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Abstract: To ensure the sustainability of the marine environment, it is crucial to understand the
intricate relationship between environmental factors and marine biota. Human activities have been
recognized as significant contributors to profound changes in marine ecology. However, these
observable alterations often represent a cumulative effect that intertwines with less apparent natural
influences. This research delved into the relationships between environmental factors and marine
life in the waters adjacent to Nanwan Bay, Kenting, Taiwan. Specifically, it examined the linear
relationships and the degree of changes between environmental factors and marine life. To achieve
these objectives, factor analysis was employed to uncover potential latent variables that could impact
marine organisms, with these variables named based on previous studies and related literature. The
findings led to the development of a structural equation model (SEM) to represent the marine ecology
of Nanwan Bay. The results accentuated the significant influence of primary productivity and nutrient
levels on the assemblage of marine life. The application of SEM methodology sheds more light on the
degree of impact natural and anthropogenic interference have on marine ecosystems.

Keywords: factor analysis; structural equation model; marine ecology

1. Introduction

In marine ecosystems, changes in the water temperature reflect the heat balance of
seawater and its temporal variation and are also important factors affecting the survival of
marine organisms [1]. To support national economic development and industrial growth,
many countries, including the United States, China, and Japan, have chosen to build
nuclear power plants in coastal areas to supply electricity for daily life and industry. The
large amount of heated water discharged from nuclear power plants elevates the sea
water temperature, potentially affecting marine organisms. However, the extent of this
impact on the local region can also be influenced by site characteristics and environmental
background [1]. Previous studies have shown that environmental factors can affect the
abundance of marine organisms [2,3]. For instance, the water temperature, light, and
nutrient concentration often affect the aggregation structure of phytoplankton, the primary
producer in marine ecosystems, in specific times and spaces [4]. Hence, the increase
in water temperature caused by discharged heated water may affect the photosynthetic
efficiency and species composition of phytoplankton, and may also affect the metabolism
of zooplankton, reducing their abundance [5–7]. Moreover, changes in prey species and
water temperature may cause differences in the distribution of fish [8].

This study was conducted in the semi-enclosed Nanwan Bay, Taiwan, where about ten
million tons of cooling seawater have been drawn and discharged every day since May 1984
for the operation of a nuclear power plant. Notably, Kenting National Park was established
in 1982, shortly after construction began on the power plant in 1981. The operation of the
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nuclear plant has since raised significant environmental concerns, leading to active research
in the area. Long-term water quality monitoring data indicate that the water temperature
changes in the Bay are mainly affected by weather, seasonality, and large-scale ocean events,
and are not directly related to the discharge of heated water [9,10]. In an attempt to gain
a deeper understanding of how these complex natural phenomena can impact marine
ecosystems, it is necessary to investigate the unique influence of strongly interrelated
factors. Consequently, this research aims to ascertain the extent of influences wielded
by these elusive environmental factors, specifically nutrients and upwelling current, on
marine life.

2. Materials and Methods

In this study, we analyzed a total of 223 items of valid water quality and marine
biological data surveyed at 4 stations in Nanwan Bay, Kenting, Taiwan, in the same seasons
and months, specifically February, May, August, and November from 2000 to 2016 (Figure 1).
We employed a multi-stage approach to examine the interrelationships among various
factors in the marine environment, with the aim of constructing a structural equation model
(SEM), a model which integrates factor analysis and path analysis to analyze data [11,12].
This methodology can not only serve as an approach for theoretical verification, but also
incorporates multiple environmental and biological factors into one model. In the first
stage, Pearson correlation analysis was used to evaluate the linear association between
the variables. Then, factor analysis was conducted to identify common factors among the
variables, with these factors subsequently serving as measurement models in SEM.

One issue that can compromise the validity of factor analysis is excessively high
or low correlations between variables. To address this, the Kaiser–Meyer–Olkin (KMO)
measure, a statistic that compares the magnitude of observed correlation coefficients to the
magnitude of partial correlation coefficients, was utilized [13]. In conjunction, Bartlett’s
test of sphericity, which checks the overall significance of all the correlations within the
correlation matrix, was used. The tests helped to ensure adequate sampling (Table 1) and
sufficient correlation matrices, respectively.

Table 1. KMO measurement sampling adequacy criteria (Kaiser, 1974) [12].

KMO Value Applicability of Factor Analysis

0.9 ≤ KMO Marvelous

0.8 ≤ KMO ≤ 0.9 Meritorious

0.7 ≤ KMO ≤ 0.8 Middling

0.6 ≤ KMO ≤ 0.7 Mediocre

0.5 ≤ KMO ≤ 0.6 Miserable

KMO ≤ 0.5 Unacceptable

To ensure the validity of the measurement models, we assessed the construct valid-
ity. Construct validity encompasses convergent validity, which confirms whether or not
measures that should theoretically be related are indeed correlated with corresponding
factors, and discriminant validity, which measures how much a construct is distinct from
other constructs. We adopted factor loadings of 0.5 and above as a benchmark for con-
vergent validity and specified cross-loadings of below 0.5 to ensure discriminant validity,
as suggested by Chen (2005) [14]. Furthermore, we employed communality to quantify
the extent to which a variable contributes to a latent factor. The value ranges from 0 to
1, with higher values indicating that the variable is more closely related to the common
factor and has lower uniqueness. Thus, variables with high communality are deemed to be
more appropriate measurement variables. Consequently, variables with a communality
score exceeding 0.5 can be identified as ideal measurement variables, following Chen’s
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(2005) [14] guideline. After validating these measurements, environment-related literature
and ecological knowledge were incorporated to assign meanings to each extracted factor.
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Finally, potential SEMs were created based on previous studies and the results of our
factor analysis (Figure 2). Relationships between marine ecological factors were determined
using analytical findings from Ramdani et al. (2009) [4]. Each factor was assigned a
composite score, representing the intensity of the variables it represented.

We assessed the performance of the model using absolute fit indices, incremental fit
indices, and parsimonious fit indices. The absolute fit indices, such as Chi-square index and
goodness of fit index, measure the degree to which the observed covariance or correlation
matrix matches the predicted theoretical model. Incremental fit indices, such as the non-
normed fit index, compare the fit of the theoretical model to a baseline or null model.
Parsimonious fit indices, such as the parsimonious normed fit index and Hoelter’s critical
N, favor models that achieve a good fit with fewer parameters. Table 2 provides a summary
of the model’s adequacy evaluation.
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Table 2. The indices’ thresholds for SEM evaluation.

Key Metrics Guidelines Reference

Preliminary Fit Criteria Factor Loading 0.50~0.95 Chen, 2005 [14]

Overall Model Fit

Absolute Fit Indices

χ2 The lower the better Hwang, 2004,2009 [15,16]

χ2/df <5 (<3 better fit) Hair et al., 1998 [17]
Carmines et al., 1981 [18]

GFI >0.9 Joreskog & Sorbom, 1996 [19]

AGFI >0.9 (>0.8 acceptable fit) Hair et al., 1998 [17]
Joreskog & Sorbom, 1996 [19]

RMSEA

<0.05, good fit

Hair et al., 2006 [20]
Browne & Cudeck, 1993 [21]

0.05~0.08,
reasonable fit

0.08~0.10, medium fit

>0.10, poor fit

SRMR ≤0.08 Hu & Bentler, 1999 [22]

Incremental Fit Indices NNFI >0.9 Tucker & Lewis, 1973 [23]

Parsimonious Fit Indices

PNFI ≥0.5 Tucker & Lewis, 1973 [24]

PGFI ≥0.5 Mulaik et al., 1989 [25]

CN ≥200 Mulaik et al., 1989 [26]



Sustainability 2023, 15, 11435 5 of 20

3. Results and Discussions
3.1. Pearson Correlation Coefficient

The statistics of each measurement variable are shown in Tables 3 and 4. The initial
investigation relied on simple correlation analysis (Table 5) due to the variance in measure-
ment units between water quality parameters and biometric parameters. The standardized
correlation coefficient (r) was utilized to evaluate the level of linear correlation between
each measurement variable and was employed as a benchmark for the development and
refinement of subsequent models.

Table 3. Statistical summary of environmental variables.

Environment
Variable N = 223 Unit Minimum Maximum Mean Standard

Deviation Variance

Temperature °C 17.200 31.100 26.744 2.078 4.316

Salinity psu 32.111 35.741 34.114 0.498 0.248

pH - 7.953 8.195 8.077 0.036 0.001

Dissolved oxygen mg/L 5.168 7.560 6.521 0.281 0.079

Transparency m 0.000 20.000 11.486 3.129 9.792

Chlorophyll a µg/L 0.005 1.223 0.212 0.200 0.040

Nitrate µM 0.000 2.957 0.616 0.518 0.268

Nitrite µM 0.000 0.244 0.066 0.041 0.002

Phosphate µM 0.006 0.780 0.093 0.067 0.005

Silicate µM 0.913 5.630 2.258 0.756 0.571

Table 4. Statistical summary of biological variables.

Biological
Variable N = 223 Unit Minimum Maximum Mean Standard

Deviation Variance

Fish species Species 15 67 39.776 8.699 75.670

Fish abundance ind./station 51 3082 299.170 275.870 76,104.016

Zooplankton ind./1000 m3 22,590 2,329,724 410,051.466 380,477.250 1.45 × 1011

Phytoplankton ind./1000 m3 10 120,600 2390.063 13,069.235 1.71 × 108

Crab larvae ind./1000 m3 0 111,962 2496.565 7862.203 6.18 × 107

Shrimp larvae ind./1000 m3 19 51,510 5938.323 8541.610 7.30 × 107

Fish eggs ind./1000 m3 0 81,596 10,418.305 14,776.330 2.18 × 108

Fish larvae ind./1000 m3 0 3551 318.350 457.812 209,591.670

The standardized correlation coefficient (r) ranges between −1 and +1, with a value
closer to −1 or +1 indicating a stronger correlation between the two random variables, and
a value closer to 0 indicating a weaker correlation. In Table 5, it is evident that a majority
of the measurement variables under investigation exhibited a substantial degree of linear
relationship, while the remaining variables could not be determined as having a linear
relationship (potentially due to a non-linear relationship or lack of correlation).

As correlation analysis only reveals the existence of linear relationships between
variables, it does not imply the establishment of a causal relationship. Thus, in order
to identify any potential variables and investigate the common variance between each
variable, further factor analysis must be conducted.
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Table 5. Correlation analysis results of measurement variables.

Temperature Salinity pH Dissolved
oxygen Transparency Chlorophyll

a Nitrate Nitrite Phosphate Silicate Zooplankton
Abundance

Phytoplankton
Abundance

Crab Larvae
Abundance

Shrimp
Larvae

Abundance

Fish Egg
Abundance

Fish Larvae
Abundance Fish Species Fish

Abundance

Temperature 1.000

Salinity −0.586 ** 1.000

pH 0.444 ** −0.128 1.000

Dissolved
oxygen −0.550 ** 0.239 ** −0.014 1.000

Transparency 0.074 0.088 −0.074 −0.325 ** 1.000

Chlorophyll
a −0.126 −0.273 ** 0.051 0.233 ** −0.395 ** 1.000

Nitrate −0.432 ** 0.268 ** −0.384** 0.064 −0.030 0.109 1.000

Nitrite −0.307 ** 0.321 ** −0.163 * 0.170 * −0.122 0.065 0.285 ** 1.000

Phosphate −0.396 ** 0.264 ** −0.280 ** 0.208 ** −0.209 ** 0.199 ** 0.547 ** 0.376 ** 1.000

Silicate −0.190 ** −0.101 −0.248 ** 0.086 −0.029 0.104 0.438 ** 0.215 ** 0.351 ** 1.000

Zooplankton
abundance 0.124 −0.191 ** −0.236 ** 0.016 0.041 0.047 −0.245 ** −0.164 * −0.177 ** −0.183 ** 1.000

Phytoplankton
abundance 0.237 ** −0.143 * 0.093 −0.010 −0.107 −0.060 −0.216 ** −0.038 −0.139 * −0.029 0.079 1.000

Crab larvae
abundance 0.285 ** −0.314 ** 0.044 −0.126 −0.184 ** 0.099 −0.192 ** −0.157 * −0.093 −0.090 0.385 ** 0.066 1.000

Shrimp
larvae
abundance

−0.041 −0.109 −0.180 ** 0.140 * −0.123 0.083 −0.138 * −0.132 * −0.067 −0.203 ** 0.634 ** 0.111 0.474 ** 1.000

Fish egg
abundance 0.550 ** −0.346 ** −0.020 −0.392 ** 0.176 ** −0.076 −0.172 * −0.141 * −0.113 0.045 0.301 ** 0.228 ** 0.375 ** 0.107 1.000

Fish larvae
abundance 0.254 ** −0.091 0.019 −0.093 0.020 −0.047 −0.137 * −0.130 −0.148 * −0.213 ** 0.476 ** 0.143 * 0.396 ** 0.501 ** 0.347 ** 1.000

Fish species 0.084 −0.175 ** −0.077 0.078 −0.085 −0.081 −0.212 ** −0.061 −0.172 * −0.050 0.120 0.176 ** 0.133 * 0.167 * 0.004 0.118 1.000

Fish
abundance 0.049 0.006 0.173 ** 0.032 −0.021 0.018 −0.201 ** −0.071 −0.103 −0.026 −0.017 0.039 0.017 0.016 −0.029 0.069 0.460 ** 1.000

statistical significance *. p ≤ 0.05; **. p ≤ 0.01.
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3.2. Factor Analysis of Environmental Variables

Before conducting factor analysis, it is necessary to determine the suitability of each
measurement variable by checking whether the Kaiser–Meyer–Olkin (KMO) value is greater
than 0.6 and if the result of Bartlett’s sphericity test is significant (p ≤ 0.05) [13]. This study
postulates that environmental factors influence marine life. However, measurable environ-
mental and biological variables (such as nitrate, silicate, phosphate, nitrite, temperature,
salinity, pH, dissolved oxygen, transparency, and chlorophyll a, along with the quantity of
zooplankton, crab larvae, shrimp larvae, fish eggs, larvae, fish species, and fish abundance)
are closely intertwined. Therefore, potential factors were first extracted from all the environ-
mental and biological variables. Among the observed variables related to phytoplankton,
only the “number of phytoplankton” was included in the analysis of biological variables, as
it can explain the variation in phytoplankton community structure; hence, it was reserved
in the SEM but excluded from factor analysis of the biological variables.

3.2.1. First Factor Analysis

The result of the first factor analysis of the environmental variables indicated a KMO
value of 0.642. As per Kaiser’s suggested criteria, a value between 0.6 and 0.7 was consid-
ered to have “normal” applicability. Furthermore, the result of Bartlett’s sphericity test was
significant (p < 0.001), implying that the water quality measurement variables investigated
in this study are appropriate for factor analysis.

In this study, the principal component method of extraction was employed to extract
factors. Following Kaiser’s criterion, only factors with eigenvalues greater than or equal
to 1 were retained. The scree plot was also used to observe the slope of the cumulative
explanatory power. When the slope is significantly flattened, the extraction process can
be stopped. The results indicated that three factors had eigenvalues greater than 1 and
could explain 61.075% of the total variation. Factor rotation was then conducted with the
determined principal components.

The purpose of factor rotation is to align the data with the assumptions of the statistical
model and to convert the data appropriately. It is undertaken by rotating the axis to cover
the “maximum space range”, which is associated with different factor loadings, thereby
amplifying the differences. In other words, it aims to achieve the greatest amount of
variation. Through rotation, both positive and negative correlations between each factor
(axis) and the variables are strengthened, and thus variables that were initially relevant will
maintain a high factor loading, which is conducive to naming and interpreting the factors
(latent variable).

In this study, we utilized the Varimax method of orthogonal rotation, which enables
each variable to have only one latent factor, yielding a large factor loading while avoiding
duplication. Orthogonal rotations preserve a 90-degree angle. The Varimax method
facilitates a distinct partition of variables, leading some to achieve high factor loadings and
others to have low factor loadings, thereby making the factors easier to interpret.

After rotation, factor 1 (nitrate, silicate, phosphate, nitrite) explained 24.528% of
the variance; factor 2 (temperature, dissolved oxygen, salinity) explained 18.505% of the
variance; and factor 3 (transparency, chlorophyll a) explained 18.042% of the variance.
This result indicated that the pH environmental variable did not demonstrate adequate
convergence validity, as none of the three different rotations produced factor loading values
above 0.5.

Furthermore, the communality score of the pH value was 0.359, the lowest value
among all measurement variables, and did not exceed 0.5. Therefore, since pH did not have
convergent validity and yielded low communality, it was removed and a second factor
analysis was conducted. Note that when deleting variables, it is essential to remove only
one at a time and consider the importance of each variable to the research.
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3.2.2. Second Factor Analysis

The second attempt resulted in a KMO value of 0.632, indicating normal applicability.
Additionally, Bartlett’s sphericity test was significant, with p < 0.001. The results showed
that after removing pH, the remaining environmental variables were still suitable for
factor analysis.

In the second step, the scree plot diagram revealed that three factors had eigenvalues
greater than 1, resulting in a cumulative total variation of 65.360%. These factors were
further processed in factor rotation.

After the rotation, factor 1 (nitrate, silicate, phosphate, nitrite) could explain 25.860% of
the variance; factor 2 (temperature, dissolved oxygen, salinity) could explain 20.347% of the
variance; and factor 3 (chlorophyll a, transparency) could explain 19.153% of the variance.
It was evident that the “salinity” environmental variables could be observed in both factor
composition axes 2 and 3, with both exceeding a factor loading of 0.5. This indicated that
salinity lacks discriminant validity. However, none of the other environmental variables
from factors 1 to 3 exhibited factor loadings of 0.5 and above simultaneously, implying
that these variables possessed discriminant validity. Moreover, none of the environmental
variables in factors 1 to 3 had all factor loadings below 0.5, indicating that variables from
factor 1 to 3 possessed convergent validity. Lastly, it is essential to examine whether the
communality of the environmental variables is greater than or equal to 0.5. As illustrated
in Table 6, “nitrite” exhibited a communality of 0.427, which is lower than 0.5, rendering
it the smallest of the other environmental variables. Therefore, it was eliminated, and the
third factor analysis was executed.

Table 6. The communality of environmental variables (pH excluded).

Environmental Variables Total Variance Extracted %

Temperature 0.789
Salinity 0.765

Dissolved oxygen 0.733
Transparency 0.606
Chlorophyll a 0.637

Nitrate 0.722
Nitrite 0.427

Phosphate 0.525
Silicate 0.678

3.2.3. Third Factor Analysis

The third factor analysis yielded a KMO value of 0.579, which is deemed “not a good
fit”. However, Bartlett’s sphericity test was significant (p < 0.001), indicating the presence
of sufficient correlation among the variables. Nonetheless, given the low effect of extracting
common factors, as revealed by KMO, it is not advisable to proceed with further analysis
of the remaining environmental variables if nitrite is eliminated.

The sea area of the present study contains interrelationships among various water
quality environmental measurement variables. Specifically, the study examined the rela-
tionship between phosphate and nitrate, which serve as raw materials for the synthesis
of organic matter via the photosynthesis of marine plants, and silicates, which are the
primary constituent materials of the phytoplankton cell wall. These interrelationships arise
from the interaction between environmental and biological variables. However, given the
dynamic nature of marine environments, it was challenging to identify the precise nature of
these relationships. Furthermore, deleting any variable may result in interpretational errors.
Hence, the researchers chose to exclude only the pH variable. The remaining environmental
variables were retained and named based on the outcomes of the second factor analysis, as
shown in Tables 6 and 7.
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Table 7. The component matrix of environmental variables in each factor after rotation (pH excluded).

Measured Variable
Factor Loading (N = 223)

1 2 3

Nitrate 0.828 0.191 −0.019

Silicate 0.811 −0.113 0.084

Phosphate 0.693 0.090 0.193

Nitrite 0.584 0.290 −0.053

Temperature −0.297 −0.836 0.051

Dissolved oxygen −0.082 0.737 0.428

Salinity 0.198 0.639 −0.563

Chlorophyll a 0.158 −0.088 0.777

Transparency −0.066 −0.180 −0.754

Eigenvalue 2.237 1.831 1.724

Variance % 25.860 20.347 19.153

Cumulated variance % 25.860 46.207 65.360

3.2.4. Factor Naming

In the field of factor analysis, each variable possesses a distinct meaning, and the
extracted factors themselves hold unique significance. Typically, factors are labeled after
variables that display high factor loading, and their collective meaning is synthesized
to name the factor. In the present study, water quality samples were obtained from the
adjacent sea area of Nanwan Bay, Kenting, Taiwan. Previous research has indicated that the
hydrological environment in the nearby waters is intricate, and the occurrence of upwelling
in the bay has been established. As a result, the factors were named after Nanwan Bay’s
ocean environmental variations.

Based on the accumulated findings from various studies conducted in the sea area over
the years, and the factor analysis outcomes displayed in Table 6, three component axes were
extracted from the component matrix following rotation. These axes are described below.

The first component axis in the present study encompassed nitrate (0.828), silicate
(0.811), phosphate (0.693), and nitrite (0.584), which accounted for 25.860% of the variation.
The factor loading was positive, indicating a positive correlation among the variables. It is
noteworthy that in this study, the majority of the water quality measurement parameters
were collected from the water surface. The occurrence of sea surges elevates the nutrient salt
from the deep ocean to the surface, leading to a concurrent increase in nutrients. Therefore,
this component axis was aptly named “nutrients.”

The second component axis in the current study was comprised of temperature
(−0.836), dissolved oxygen (0.737), and salinity (0.639), which accounted for 20.347% of the
variation. The results showed a negative factor loading for temperature, while dissolved
oxygen and salinity exhibited positive factor loading, indicating a negative correlation
between temperature and dissolved oxygen, and temperature and salinity, but a positive
correlation between dissolved oxygen and salinity.

Taiwan has a subtropical location, and the surface of the seawater is influenced by
solar radiation and is typically warmer. Additionally, the evaporation rate exceeds the
rainfall rate, leading to an increase in seawater salinity. The waters near Nanwan Bay are
impacted by surges, which transport colder water from deep mid-levels to the surface.
Deep mid-level waters are characterized by the absence of light, inhibiting photosynthesis,
and, therefore, are not saturated with dissolved oxygen. This leads to an overall reduction
in both dissolved oxygen and temperature when such waters surface. However, according
to other studies, Nanwan Bay is also affected by internal ocean waves. These waves
induce intense water accumulation at the seabed, which subsequently elevates the level of
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dissolved oxygen at the surface [9]. Given that the location of this study is within an inland
bay and considering the highest correlation coefficient between temperature drop in the
component axis and factor 2 (−0.836), the component axis was named “upwelling current.”

The third component axis included chlorophyll a (0.777), transparency (−0.754), and
salinity (−0.563), explaining 19.153% of the variance. Chlorophyll a exhibited a positive
factor load, while transparency and salinity had negative factor loads. This indicated
a negative correlation between chlorophyll a and both transparency and salinity, while
salinity and transparency showed a positive correlation. Since chlorophyll a serves as
the primary photosynthetic pigment in marine phytoplankton, an increase in measured
chlorophyll a concentration implies the growth of phytoplankton, consequently leading to
a reduction in underwater transparency. Moreover, the possibility of decreased salinity was
associated with the proliferation of phytoplankton covering the sea surface, which, under
severe circumstances, could trigger an algal bloom phenomenon, reducing the intensity
of sunlight penetrating below the water surface and resulting in decreased evaporation
from the surface water. Hence, based on our findings, the component axis was named
“primary production”.

3.3. Factor Analysis of Biological Variables

After the factor analysis of environmental variables, the next step was to factor analyze
biological variables.

3.3.1. First Factor Analysis

A KMO value of 0.73 was found, which was considered a “fairly acceptable” fit.
Furthermore, Bartlett’s sphericity test was significant at p < 0.001, indicating the appropri-
ateness of performing factor analysis on the biological variables of interest. The results
of factor extraction revealed two eigenvalues greater than 1, which together explained
54.507% of the total variance.

The second step involved performing a factor rotation using the Varimax method of
orthogonal rotation. After the rotation, factor 1 (shrimp, number of zooplankton, larvae,
crabs) explained 36.064% of the variance and factor 2 (number of fish, number of fish
species, fish eggs) explained 18.444% of the variation. Based on the findings, it appears
that the biological variables related to the “fish eggs” exhibited factor loadings of less
than 0.5 in both component axes 1 and 2, indicating a lack of convergent validity. To
determine the adequacy of the remaining variables, the communality values of factors 1
and 2 were examined, with a threshold of 0.5 or greater. The communality value for “fish
eggs” was only 0.162, the lowest among all the biological variables. Therefore, “fish eggs”
was removed for the second round of factor analysis.

3.3.2. Second Factor Analysis

The results of the second factor analysis presented a KMO value of 0.749, indicating
a “fair” fit. Moreover, Bartlett’s sphericity test was significant (p < 0.001), suggesting that
the biological variables were appropriate for factor analysis after the removal of the “fish
eggs” variable.

After the factor extraction, only two components were reserved for the factor rotation
process. Rotation factor 1 (shrimp, number of zooplankton, juvenile larvae, crabs) explained
42.180% variation and factor 2 (number of fish, number of fish species) explained 20.377%
of the variation, while none of the factor loadings in factors 1 and 2 were greater than
0.5 simultaneously, which suggested that factors 1 and 2 had discriminant validity. Hence,
the results from the second factor analysis were preserved for further analysis, as shown in
Table 8.
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Table 8. The component matrix of biological variables in each factor after rotation (fish eggs excluded).

Measured Variable
Factor Loading (N = 223)

1 2

Shrimp larvae abundance 0.886 0.073

Zooplankton abundance 0.855 −0.004

Fish larvae abundance 0.773 0.174

Crab larvae abundance 0.634 −0.053

Fish abundance −0.039 0.779

Fish species 0.114 0.759

Eigenvalue 2.531 1.223

Variance % 42.180 20.377

Cumulated variance % 42.180 62.557

3.3.3. Factor Naming

Based on the results of the previous studies in the sea area and the analysis of the
factor extraction in Table 8, the two factors were named as described below.

The first principal component axis was comprised of four biological variables, namely
shrimp larvae (0.886), the number of zooplankton (0.855), fish larvae (0.773), and juvenile
crabs (0.634), which collectively accounted for 42.180% of the total variation. The factor
loading for each variable was positive, implying a positive correlation between them.
Zooplankton, in particular, was widely distributed and had a larger number of species, in-
cluding copepods. Fish larvae and juvenile crabs were also ecologically significant in terms
of fishery resources. Previous studies have shown that the intersection of Kuroshio and
upwelling currents support diverse flora and fauna [25,26]. The number of juvenile shrimp
(0.886) and zooplankton (0.855) in the first component axis exhibited a higher correlation
coefficient with factor 1, indicating that the sea during the previous sampling period had a
higher abundance of zooplankton, especially crustaceans, which are the main food source
for fish larvae. Consequently, this component axis was termed “zooplankton cluster”.

The second component axis was composed of two variables, namely the number of fish
(0.779) and the number of fish species (0.759), which explained 42.180% of the variation. The
factor loadings of both variables were positive, suggesting a positive correlation between
them. The phenomenon of fish migration in groups during the foraging season and the
formation of fisheries in areas with abundant zooplankton can lead to a higher number of
fish [27]. Thus, the name “fish cluster” was given to this component axis.

3.4. Structural Equation

Given the different units of measurements among the variables in the proposed struc-
ture, factor analysis was utilized to extract potential factors, namely nutrients, upwelling
current, primary productivity, zooplankton cluster, and fish cluster, to investigate the inter-
play between water quality and plankton assemblage, as well as plankton clustering and
fish clustering. To test the hypothesis model, we employed the sampling data, assuming
a normal distribution. The estimation model assumed that the measured variables of the
latent factors were consistent with those presented in Tables 6 and 8. Notably, the sign
of coefficients of the latent factor “upwelling current” differed from the factor loading in
Table 6, where the negative values were denoted by the [-] symbol in the model.

3.4.1. Water Quality Environmental Factors and Phytoplankton Cluster

Figure 3 shows the structural pattern between water quality environments and phy-
toplankton cluster. The RMSEA (0.113) fell within the “bad fit” range, indicating that the
setting of the study model was not effectively matched with the sampling data. Addition-
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ally, the rest of the indicators did not meet the reference criteria. Hence, the overall model
did not pass the test.
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3.4.2. Water Quality Environmental Factors and Zooplankton Cluster

Figure 4 shows the structural pattern between water quality environments and the
zooplankton cluster. The RMSEA (0.085) value obtained from the model fit analysis (0.085)
fell within the range of “moderately fit”, albeit falling short of the optimal reference value of
less than 0.05. However, the obtained value was still considered acceptable, suggesting that
the conceptual model proposed was in line with the empirical data obtained. Meanwhile,
the non-normed fit index (NNFI) value (0.842) did not meet the reference criteria, which
was used to assess the degree of association between the research model and the observed
variables, and to identify areas for model improvement. Hence, adjustment is needed for
covariate relationships.
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3.4.3. Water Quality Environmental Factors and Plankton Cluster

Figure 5 presents the structural pattern between water quality environments and
both phytoplankton and zooplankton clusters. The RMSEA index displayed a value of
0.097, which indicates a “moderate” fit; however, it was close to the threshold of a poor
fit. This suggested that the model and the sampling data had only a low probability of
effectively explaining the results. Furthermore, the NNFI value (0.787) did not meet the
reference criteria. The GFI value (0.892) also failed to meet the reference criteria. GFI is
primarily used to test the proportion between the variance of the explainable observed
variables before model adjustment and covariance. On the other hand, AGFI (0.831) met
the criteria, suggesting the need for more observational data to enhance the interpretation
of the observed and potential variables in the model.
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3.4.4. Water Quality Environmental Factors and Marine Life Cluster

The structure that included all three clusters was also considered. However, due to
the high correlation between chlorophyll a and the phytoplankton cluster, we reserved
chlorophyll a to represent the primary productivity and dropped the phytoplankton cluster.

Figure 6 shows the comprehensive structure pattern between water quality environ-
ments and both zooplankton and fish clusters. Of all the indices utilized, only NNFI (0.840)
fell short of meeting the reference value, therefore, requiring the further refinement of the
model. The remaining indices successfully passed the test, with RMSEA (0.074) reaching a
level of good fit. This suggested that the model has the potential to effectively explicate
marine ecological phenomena to a significant extent.

This model which examined the relationship between environmental factors and
marine life clusters failed to meet the NNFI criteria. This outcome may be attributed to
several factors, including the nature of the sample itself; environmental changes, such as
seasonal and weekly–daily fluctuations; and the accuracy and stability of the measuring
instrument. These factors may result in a higher probability of standard errors (non-normal
distribution) in the measurement variables. Furthermore, various potential environmental
factors in Nanway Bay, such as sea tides and internal wave phenomena, were not included
in the statistical analysis. Consequently, the proposed model may be limited in its ability to
explain ecological phenomena solely within the sampled waters and may not be applicable
to other water bodies.
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3.5. Model Modification

Continuing with the results of the model verification, the next step involved model
modification. Due to the covariant relationship between the observed variables in the
model, parameters in the modification index (MI) provided in the Amos Graphics software
could be used to modify the model. The main objectives of model modification were to
improve its simplicity, model fit, explanatory power, and reduce measurement error and
structural residuals. However, there was a risk of losing the characteristic of verification
and converting the model into an exploratory tool. In the context of the measurement
model, one way to modify the model is to allow correlation between measurement variables
when supported by theory or the literature.

The objective of this study was to explore the correlation between the variables pre-
sented in Figures 5 and 6. During the model verification phase, the root mean square error
of approximation (RMSEA) of the models, shown in Figures 4–6, were all in the moderate
fit range (0.08 to 0.10). Notably, the model depicted in Figure 6 achieved a better fit range
(0.05 to 0.08). As the correlation of the variables in the model of Figure 4 was included in
the model of Figure 5, only the models in Figures 5 and 6 were considered for revision.

The model in Figure 5 was modified based on the MI value provided in the Amos
report by establishing the correlation between the residuals of measured variables. Specif-
ically, the correlation between measured variable residuals was increased to reduce the
Chi-square value, following the principle of modifying one parameter at a time. The revised
model is shown in Figure 7. After the revision, the NNFI (0.939) was in accordance with the
reference criteria, and the rest of the indices also provided validation for the model; RMSEA
(0.052), especially, reached the well-fit range, indicating that the model and observed data
achieved the desired fit (Table 9).
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Table 9. The model evaluation results of the modified SEM of environmental variables and the
plankton clusters.

Key Metrics Reference Guidelines Model Validation Test Results

χ2 The lower the better 97.663

χ2/df <5(<3 better fit) 1.601 Compliant

GFI >0.9 0.941 Compliant

AGFI >0.9(>0.8 acceptable fit) 0.898 Compliant

RMSEA

<0.05, good fit

0.052 Reasonable fit
0.05~0.08, reasonable fit

0.08~0.10, medium fit

>0.10, poor fit

SRMR ≤0.08 0.0634 Compliant

NNFI >0.9 0.939 Compliant

PNFI ≥0.5 0.604 Compliant

PGFI ≥0.5 0.547 Compliant

GN ≥200 223 Compliant

Figure 8 is the revision of Figure 6, and the results are shown in Table 10. Notice
that the normalized fit index (NNFI) attained a value of 0.912, satisfying the established
reference criteria. Furthermore, the other indices also provided validation of the model,
with particular emphasis on RMSEA, which fell within the well-fit range at 0.055. This
indicated that the model and the observed data achieved the desired level of fit.

Upon completion of the model revision, a subsequent path analysis and the effect
between variables were conducted to verify the assumptions made in this study.
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Table 10. The model evaluation results of the modified SEM of environmental variables and ma-
rine life.

Key Metrics Reference Guidelines Model Validation Test Result

χ2 The lower the better 127.053

χ2/df <5(<3 better fit) 1.672 Compliant

GFI >0.9 0.931 Compliant

AGFI >0.9(>0.8 acceptable fit) 0.891 Compliant

RMSEA

<0.05, good fit

0.055 Reasonable fit
0.05~0.08, reasonable fit

0.08~0.10, medium fit

>0.10, poor fit

SRMR ≤0.08 0.0621 Compliant

NNFI >0.9 0.912 Compliant

PNFI ≥0.5 0.623 Compliant

PGFI ≥0.5 0.589 Compliant

GN ≥200 223 Compliant

3.6. Path Analysis

In addition to evaluating the overall fitness of the model modification and the intrinsic
quality of the test, further examination was required to comprehend the linear association
between the latent variables. This can be achieved through the observed direct effects and
indirect effects to determine the direct and indirect impacts, as well as overall impacts
(direct and indirect effects) among the latent variables.

The path relationships between facets were estimated using the structural equation
model. Standardized coefficients were used to determine the relationship between the
latent variables in the model, as depicted in Figures 7 and 8. In Figure 9, the path effects of
“nutrient on zooplankton clustering,” “primary productivity on phytoplankton clustering”,
and “phytoplankton clustering on zooplankton clustering” were found to be statistically
significant. Similarly, in Figure 10, the path effects of “nutrient on zooplankton clustering”
and “primary productivity on zooplankton clustering” were also significant, indicating
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that both models possessed considerable predictive capabilities for assessing direct and
indirect effects (enhancement or offset) on environmental and biological factors.
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Figure 10. The path analysis of environmental variables and marine life.

The path analysis provides empirical evidence of the direct and indirect effects. The
direct effects of nutrients on the zooplankton cluster, primary productivity on the phy-
toplankton cluster, and phytoplankton cluster on the zooplankton cluster were found to
be statistically significant (H2, H5, and H7, respectively). Additionally, the direct effects
of nutrients on the zooplankton cluster and primary productivity on the zooplankton
cluster were also statistically significant (H8 and H12, respectively). Among the significant
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direct effects, the effect of primary productivity on the phytoplankton cluster (H5) was the
strongest (0.421).

In addition to the direct effects, the study also examined the indirect effects of the
predictor variables on the zooplankton cluster. The results in Tables 11 and 12 indicated
that, except for the path of primary productivity on the zooplankton cluster, which had a
rather higher coefficient of 0.122, the remaining paths had lower coefficients. Therefore, the
direct effects were found to be more significant than the indirect effects.

Table 11. The effects of environmental factors and plankton cluster.

Phytoplankton Zooplankton

Nutrients

Direct effect 0.009 (H1) −0.172 * (H2)

Indirect effect - 0.003

Total effect 0.009 −0.169

Upwelling Current

Direct effect 0.072 (H3) −0.033 (H4)

Indirect effect - 0.0231

Total effect 0.072 −0.012

Primary Productivity

Direct effect 0.421 *** (H5) 0.012 (H6)

Indirect effect - 0.122

Total effect 0.421 0.135

Phytoplankton

Direct effect - 0.290 *** (H7)

Indirect effect - -

Total effect - 0.290
* p < 0.05; *** p < 0.001; different superscripts indicate significant difference.

Table 12. The effects of environmental factors and marine life.

Zooplankton Fish Species

Nutrients

Direct effect −0.239 ** (H8) −0.265 (H9)

Indirect effect - −0.011

Total effect −0.239 −0.276

Upwelling Current

Direct effect −0.056 (H10) −0.034 (H11)

Indirect effect - −0.003

Total effect −0.056 −0.036

Primary Productivity

Direct effect 0.192 * (H12) 0.159 (H13)

Indirect effect - 0.006

Total effect 0.192 0.168

Zooplankton

Direct effect - 0.048 (H14)

Indirect effect - -

Total effect - 0.048
* p < 0.05; ** p < 0.01; different superscripts indicate significant difference.

Notably, despite being presented as a latent variable in the SEM model, the upwelling
current did not display any direct or indirect effects on plankton and fish assemblages in
Nanwan Bay. It is worth mentioning that areas characterized by upwelling currents are
commonly known to provide ideal fishing grounds due to the abundant nutrient supply
for planktonic communities [28]. Therefore, it is plausible that the upwelling current
may indirectly influence other environmental factors, such as nutrient availability and
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primary productivity, which in turn have an impact on the distribution and abundance of
phytoplankton, zooplankton, and fish.

Overall, the study suggested that the marine environment was subject to various
factors that may influence the relationships between nutrient salt, primary productivity,
phytoplankton cluster, and zooplankton cluster. This may explain why the indirect effects
were not significant in this study. It is also possible that there were other intermediary
variables or relationships that were not included in the structural statistics, or that the data
themselves had a high degree of variation.

4. Conclusions

Our investigation aimed to unravel the intricate connections between environmental
factors and marine life in Nanwan Bay. By employing structural equation modeling (SEM),
we uncovered significant findings that illuminated the complex dynamics within the bay’s
marine ecosystem. These insights provide valuable contributions to our understanding
of the relationships and dependencies among environmental factors and the organisms
inhabiting Nanwan Bay.

The first notable finding emerged from the modified models developed in this study,
namely “modification of environmental factors and plankton clusters” and “modification
of environmental factors and marine life clusters”. These models identified “primary
productivity” and “nutrient” as the main environmental change factors, with a considerable
degree of impact on the abundance and distribution of plankton clusters. Notably, the
analysis revealed that primary productivity exhibited the highest direct effect on plankton
clusters, emphasizing its pivotal role in shaping plankton communities.

Building upon the findings from the modified models, the second finding explored the
relationship between the upwelling current and the phytoplankton cluster, zooplankton
cluster, and fish cluster. Surprisingly, the path analysis indicated that the upwelling current
did not have a statistically significant effect on these variables. This suggests that the direct
impact of the upwelling current on the studied marine organisms might be limited, despite
playing a role in the SEM models.

The proposed SEM offers valuable insights into the intricate relationships between
environmental factors and marine organisms, particularly in the context of water quality,
plankton communities, and fish populations. The findings highlight the significant influ-
ence of primary productivity and nutrients while also providing a nuanced understanding
of the role of the upwelling current in the study area.
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