and S content increased the CS.
However, the effect of aggregates was less on the SL. Increasing the CA content increased
the SL but decreased with the S content. On the other hand, superplasticizer was observed
to have a small effect on the CS and SL.

From the CS prediction, it was noted that all the independent variables in their
maximum value provided a greater value of CS when the value of any single parameter
was changed. In contrast to CS, the greater value of SL was achieved while applying the
minimum value of the independent variables. The summary of the most affected factors
for both CS and SL is shown in Figure 15.



Sustainability 2023, 15, 11554 27 of 40
Sustainability 2023, 15, x FOR PEER REVIEW 27 of 39 
 

 

 
Figure 15. Effect of independent parameters on the (a) CS and (b) SL of SCC. 

4. Evaluation of Developed Models 
The study was conducted to determine the effect of different fly ash content on the 

compressive strength and slump flow diameter of self-compacted concrete. The experi-
ment included predicting the CS and SL using three alternative models; NLR, MLR, and 
ANN. Each model provided a formula based on several mathematical parameters, and 
various assessment criteria were used to assess the performance of each constructed 
model. 

Based on the R2, RMSE, and MAE values, the ANN model provided the highest ac-
curacy and reliability for predicting compressive strength and slump flow diameter using 
the training dataset. For the CS prediction, the ANN model had an R2 of 0.94, RMSE of 
3.56 MPa, and MAE of 2.54 MPa based on the training dataset, as well as an R2 of 0.95, 
RMSE of 3.49 MPa, and MAE of 2.45 MPa for the testing dataset. In terms of the SL pre-
diction, the ANN model had an R2 of 0.93, RMSE of 7.5 mm, and MAE of 5.97 mm based 
on the training dataset, and an R2 of 0.997, RMSE of 2.2 mm, and MAE of 1.39 mm based 

Figure 15. Effect of independent parameters on the (a) CS and (b) SL of SCC.

4. Evaluation of Developed Models

The study was conducted to determine the effect of different fly ash content on the
compressive strength and slump flow diameter of self-compacted concrete. The experiment
included predicting the CS and SL using three alternative models; NLR, MLR, and ANN.
Each model provided a formula based on several mathematical parameters, and various
assessment criteria were used to assess the performance of each constructed model.

Based on the R2, RMSE, and MAE values, the ANN model provided the highest
accuracy and reliability for predicting compressive strength and slump flow diameter using
the training dataset. For the CS prediction, the ANN model had an R2 of 0.94, RMSE
of 3.56 MPa, and MAE of 2.54 MPa based on the training dataset, as well as an R2 of
0.95, RMSE of 3.49 MPa, and MAE of 2.45 MPa for the testing dataset. In terms of the SL
prediction, the ANN model had an R2 of 0.93, RMSE of 7.5 mm, and MAE of 5.97 mm
based on the training dataset, and an R2 of 0.997, RMSE of 2.2 mm, and MAE of 1.39 mm
based on the testing dataset. All statistical results for all models are summarized in Table 4.
Considering the error lines, the ANN was noted to have more data along the Y=X line. For
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CS, the model had an error line from +20 to −20% for the training dataset, indicating that
80% of the data were between 0.8 and 1.2 (predicted CS/experimental CS). However, in
predicting the SL, the ANN model had an error line from +6 to−6% for the training dataset,
indicating that 94% of the data were between 0.94 and 1.06 (predicted SL/experimental SL).

Table 4. Summary of the evaluation assessment criteria for the developed models in FA-modified
SCC for the CS prediction.

Training Testing
Model

Figure
(No)

Equation
(No.) R2 RMSE

(MPa)
MAE
(MPa) R2 RMSE

(MPa)
MAE
(MPa)

Ranking

NLR 7a 5 0.81 5.82 4.67 0.84 7.67 4.72 2
MLR 8a 7 0.81 6.04 4.69 0.82 7.92 4.65 3

C
om

pr
es

si
ve

st
re

ng
th

ANN 11a 9 0.94 3.56 2.54 0.95 3.49 2.45 1
Training Testing

Model
Figure
(No)

Equation
(No.) R2 RMSE

(mm)
MAE
(mm) R2 RMSE

(mm)
MAE
(mm)

Ranking

NLR 7b 6 0.82 11.6 10.12 0.57 27.4 27.1 3
MLR 8b 8 0.86 10.3 8.54 0.57 26.8 25.93 2

Sl
um

p
flo

w
di

am
et

er

ANN 11b 10 0.93 7.5 5.97 0.997 2.2 1.39 1

Furthermore, the second-ranked model was the NLR for CS prediction; it had an
R2 of 0.81, RMSE of 5.82 MPa, and MAE of 4.67 MPa for the training dataset, and R2 of
0.84, RMSE of 7.67 MPa, and MAE of 4.72 MPa for the testing dataset. The model ranged
between the +30 and −25% error lines for the training dataset. However, the MLR was
second-ranked for the SL prediction; it had an R2 of 0.86, RMSE of 10.3 mm, and MAE
of 8.54 mm for the training dataset, and an R2 of 0.57, RMSE of 26.8 mm, and MAE of
25.93 mm for the testing dataset. The error line was between +12 and −15% for the MLR
model based on the training dataset.

Moreover, the training dataset from the collected data for CS prediction was divided
into three different ranges, and then the ANN model was applied. All the R2, RMSE, and
MAE values were calculated. The ANN model for the low CS strength range had an R2 of
0.76, RMSE of 1.84 MPa, and MAE of 1.34 MPa. The model result differed for the middle
stage; the R2 was 0.77, the RMSE was 3.77 MPa, and the MAE was 2.62 MPa. The high CS
strength range maintained higher results, with an R2 of 0.79, RMSE of 4.13 MPa, and MAE
of 2.98 MPa. On the other hand, the training dataset for predicting the SL was divided into
three classes, and the ANN model was used to calculate each class’s R2, RMSE, and MAE
values. The model had an R2 of 0.88, an RMSE of 6.2 mm, and an MAE of 5.2 mm for the
mid-class (from 650 to 750 mm).

The testing dataset had lower R2, RMSE, and MAE values than the training dataset
for all the developed models predicting CS and SL. The variations to the measured val-
ues were plotted as shown in Figure 16 for the compressive strength and slump flow
diameter of self-compacted concrete. Model values fell between the +30 and −20% error
lines for CS prediction, and between −20% and +30% for the SL prediction, indicating
poor performance.
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models using the testing dataset.
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The performance of the developed models was also evaluated using the training and
testing datasets through the OBJ function and SI value. According to the objective function,
the ANN model maintained the lowest value using the training dataset (Figure 17). The
OBJ value was 3.12 and 5.5 for the CS and SL, respectively. Based on the SI value, the NLR
model showed an excellent performance in predicting the CS. The SI value was 0.10 for
both the training and testing datasets. In predicting the SL, the NLR, MLR, and ANN
models showed excellent performances for both the training and testing datasets. The SI
value was 0.02 for both the NLR and MLR models and 0.01 for the ANN model (Figure 18).
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In addition, the created models were compared using residual error, as shown in
Figure 19, for both the CS and SL predictions. The residual error value was obtained by
subtracting the expected value from the measured value. The results of the CS prediction
showed that the ANN model had the lowest error value, ranging from−23.0 to +13.91 MPa.
The residual error for the NLR and MLR models ranged from −18.27 to 29.98 MPa and
from −19.06 to 34.41 MPa, respectively. In contrast to the CS, the ANN model provided the
lowest error value in the SL prediction. The error value was from −13.91 to 23.0 mm for
the MLR model. The results of the NLR and ANN models were from −27.02 to 35.35 mm
and from −30.13 to 36.46 mm, respectively.
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5. Sensitivity Investigation

Sensitivity analysis is an effective way to find and evaluate the effect of each indepen-
dent variable on the modeled dependent variable, CS, and SL of fly ash-modified SCC [20].
For this purpose, the most accurate and efficient model was determined and selected for
the analysis; in this study, the ANN was used for both CS and SL training datasets, as
the analysis was performed for both collected data independently. During the sensitivity
analysis, one parameter was excluded each time, and the assessment tools’ results, such as
R2, RMSE, and MAE, were independently calculated for each trial. The sensitivity results
for CS and SL are shown in Table 5. The findings show that the cement content was the
most effective parameter in predicting both CS and SL of SCC, followed by coarse aggregate
and fly ash content (Figure 20).



Sustainability 2023, 15, 11554 34 of 40

Sustainability 2023, 15, x FOR PEER REVIEW 34 of 39 
 

 
(a) 

(b) 

Figure 20. The percentage contribution of input variables in predicting; (a) CS and (b) SL of FA-
modified SCC using the ANN model. 

Table 5. Sensitivity analysis results of the ANN model applied to the training dataset of 
FA-modified SCC for CS prediction. 

C
om

pr
es

si
v

e 
st

re
ng

th
 

No. Combination 
Removed 
Parameter R2 

RMSE 
(MPa) MAE (MPa) 

Ranking Based on 
RMSE and MAE 

1 C, w/b, FA, S, CA, SP - 0.94 3.65 2.52 - 
2 w/b, FA, S, CA, SP C 0.82 6.19 4.7 1 

21.9%

13.0%

17.2%

16.3%

19.5%

12.1%

C

w/b

FA

S

CA

SP

0%

Pe
rc

en
ta

ge
 o

f C
on

tr
ib

ut
io

n 

Independent Parameters

20.0%

14.1%

16.9%

15.5%

17.2%

16.4%

C

w/b

FA

S

CA

SP

0%

Pe
rc

en
ta

ge
 o

f C
on

tr
ib

ut
io

n 

Independent Parameters

Figure 20. The percentage contribution of input variables in predicting; (a) CS and (b) SL of FA-
modified SCC using the ANN model.



Sustainability 2023, 15, 11554 35 of 40

Table 5. Sensitivity analysis results of the ANN model applied to the training dataset of FA-modified
SCC for CS prediction.

No. Combination Removed
Parameter R2 RMSE (MPa) MAE (MPa) Ranking Based on

RMSE and MAE

1 C, w/b, FA,
S, CA, SP - 0.94 3.65 2.52 -

2 w/b, FA, S,
CA, SP C 0.82 6.19 4.7 1

3 C, FA, S, CA,
SP w/b 0.93 3.85 2.79 5

4 C, w/b, S,
CA, SP FA 0.9 4.92 3.7 3

5 C, w/b, FA,
CA, SP S 0.91 4.75 3.5 4

6 C, w/b, FA,
S, SP CA 0.89 5.46 4.19 2

C
om

pr
es

si
ve

st
re

ng
th

7 C, w/b, FA,
S, CA SP 0.94 3.83 2.6 6

No. Combination Removed
Parameter R2 RMSE (mm) MAE (mm) Ranking based on

RMSE and MAE

1 C, w/b, FA,
S, CA, SP - 0.93 7.5 6 -

2 w/b, FA, S,
CA, SP C 0.87 10.9 9.2 1

3 C, FA, S, CA,
SP w/b 0.91 8.7 6.5 6

4 C, w/b, S,
CA, SP FA 0.88 9.5 7.8 3

5 C, w/b, FA,
CA, SP S 0.9 9 7.2 5

6 C, w/b, FA,
S, SP CA 0.88 9.5 7.9 2

Sl
um

p
flo

w
di

am
et

er

7 C, w/b, FA,
S, CA SP 0.9 9.4 7.6 4

6. Conclusions

The current study aimed to find and propose an accurate and reliable model to predict
self-compacted concrete’s compressive strength and slump flow diameter modified with
different fly ash types and quantities. Overall, 216 and 86 data samples for fly-ash-modified
self-compacted concrete with different mixture proportions, cement content, water-to-
binder ratio, sand content, coarse aggregate content, and superplasticizer dosage were
collected from the literature. Based on the collected data and the results of three different
model approaches, the following conclusions can be drawn:

1. The database for predicting CS included fly ash content ranging between 0 and
525 kg/m3, while that for predicting SL ranged between 0 and 468 kg/m3.

2. Increasing fly ash content caused an increase in the CS, but a lower impact was found
on the SL. However, the impact of fly ash was found when the cement content was
increased with an increase in the fly ash content simultaneously. It decreased the SL
but increased the CS.

3. The compressive strength was more affected by aggregates rather than the slump
flow. Increasing the CA and S content increased the CS but led to small changes in the
SL. The influence of CA and S was noted to be higher at the maximum values of the
variables. These findings highlight the importance of aggregates, specifically coarse
and fine aggregates, in determining the compressive strength of concrete. Whereas
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the slump flow, which measures the workability and fluidity of the mixture, did
not substantially impact the CS, the composition and content of aggregates played a
crucial role in enhancing the concrete’s overall strength.

4. According to the various assessment criteria, such as R2, RMSE, and MAE, the ANN
model was noted to have the highest accuracy and reliability for predicting both
compressive strength and slump flow diameter of self-compacted concrete.

5. When predicting the CS, the ANN model had the highest R2 of 0.94 for training
and 0.95 for testing datasets. The lowest RMSE and MAE values were found to be
3.56 MPa and 2.54 MPa for training and 3.49 MPa and 2.45 MPa for testing datasets,
respectively. However, in predicting the SL, the ANN model had an R2 value of 0.93,
RMSE of 7.5 mm, and MAE of 5.97 mm for the training dataset. The testing dataset’s
R2, RMSE, and MAE values were 0.997, 2.2 mm, and 1.39 mm, respectively.

6. Other statistical assessment tools, such as the OBJ function and SI value, were used.
The ANN model maintained the lowest OBJ value of 3.12 and 5.5 for the CS and SL,
respectively. Regarding the SI value, excellent performance was observed from the
NLR model when predicting the CS, which was 0.10 for both the training and testing
datasets. However, all models were observed to predict the SL. The SI value was
0.02 for both the NLR and MLR models and 0.01 for the ANN model.

7. The application of the Artificial Neural Network (ANN) model to different ranges of
concrete strength (CS) and different classes of specimen length (SL) demonstrates its
versatility and effectiveness. The higher CS strength range yielded more favorable
outcomes, as indicated by an R2 (coefficient of determination) value of 0.79, an
RMSE (Root Mean Square Error) of 4.13 MPa, and an MAE (Mean Absolute Error)
of 2.98 MPa. These metrics signify a strong correlation and relatively low prediction
errors, suggesting the model performed well in estimating axial strength for high
CS levels. Overall, the reported R2 values demonstrated a good fit between the
predicted and actual values, while the RMSE and MAE values indicated relatively
small errors in the model’s predictions. These findings suggest that the ANN model
can effectively capture the relationships between the CS, SL, and axial strength,
highlighting its potential as a reliable tool for estimating concrete strength in various
scenarios and ranges.

8. Sensitivity analysis illustrates the cement content as the most effective parameter for
both the CS and SL prediction of SCC.

7. Limitations and Future Work

1. Other soft computing models should be used to predict the slump flow diameter and
compressive strength of the fly ash-based self-compacted concrete.

2. It is possible to assess other fly ash types and sources.
3. The prediction of other types of workability tests can be investigated.
4. Experiments need to be carried out to verify the produced models.
5. It is also important to determine the effect of fly ash content on flexural and tensile strength.
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