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Abstract: A reliable model for predicting crash frequency at roundabouts is an essential tool for 
evaluating the safety measures of a roundabout. This study developed a hybrid PSO-ANN model 
by optimizing the modeling parameters of the classical artificial neural network (ANN) model with 
the particle swarm optimization algorithm (PSO). The performance accuracy of the models was 
evaluated using the mean absolute error (MAE), root mean square error (RMSE), and determination 
coefficients (DC). The PSO-ANN model predicted the crash frequency with very good accuracy at 
the testing stage (DC = 0.7935). The hybrid model could improve the performance of the classical 
ANN model by up to 23.3% in the training stage and 16.9% in the testing stage. In addition to the 
statistical measures, graphical approaches (scatter and violin plots) were also used for evaluating 
the models’ accuracy. Both statistical and graphical evaluation techniques prove the reliability and 
accuracy of the proposed hybrid model in predicting the crash frequency at roundabouts. 
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1. Introduction 
There is growing public health concern over traffic accidents, which have claimed the 

lives of about 1.24 million people and resulted in 20–50 million nonfatal injuries. Accord-
ing to the World Health Organization, road accidents accounted for more than 38 million 
lost disability-adjusted life years (DALYs), or 2.6% of the worldwide burden of illness. 
Globally, low- and middle-income countries account for 91.8% of DALYs lost due to road 
traffic injuries [1]. For improved safety and traffic flow at intersections, roundabouts were 
introduced as an alternative method of controlling intersections without requiring the ex-
tension of the existing lanes [2]. The idea of employing roundabouts was first conceived 
in the United Kingdom to overcome concerns with traffic circles. The effective implemen-
tation of modern roundabouts was made possible by changes in driving legislation, such 
as the need for entering vehicles to yield to circular traffic. Compared to the signalized 
intersection with a roundabout, this has improved the roundabout’s safety and function-
ality [3]. 

Jordan has one of the highest rates of traffic accidents among Middle Eastern nations. 
The traffic density in the city of Amman is high, with an annual increase of 5.5% in the 
number of registered vehicles. The capital of Jordan, Amman, sees the bulk of the acci-
dents as it has the country’s largest population density, a congested street system, and a 
high proportion of roundabouts [3]. In 2015, 9712 accidents occurred, resulting in 608 
deaths and 2021 major injuries. These accidents cost the region approximately USD 400 
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million in the year 2010 alone. Traffic accidents increased by 75% between 2004–2007 as a 
result of the increase in the number of registered vehicles [3]. 

Road safety performance measures are indicators of the number of accidents and 
causalities (fatalities and injuries), the response time, and the public perception of road 
safety. The performance measures serve as decision-making tools during planning and 
decision-making processes. Crash prediction models are used for evaluating the safety 
performance at roundabouts. This is because crash prediction models are used for pre-
dicting the number of accidents, fatalities, or injuries at roundabouts. Several studies have 
developed various crash models at roundabouts; for example, [4] identified the causes of 
accidents at roundabouts and developed several models for the prediction of accidents at 
roundabouts. The study also created a crash modification factor for assessing the safety 
performance of roundabouts in India. The negative binomial was discovered to be the best 
empirical model for predicting accidents at roundabouts. Another study [5] analyzed 
roundabout safety measures in Abu Dhabi by evaluating the operating speeds, rounda-
bouts, and a questionnaire survey. From the questionnaire survey, it was found that the 
drivers preferred not to drive through roundabouts in the city because they perceived the 
roundabouts to be unsafe. From the operating speed, it was also observed that the drivers 
drove above the recommended speeds at roundabouts. Using ordinal regression models, 
drivers below the age of 40 were found to have less understanding of the traffic rules at 
roundabouts [6]. 

Although several safety performance measures at roundabouts were proposed in the 
literature, differences in the traffic characteristics and road geometries between countries 
make the generalization of the model impossible, especially in countries that have differ-
ent traffic characteristics. This leads to the application of various artificial intelligence-
based models in developing various road safety performance measures. For example, [7] 
employed a recurrent neural network to forecast the severity of traffic accidents in Malay-
sia over a 6-year period. The recurrent neural network (RNN) model predicted the acci-
dent severity with high accuracy compared to the traditional ANN models. A study used 
3-year traffic accident data to develop an ANN model that will serve as a decision-making 
tool for the stakeholders responsible for infrastructure management in Swiss. The input 
parameters for the model were the annual average daily traffic, average curve radius, per-
centage of heavy vehicles, positive/negative mean slopes, speed limits, number of lanes in 
each direction, road type indicator, surface adhesion, and longitudinal evenness rating of 
the roads. In terms of the mean absolute error, the model proved reliable in predicting 
traffic accidents [8]. Another work used the ANN model to predict traffic accidents in Jor-
dan. The predicted accident data generated using the ANN model was found to be close 
to the actual data, demonstrating the accuracy and reliability of the constructed ANN 
model. The model accepts the following input parameters: population, GDP, length of 
paved roads, and number of registered automobiles [9]. 

Another study trained an ANN model using the Levenberg Marquardt training al-
gorithm and using the sigmoid activation function for modelling the severity of injury 
accidents in Spain. The model predicted the severity of the accident with high accuracy, 
and hence can serve as a useful tool for safety and researchers. The ANN model outper-
formed the multivariate regression model, proving its higher prediction accuracy [10]. A 
study used 57-year data of the gross domestic product per capita, population, total num-
ber of accidents, number of registered vehicles for modelling injury, and fatality index in 
Nigeria. The ANN models model the injury/fatality index with high accuracy and outper-
formed the multilinear regression model for both models. The literature shows that the 
ANN model has a strong ability to model the crash frequency and severity with high ac-
curacy compared with the regression and other empirical models [11]. 

Although ANN models have been shown to be effective in modeling traffic accidents 
and their severity, they have shortcomings such as overfitting in forecasting, underesti-
mation, low generalization ability, inability to provide uncertain forecasting, and the re-
quirement to use external data pre-/post-processing techniques outside the framework of 
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the model due to insufficient data samples for model validation. In recent years, nature-
inspired algorithms—such as genetic algorithms (GA), ant colony optimization (ACO), 
bacterial foraging optimization (BFO), artificial bee colony (ABC), and particle swarm op-
timization (PSO)—have emerged to optimize the ANN parameters [12]. Several studies 
have found that the PSO outperforms alternative nature-inspired algorithms [13]. As a 
result, it is used in the current study to optimize the ANN model for crash frequency pre-
diction. Using local traffic data, the current study created a safety performance measure 
at a roundabout in Amman, Jordan. The specific objectives of the current study include: 
• Identifying the roundabout parameters that are most responsible for improved safety 

at the roundabouts. 
• Developing an optimized particle swarm optimized-ANN (PSO-ANN) model for the 

prediction of crash frequency at roundabouts. 
The model will provide an accurate and effective model for forecasting the collision 

frequency at roundabouts after being calibrated with the data from the Jordan Traffic In-
stitute, Greater Amman Municipality, and Traffic Police Department. To the best of the 
author’s knowledge, the hybrid ANN-PSO model proposed in this study for crash fre-
quency prediction is the first in the literature. Because of its robustness and efficacy in 
handling severely constrained non-linear optimization problems, the PSO was chosen for 
the optimization. 

2. Materials and Methods 
The proposed methodology involves two main stages; the first stage involves the se-

lection of the most dominant input parameters through feature removal sensitivity anal-
ysis (FRSA), the maximum relevance minimum redundancy method, and the correlation 
coefficient values. The ANN and the hybrid ANN-PSO models were developed in the sec-
ond stage using the dominant parameters. The schematic diagram of the methodology is 
shown in Figure 1. 

 
Figure 1. Schematic Diagram of proposed methodology. 
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2.1. Dataset 
The study makes use of 112 datasets collected from 12 roundabouts (R1-12) in Am-

man, Jordan. The roundabout parameters include the number of accidents, the average 
daily traffic (ADT), the land use, the number of legs, the central island diameter (CID), the 
circling width, the entry angle, the entry/exit width, the entry/exit distance, the free flow 
speed (FFS), the capacity, the delay, the speed, the v/c, the queue length, and the location. 
The data were gathered from the Jordan Traffic Institute, the Traffic Police Department, 
and the Greater Amman Municipality. The descriptive data summary and correlation ma-
trix between the data are given in Tables 1 and 2, respectively. The maximum number of 
accidents (327 cases) was recorded at R9, followed by 322 cases at R3. The land use at R9 
and R3 is business/office and commercial activities, respectively. The smallest number of 
accidents (0) was recorded at R1 and R6. The land use at this location is commercial for R1 
and mixed use for R6. The highest and least number of accidents were recorded is com-
mercial centers. The Average daily traffic (ADT) in the two locations is different. The ADT 
at R9 was 138,662 vehicles/day, while that of R1 is 7591 vehicles/day. Likewise, the ADT 
at R3 was 130,110 vehicles/day, while that of R6 was 16,080 vehicles. This clearly indicates 
that the ADT value has a significant effect on the number of accidents at the roundabout. 
From Table 2, it can be seen that ADT has a coefficient value of 0.83, greater than all the 
parameters. ADT is the most significant factor in estimating the crash frequency around 
the globe, as seen in several studies, such as [14]. The full data can be found at [3]. Figure 
2 presents the roundabout geometry. 

Table 1. Statistical summary of the study data. 

Variables Mean Std. Dev. Kurtosis Skewness Range Minimum Maximum 
ADT 36,490 34,418.76 6.45 2.41 18,7176.0 681.00 187,857.0 

No of Legs 4.29 0.45 −1.10 0.96 1.00 4.00 5.00 
CID (m) 48.01 19.41 −0.54 −0.25 68.40 8.20 76.60 

Circulating width 10.76 1.41 −0.77 −0.70 4.80 8.20 13.00 
Entry angle 29.29 15.81 −0.74 0.03 64.00 0.00 64.00 

Entry/Exit width 9.50 3.38 −0.27 −0.16 17.50 0.00 17.50 
Entry/Exit width 35.82 16.58 −0.54 0.60 60.00 10.00 70.00 

FFS 59.91 3.91 3.81 −0.08 20.00 50.00 70.00 
Capacity 2835.44 714.99 0.47 −0.27 3672.00 1096.00 4768.00 

Delay 43.17 19.96 −0.99 −0.11 73.00 7.00 80.00 
speed 49.52 12.65 −1.14 −0.31 51.00 19.00 70.00 

v/c 0.83 0.74 5.66 2.22 3.96 0.02 3.97 
Que length 20.57 38.69 15.04 3.60 240.00 0.00 240.00 
No. of Acc. 36.48 59.41 11.05 3.18 327.00 0.00 327.00 

Table 2. Correlation matrix. 

Variables ADT Land 
Use 

No of 
Legs 

CID 
(m) 

Circu-
lating 
Width 

Entry 
Angle 

En-
try/Exit 
Width 

En-
try/Exit 
Width 

FFS Ca-
pacity 

De-
lay 

Speed v/c Que 
Length 

Lo-
ca-

tion 
No. Acc 

ADT 1.00                

Land use −0.01 1.00               

No of Legs −0.03 0.44 1.00              

CID (m) 0.18 0.49 0.62 1.00             

Circulating width −0.07 0.02 −0.01 0.04 1.00            

Entry angle −0.28 0.23 0.43 0.07 0.38 1.00           

Entry/Exit width 0.24 0.17 −0.19 0.33 −0.15 −0.37 1.00          

Entry/Exit width −0.07 0.26 0.29 0.29 0.22 0.32 −0.29 1.00         

FFS 0.06 −0.21 0.01 0.42 −0.12 −0.15 0.21 0.13 1.00        

Capacity 0.21 0.30 0.20 0.65 −0.08 −0.09 0.65 0.05 0.44 1.00       
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Delay 0.43 −0.09 0.01 0.41 −0.41 −0.56 0.58 −0.39 0.24 0.45 1.00      

speed −0.17 −0.13 −0.08 0.02 −0.26 −0.20 0.13 0.11 0.24 0.11 0.28 1.00     

v/c 0.01 −0.22 −0.18 −0.08 −0.14 −0.21 0.08 −0.15 0.01 −0.04 0.18 −0.08 1.00    

Que length 0.09 −0.42 −0.28 −0.37 −0.20 −0.32 −0.10 −0.36 −0.14 −0.31 0.21 0.07 0.17 1.00   

Location 0.01 0.04 0.00 −0.01 0.00 0.01 −0.03 0.29 0.05 −0.02 0.13 0.67 −0.16 −0.13 1.00  

No. Acc 0.83 0.10 0.03 0.24 0.02 −0.17 0.23 0.08 0.05 0.21 0.29 −0.16 0.02 −0.11 0.07 1.00 

 
Figure 2. Roundabout geometry. 

For a clear understanding of the data utilized for the study, a histogram distribution 
was plotted for all 15 parameters (Figure 3). It can clearly be seen that some of the param-
eters do not have a normal distribution (Number of accidents, ADT, CID etc.), while a few 
of the parameters are normally distributed (que length and capacity). The data are good 
for machine learning parameters as some of the parameters have a linear relationship with 
the target and some have a nonlinear relationship with the data. This makes the data suit-
able for the application of machine learning techniques. Shapiro-Wilk and Kolmogorov-
Smirnov tests were further used to check the data normality. Normality was rejected in 
both tests at a 5% alpha value for all the parameters. 
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Figure 3. Normality distribution plot of the data. 

2.2. Descriptive Statistics of Data 

The correlation matrix between the variable parameters of the study was developed 
using Ms. Excel 2016 for statistically viewing the interaction between the parameters. The 
correlation matrix could serve as the first measure for selecting potential input parameters 
to the model. It also serves as a filter for removing multicollinearity issues in the models, 
hence choosing only one parameter between two parameters with high correlation values. 
From the correlation matrix in Table 2, it can be seen that the ADT has a correlation value 
of 0.83 with the number of accidents, thus making it one of the most influential parameters 
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in modelling the number of accidents. It can clearly be seen, according to the correlation 
matrix, that 2 potential input parameters have a correlation value of 0.75, which was con-
sidered a very good linear correlation. The parameters with a correlation value greater 
than 0.5 are accident location and speed (0.67), entry/exit width and capacity (0.65), num-
ber of legs and CID (0.62), entry/exit width and speed (0.58), entry angle and delay (−0.56). 
However, these values are not so high that one of the parameters can replace the other 
parameter in the models. 

2.3. Artificial Neural Network 
The ANN is a computational model that, in terms of both structure and function, 

mimics a biological neural network. In almost all engineering, research, and other fields, 
the neural network model is more reliable and flexible [15]. Back-propagation (BP) neural 
networks are the most widely used form of neural network due to their simplicity [16]. 
An artificial neural network is made up of interconnected artificial neurons and has layers 
such as an input layer, at least one hidden layer, and an output layer. The fundamental 
processing units of a neural network are its nodes [15]. The inputs are multiplied by a 
modified weight and then transmitted via a transfer function to create the output for the 
neurons. The most popular transfer function, the sigmoid function, is then utilized to 
transform the weighted sum of the inputs from the neurons. The neural network estab-
lishes connections to the input data by repeatedly altering the weights. Because it can learn 
from instances, the neural network excels in circumstances where there is no clear link 
between the input and output data [17]. The term “feed-forward network” refers to a sys-
tem that spreads information in a forward direction. As a second-order variation, Leven-
berg-Marquardt was developed to solve the drawbacks of back-propagation algorithms. 
For training, it frequently uses the gradient steepest descent method. In order to maximize 
the weights during training, the Levenberg-Marquardt method combines the stability of 
the steepest descent technique with the speed advantage of the Gauss-Newton algorithm. 
The optimal number of hidden neurons is decided upon after a number of trials based on 
the number of neurons with the highest determination coefficient and the lowest mean 
square error between the observed and predicted data [15]. The structure of the ANN 
model is given in Figure 4. 

 
Figure 4. Structure of the ANN model. 
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2.4. Particle Swarm Optimization (PSO) 
Numerous nature-inspired optimization techniques, such as genetic algorithms (GA) 

[12], ant colony optimization (ACO) [18], bacterial foraging optimization (BFO) [19], arti-
ficial bee colony (ABC) [20], and particle swarm optimization (PSO) [13] have emerged in 
recent years. For resolving non-linear and non-convex optimization issues with tight con-
straints, particle swarm optimization (PSO) is a particularly promising and successful op-
timization technique [13]. PSO is a metaheuristic algorithm introduced by Kennedy and 
Eberhart [21]. It is based on the cooperative behavior exhibited by various animals, in-
cluding fish schools and bird flocks. Potential solutions to an optimization problem are 
represented by the design space’s placements of points (or particles). At the end of each 
generation, each particle updates its location based on both its own best position and the 
best position of the entire swarm. PSO offers numerous advantages over other optimiza-
tion approaches, including possessing fewer parameters to alter several other computing 
approaches, and the ability to integrate it with other methods to create hybrid tools. An-
other advantage of the PSO method is its capacity to initiate iterations without relying on 
the original solution [22]. The PSO algorithm has been widely used in a wide range of 
technological applications due to its ease of use and high searching speed [22,23]. The 
particle is represented by the bird, and its flock is a potential result in the search space. 
Figure 5 shows that each particle is generated at random and moves through space at a 
constant speed. The personal best (Pbest) and global best (Gbest) particles are saved and 
compared after each repeat. To generate the latest generation, Equations (1) and (2) are 
used to modify the velocity and position of each particle. 

( ) ( )1
, , 1 1 best , , 2 2 best , ,

min , max

     

                                                                                           

k k k k k k
i j i j i j i j i j i j

k
i j

V wV c r P X c r G X

V V V

+ = + − + −

≤ ≤
 (1)

1 1
, , ,
k k k
i j i j i jX X V+ += +  (2)𝑃best , represents the ith individual’s personal best jth component, 𝐺best , represents 

the iteration k’s global best position, and k; Vki,j represents the particle (i,j) velocity at the 
kth iteration. C1 and C2 are predetermined coefficients; r1 and r2 are pseudo-random num-
bers (r1, r2 [0, 1]) that are set to keep a particle class. 

 

Initial position and velocities of Particles Randomly 
Evaluate the Fitness of each particles 
Fick up the particle best Pbest 
Get the Global best (Gbest)

Evaluate the particle velocity 
Stopping Criteria: 

Terminate? Best Solution YESNO

k+1
iXk

iX

k
iV

k + 1
iV

Pbest
iV

Gbest
iV

k
iPbest

k
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Figure 5. PSO flowchart. 

The structure of the PSO-ANN algorithms used in the study is described in Figure 6. 
The Swarm size, velocity coefficients, inertia weight, and termination criteria are among 
the PSO parameters that have been optimized. The damping ratio for the inertia weight is 
1, and its weight is = 0.729. Equation (10) was used to determine the lower and upper 
bound velocities, which are −5 and 5, respectively. As there is not a clear method for fig-
uring out the swarm size in the literature, a trial-and-error approach was used with a size 
range of 50–200 and a 25-point increment. The maximum iteration of 300 epochs was also 
used in the study. The optimum result was obtained using a swarm size of 200 at 300 
epochs. 

START

Initialization, 
splitting and 

Normalization 

Split  data  (training 
and testing) 

Normalize data 
(training and testing) 

Build the Neural 
Network 

Establish 
configuration of 

parameters

Identify PSO 
Parameters

Initialize population 
of particles

Calculate the initial 
fitness values (MSE) 

of each particles 

Select Pbest and 
Gbest

Set a start iteration 
count  i =1

Update the velocity V 
and position of each 

particles 

Evaluate the fitness of 
best particle

Update Pbest and 
Gbest of Population 

i < Max. Iteration 

i=
i+

1

NO Output optimal 
solution as  Gbest 

Save optimal Network 
model

Simulate network 
(Testing)

De-normalize Output 

Performance 
Indicators 

Visualization of 
IEPANN model 

Plots

END

NO

YES

YES

If the Vi
k+1  and  Xi

k+1

exceed the 
set boundary range

Eliminate the inferior 
particles and 

supplement with new 

YES

NO

 
Figure 6. Flowchart for the ANN-PSO training algorithm. 
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2.5. Minimum Redundancy Maximum Relevance (mrMR) 
In order to fully utilize the advantages of a rich feature store while overcoming the 

associated problems and expenses, feature selection is a crucial stage in such large-scale 
machine learning systems. One of the top filtering algorithms is the mRMR, developed by 
[24]. The mRMR, which penalizes input variable duplication, was used to rate the signifi-
cance of the input variable sets. mRMR differs from have emerged in recent years [12] 
previous relevant approaches due to its ability to choose just one relevant feature when 
two or more relevant features contain the same information. This leads to faster compu-
tation and a more accurate prediction. Finding the greatest mutual information-based de-
pendence between the input variables Z and the intended outputs y was the main goal of 
mRMR. The pursuit of traits that satisfied maximum significance involved: max D(𝑍, 𝑦) ; 𝐷 = | | ∑ 𝐼(𝑍 ; 𝑦)∈   (3)

A minimum redundancy requirement must be introduced as the maximum relevance 
condition can result in significant redundancy when selecting input variables [25]. min R(𝑍, 𝑦) ; 𝑅 = | | ∑ 𝐼(𝑍 ; 𝑍 ), ∈   (4)

The mRMR criterion is obtained by combining the criteria D and R in Equations (4) 
and (5) and then optimizing them. Furthermore, a greedy method can be used in practice, 
where S is the set of input variables chosen. max 𝑧 ∄𝑠 𝐼(𝑍 ; 𝑦) − | | ∑ 𝐼(𝑍 ; 𝑍 )∈   (5)

2.6. Evaluation Criteria 
Before modeling, the potential input and target variables were normalized between 

0 and unity for increased model accuracy. Normalization reduces the complexity of the 
model, data redundancy, and computational requirements, such as time and machine 
specifications, to attain global minima [26]. It also converts the input and output variables 
to dimensionless units. It also ensures that the input parameters contribute equally, avoid-
ing inputs with greater numeric values from overshadowing those with lower values. The 
normalization was performed using Equation (6). 

Xnorm =   (6)

Nnorm is the normalized value, and N, Nmax, and Nmin are the observed, maximum, and 
minimum values, respectively. 

Utilizing the determination coefficient (DC), root mean square error (RMSE), and 
mean absolute error (MAE), the models’ effectiveness was evaluated. The DC values range 
between—and 1, showing how well the model fits the values that were observed. The ef-
fectiveness of a model reduces when the NSE value varies from one, and vice versa, as a 
perfect model has an NSE value of one [26]. According to the NSE values, the accuracy of 
the model may be rated as excellent (0.75 NSE 1), good (0.65 NSE 0.75), satisfactory (0.50 
NSE 0.65), and bad (NSE 0.50) [27]. Using RMSE, one of the best techniques for measuring 
the model performance, the average error brought on by the models is calculated. The 
RMSE ranged between 0 and +, and is zero in the best model [28]. MAE is also taken into 
account in the study as it is less sensitive to extreme values in the forecast data than RMSE. 
Equations (7)–(9) can be used to compute the aforementioned performance evaluations. 

𝐷𝐶 = 1 −   (7)
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RMSE =   
(8)

MAE = 
│ │

  (9)

3. Results and Discussions 
Dominant Input Selection 

Relevant input selection is essential in obtaining reliable and accurate results in arti-
ficial intelligence-based models. For capturing both the linear and non-linear relevance of 
the potential parameters, four input section techniques—namely feature removal sensi-
tivity analysis (FRSA), mutual information (MI), correlation coefficient (CC), and mini-
mum redundancy maximum relevance—were used in the study. The result obtained in 
each of the techniques was used to rank the importance of each of the 11 potential param-
eters. The sensitivity analysis result is presented in Table 3, while the ranking result is 
presented in Figure 7. On the other hand, the MI technique measures the dependence be-
tween two random variables [29]. When the two random variables are independent, MI 
can measure the non-linear statistical dependency between them, and it is zero otherwise 
[30]. FRSA is a non-linear sensitivity analysis technique used to determine the relevance 
and importance of potential input parameters. FRSA proved to be important in finding 
the non-linear relationship between the input parameters and target parameters [31]. The 
correlation coefficient is a measure of how linearly related two occurrences are; the value 
varies between −1 and 1. If two instances are uncorrelated, it is close to zero. X and Y are 
connected when it is positive. The greater the association, the higher the value. If the value 
of rx,y is negative, it means that X and Y are inversely correlated. In FRSA, 11 of the po-
tential parameters leaving one parameter were used to model the crash frequency at the 
roundabout. In each model, the RMSE was computed. The procedure was repeated 12 
times until each parameter was removed and used in the modelling. The most relevant 
parameter gives the highest RMSE once it is excluded in the modelling. A parameter with 
a rank less than or equal to 5 in any of the techniques was considered relevant and was 
hence included in the models. Based on the set criteria, eight parameters (ADT, delay, 
entry/exit width, capacity, v/c ratio, speed, location and entry angle) were found to be 
relevant and were therefore used to model the crash frequency at roundabouts, while the 
remaining four (entry/exit distance, que length, FFS and circulating width) were consid-
ered irrelevant and hence not included in the model. ADT was the most relevant parame-
ter in all four of the selection criteria, followed by delay, which was the second most rele-
vant parameter, with a strong linear relationship with the crash frequency ranked second 
by CC and third by MI and MrMR. This is logical as it influences the behavior of drivers. 
Delays make drivers more aggressive, which makes their driving decision irrational. 

Table 3. Sensitivity analysis. 

Parameter  MI CC mrMR FRSA (RMSE) 
ADT 2.1112 0.8273 0.1396 0.2056 

Circulating width 0.4513 0.0178 0 0.1462 
Entry angle 0.8755 −0.1725 0 0.1479 

Entry/Exit width 0.7582 0.2278 0.047 0.1481 
Entry/Exit width 0.8675 0.0847 0 0.1444 

FFS 0.0978 0.0455 0 0.1462 
Capacity 0.8811 0.2055 0 0.1400 

Delay 0.8834 0.2925 0.0225 0.1421 
speed 0.6932 −0.1556 0 0.1606 
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v/c 1.1242 0.0151 2.82 × 10−15 0.1490 
Que length 0.6168 −0.1078 0 0.1476 

Location 0.2012 0.0650 0 0.1843 
No unit, the data are normalized. 

 
Figure 7. Ranking of parameters importance using three different parameters. 

4. Modelling Result 
MATLAB 2019 was used to develop three different data-driven models, namely 

ANN, MLR, and a hybrid PSO-ANN model for traffic noise prediction using the dominant 
input parameters (Delay, Entry/Exit width, Capacity, V/C, Speed, Location, and Entry an-
gle). The data were divided into two 70/30 for the calibration and testing of the models, 
respectively. As the only definite way of determining the optimal structure for ANN mod-
els is through the trial-and-error method, several ANN models were trained using differ-
ent training algorithms, activation functions (tansig, purelin, logistics), and hidden neu-
rons (5–20), and the optimal structure was selected. The optimal architecture was found 
to be 7-9-1 (s-input parameters, respectively), 8- hidden neurons and 1 output parameter) 
trained with the Levenberg Marquardt algorithms using the tansig and purelin function 
in the input and output layers. 

When training an ANN, the number of hidden layer neurons is crucial. Because the 
large number of neurons leads to overfitting the performance, the optimization technique 
is used to determine the most useful values for the variables. The PSO is used to modify 
the ANN model weight and bias to reduce overfitting. At the start of training the PSO-
ANN hybrid model, random particles are initialized, and their positions are then ran-
domly assigned to the ANN model’s weights and biases. The MSE between the observed 
and estimated crash frequency was determined after training the model with the initiali-
zation weights and biases. With each iteration, the accuracy of the models improves (MSE 
value decreases) by modifying the position of the particles. In each cycle, the Pbest and 
Gbest are utilized to compute and update the velocity. The MSE of the PSO-ANN model 
was lowered by altering the particle solutions to the best solutions. This method was used 
to optimize until the stop condition was satisfied. The maximum number of iterations was 
used as the study’s stop criteria, and the epoch with the lowest MSE was identified as the 
optimum epoch. The optimum architecture (7-9-1) obtained for the ANN model was ap-
plied for the PSO-ANN model. 
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The PSO algorithms adjusted the weight and bias of the ANN models during the last 
step of training the PSO-ANN model, eliminating overfitting problems by remembering 
the parameters that govern how the model adapts to the new dataset. Figure 5 depicts the 
PSO-ANN algorithm’s learning procedure. Swarm size, velocity coefficients, inertia 
weight, and termination criteria are among the PSO parameters that have been optimized. 
The damping ratio for the inertia weight is 1, and its weight is =0.729. Equation (1) was 
used to determine the lower and upper bound velocities, which are −5 and 5, respectively. 
As there is not a clear method for figuring out the swarm size in the literature, a trial-and-
error approach was used with a size range of 50–200 and a 25-point increment. The maxi-
mum iteration of 300 epochs was also used in the study. The optimum result was obtained 
using a swarm size of 200 at 300 epochs. The modeling results were evaluated using four 
statistical measures and are presented in Table 4. 

The PSO-ANN model performed well in both the training and testing stages, with a 
DC value greater than 0.75 for estimating the crash frequency at roundabouts. The hybrid 
model has demonstrated a higher performance over the ANN model in both the training 
and testing stages in terms of the model’s goodness of fit (DC) and error metric (RMSE 
and MAE). However, the ANN model has also demonstrated good and satisfactory results 
in the training and testing stages, with a DC value of 0.7227 and 0.6244, respectively. The 
hybrid PSO-ANN model improved the performance of the classical model by 22.3% and 
16.9%, respectively, in the training and testing stages. This indicates the reliability and 
accuracy of the proposed hybrid method. The hybrid PSO-ANN achieves its improved 
accuracy by systematically optimizing the ANN parameters (bias and weights) using the 
particle swarm optimization algorithm and through altering the particles position. The 
successful application and improved performance of PSO-ANN over the classical ANN 
model can be found in several studies, such as [32]. Other studies affirming the efficiency 
of machine learning approaches in the prediction of complex parameters include the stud-
ies by [33,34]. 

Table 4. Modelling results. 

Models  
Training Testing 

DC RMSE MAE DC RMSE MAE 
PSO-ANN 0.9459 0.0468 0.0332 0.7935 0.0403 0.0322 

ANN 0.7227 0.1060 0.0463 0.6244 0.0543 0.0243 

The findings of the investigation were further examined utilizing three graphical 
charts (scatter plots and violin plots). The scatter plots demonstrate how the observed and 
anticipated data were compressed along the chart’s diagonal bisector. The denser the data 
along the diagonal bisector, the more accurate the model, and vice versa. Figure 8 shows 
that the data in Figure 8a (PSO-ANN) are more along the bisector than in Figure 8b 
(ANN). 

Finally, violin plots (Figure 9) were used to compare the models’ performances fur-
ther. Violin plots are used because of their advantage in combining distribution and box 
plots, in addition to the interquartile ranges, median, and spread of the observed data. 
The figure shows that the violin form and box plot within the violin of the PSO-ANN 
model more closely resemble the actual data than the other models. PSO-ANN can effi-
ciently simulate the data distribution, interquartile ranges, median, and data range, ac-
cording to the results. When the ANN parameters are adjusted using the PSO method, the 
overall assessment of the models using statistical (DC, RMSE, MAE) and graphical 
measures (scatter plots, violin plots) demonstrated higher prediction accuracy and error 
reduction in predicting traffic noise. 
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Figure 8. Scatter plots showing DC values for (a) PSO-ANN (b) ANN. 

 
Figure 9. Violin plots comparing number of observed accidents and the proposed models. 

5. Conclusions 
In this study, the crash frequency at urban roundabouts was predicted using an ANN 

model optimized with PSO. Prior to the development of the models, four different domi-
nant input selection techniques (FRSA, mrMR, MI and CC) were employed for reducing 
the number of input parameters in the models. In order of importance, the ADT, delay, 
entry/exit width, capacity, v/c ratio, speed, location, and entry angle were found to be 
most relevant parameters responsible for accidents prediction at roundabouts. The opti-
mized hybrid model, PSO-ANN, predicted the crash frequency with higher accuracy (DC 
= 0.7935) and less error (MAE = 0.0322, RMSE = 0.0403) compared with the classical ANN 
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model. The statistical and graphical analysis used in the study proved the suitability of 
the PSO-ANN model for the prediction of crash frequency with high accuracy. One of the 
drawbacks of the proposed PSO-ANN approach is that it gives no clue on the most influ-
ential variable. Further studies could determine the degree to which each of the dominant 
parameters contributes to the safety of urban roundabouts. 
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