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Abstract: There are many specific risks in renewable energy (RE) investment projects, and the
incidences of these risk factors are fuzzy and uncertain. In different stages of a project’s life cycle,
the main risk factors frequently change. Therefore, this paper constructed a cloud dynamic Bayesian
network model (Cloud-DBN) for RE operation processes; it uses the DBN graph theory to show the
generation mechanism and evolution process of RE outbound investment risks, to make the risk
prediction structure clear. Based on the statistical data of observation nodes, the probability of risk
occurrence is deduced to ensure the scientific nature of the reasoning process. The probability of risk
being low, medium, or high is given, which is highly consistent with the uncertainty and randomness
of risk. An improved formula for quantitative data normalization is proposed, and an improved
calculation method for joint conditional probability based on weight and contribution probability
is proposed, which reduces the workload of determining numerous joint conditional probabilities
and improves the practicability of the BN network with multiple parent nodes. According to the
20-year historical statistical data of observation nodes, the GM(1,1) algorithm was used to extract the
transfer characteristics of observation nodes, construct the DBN network, and deduce the annual risk
probability of each risk node during the operation period of the RE project. The method was applied
to the wind power project invested by China in Pakistan, and the effectiveness of the method was
tested. The method in this paper provides a basis for investment decisions in the RE project planning
period and provides targeted risk reduction measures for the project’s operation period.

Keywords: RE; foreign investment; risk forecast; Cloud-DBN; risk probability

1. Introduction

The demand for energy and its related services to support human social and economic
development, welfare, and health is increasing [1]. The use of fossil fuels in various
sectors, especially those with fewer added values, has caused serious environmental
problems [2]. At the same time, crises, such as COVID-19 and the Russia—Ukraine conflict,
have raised questions about the reliability of non-renewables and what actions could be
taken by policymakers to immediately mitigate the reliance on fossil fuels for vulnerable
importers [3]. The use of RE and related industries is also of concern. In the future, RE will
be the main source of energy in the energy market, and the construction and development
of RE projects will gain widespread attention.

Following market-oriented reforms in the electric power industry, the RE industry
has expanded more quickly in developing countries facing rapid economic growth and
severe energy shortages [4]. The numbers given by almost all energy bodies worldwide
show that RE is growing faster than all other traditional forms of energy. This trend is a
response to instability in the fossil fuels market and the numerous benefits of renewable
resources [5]. Renewable energy dynamics have introduced many new terms; for example,
trade openness, economic growth, and technological progress [6]. Investment in sustainable
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and renewable technologies must be doubled if globally agreed-upon climate targets are to
be met [7]. Foreign investment decisions in RE are faced with many uncertain factors, such
as the volatility of electricity prices, the randomness of renewable energy, the instability of
policy, the rapidity of technological development, the diversity of investment subjects, etc.
These uncertainties bring corresponding investment risks to the planning and construction
of the power systems. In this paper, a more comprehensive and reasonable decision model
for RE investment risk is proposed based on the decision model for RE investment risks at
home and abroad. The method in this paper provides the basis for investment decisions in
a RE project planning period and provides targeted risk reduction and control measures
for the project’s operation period.

Classical methods commonly used include net present value (NPV) [8,9], decouple
net present value (DNPV) [10,11], real option theory method [12-14], argumentative dis-
course analysis [15], analytic hierarchy process (AHP) [16-18], analysis network process
(ANP) [19-21], a group decision-making approach [22], a game theory-based method [23],
and soft decision-making [24]. de Freitas et al. [8] proposed a model to assist investment
decision-making in renewable energy power generation. Under a given level of risk aver-
sion, the conditional value at risk (CVaR) was introduced to maximize the expected financial
return of the entire company’s portfolio. But venture capital still needs to consider the
behaviors of generation, future prices, future costs, and all factors that will make up its
cash flow over the next few years. Bekaert et al. [9] quantified political risk, evaluated its
impact on expected cash flows, and discounted expected cash flows at a rate that reflected
systemic risk. To eliminate the losses caused by political risks to international investment
projects, the NPV method is used to evaluate the economic performance of the project.
Espinoza et al. [10,11] used the concept of insurance or claim valuation to conduct discrete
quantification of risks related to project cash flows, and separated investment project risks
from their actual sources (cash flows). Because identified project risks are quantified in
financial terms and treated as the actual costs of the project, DNPV allows business execu-
tives to assess the impact of different risks on the project’s value and select management
techniques that are considered more effective. Liu et al. [12], addressing the risk manage-
ment needs of power generation capacity investments in a market environment, established
a differential equation describing the change in option value to make optimal power gener-
ation investment decisions, based on an unvested option analysis method. Xun et al. [13],
in the electricity market environment, comprehensively considered a variety of uncertain
factors, applied the theory of real options to evaluate the investment strategy, and studied
the impacts of income fluctuations at various investment stages on the decision-making
behaviors of power generation investors under a variety of uncertain factors. Cao et al. [14],
considering the uncertainty of wind power feed-in tariffs, wind farm investments, running
costs, investment policies, and investment opportunities on the influence of investment
risks, utilized the portfolio investment concept to establish a quantitative assessment model
for wind power project investment decisions. This model allows for a quantitative eval-
uation of the impact of different factors on different power investment decision-making
stages. Tani et al. [15] used the Boston area’s transition to clean energy technologies as the
backbone of their case study. They used argumentative discourse analysis (ADA) to assess
the role of policy in promoting or hindering the development of a clean energy niche and
the deployment of clean energy technologies.

The above literature focuses on quantifying the risks of one or several factors in RE
investment to project investment while ignoring other risk factors. In recent years, scholars
at home and abroad have analyzed and demonstrated the main risk factors in RE power
generation projects from a number of risk factors. Ilbahar et al. [16] constructed four
main risk categories and seventeen risks through a comprehensive literature review and
expert interviews. Based on prospect theory and the intuitionistic fuzzy analytic hierarchy
process, the effect analysis of the risk decision model was carried out, which effectively
overcame the uncertainty and cognitive bias of experts and prioritized the risks of renew-
able energy investment. Kul et al. [17] used Turkey’s renewable energy investment (REI)
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as an example and proposed the three-step decision method of the multi-criteria decision
method (MCDM). The Delphi method was used to identify the REI risk factors, the AHP
was used to evaluate the identified REI risk factors, and the fuzzy weighted aggregated
sum product assessment (FWASPAS) was used to evaluate and prioritize strategies to
overcome the risk factors in the REI project, and eventually find the best fit for the given
decision situation. Zhou et al. [18] proposed a three-stage decision model. Firstly, the
dimensions and standards of renewable energy investment risks were defined. Secondly,
the IT2F-DANP with alpha cut was used to calculate the significance level of these factors.
Finally, the IT2F-QUALIFLEX method with alpha cut was used to divide investors into
high, medium, and low levels according to risk awareness. A hybrid approach was used in
the analysis, with two different MCDM models (DANP and QUALIFLEX) considered at
different stages, so the standard weights and alternative ranks obtained were calculated
objectively. This approach considers all possible energy investment risks and develops
appropriate strategies for investors by assessing these risks. Hashemizadeh et al. [19]
used the MCDM method to determine the risk factors of renewable energy investments in
Belt and Road countries and divided them into five categories: economic, technological,
environmental, social, and political. The fuzzy analysis network process (F-ANP) was used
to weigh the identified factors, and the COPRAS, MABAC, and GRA methods were used to
rank different renewable energy sources under uncertain conditions. This paper focuses on
the tradability of renewable energy projects and analyzes the sensitivity of investment deci-
sions. Aimed at the operation stage of the renewable energy technology project, Egli [20]
determined the risks behind new energy investments via 40 interviews with investors
from Germany, Italy, and the UK. The long-term ranking of risk types based on interviews
shows their relative importance over time, and a network analysis of interview records
was used to identify the main drivers behind the observed changes in the importance of
each risk type over the course of risk evolution. Yunna et al. [21] considered 32 risk factors,
including technology, politics, economy, social environment, and resource risks. Using
ANP, 54 countries were divided into six groups for analysis and the cloud model was used
to calculate the risk weight. The main risks of China’s investments in RE power generation
projects in 54 countries were analyzed. Li et al. [22] proposed a group decision-making
method for supplier selection that considered the interaction between multi-period fuzzy
information and the opinions of decision makers. In this method, decision-makers use
generalized fuzzy numbers to provide their preferences in multiple periods and deter-
mine the weights in different periods by mathematical programming. Claudia et al. [23]
proposed a modeling method based on game theory to analyze the influences of resource
complementarity and strategic behavior on the power generation technology selection.
They highlighted the research methods of the intersection of game theory and diversifica-
tion theory, aiming to analyze how resource complementarity affects generator selection
and the ultimate energy mix. MEMIS et al. [24] applied a bibliometric analysis to evaluate
research trends in desalination systems and renewable energy sources from an engineering
perspective using optimization or simulation techniques. Jing et al. [25] summarized vari-
ous risk factors existing in RE investment activities from a macro perspective; on this basis,
they provided three evaluation steps regarding whether to invest in a certain RE project.
Ximei et al. [26] focused on the analysis of the main risk factors in various historical stages
in the development process of RE industry (based on the modeling method of system
dynamics). Xie et al. [27] aimed to identify innovative strategies for renewable energy
investments via a novel multi-criteria decision-making (MCDM) model based on incom-
plete preferences, CGDM, and Pythagorean fuzzy sets. Understanding the potential and
capabilities needed to produce renewable energy resources is crucial for countries to utilize
them and to scale up clean and stable sources of electricity generation [28]. Considering
multiple uncertain factors, the literature review is shown in Table 1. Few studies have
thoroughly addressed the “Belt and Road Initiative” and its social, economic, and environ-
mental risks [29]. As nations strive for economic growth, they must rely on their pool of
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resources, including both natural and intellectual assets [30]. The abbreviations mentioned
in the text are in Appendix A.

The investment in clean energy investment projects is typically large, with 70-80% of
the investment amount being invested in the early project construction stage. However, the
project earnings need to be obtained year-by-year throughout approximately 20 years of
the project’s life cycle [31]. There is an interdependent relationship between the incidence
of risk factors and the factors affecting RE power generation. The key factors influencing
RE power generation differ across countries and project operational stages. As a result,
RE projects in different countries have different primary risk factors in different periods.
Predicting the total risk of the operational period of an RE project can form the foundation
for informed project investment decisions; predicting the main risk factors at each stage
of the project’s operation period can provide technical support for the project’s design
and management.

Table 1. Review of the methods in the literature.

Author Country/Region Uncertainty Method

Ilbahar et al. [16]

Kul et al. [17] Turkey
Zhou et al. [18]
Hashemizadeh Belt and Road
etal. [19] countries
. Germany,
Egli [20] Italy, England
Yunna et al. [21] Belt and Road
countries
Jing et al. [25]
Ximei et al. [26] China

Technology, market policy, social
and administrative management,
regional related risks

Renewable energy technology,
political policy, environment,
market, business, society

Technology, market, finance

Economic, technological,
environmental, social, and political

Policy (reversals), price, resource
and technology risks

Technology, politics, economics,
resources, social /environmental
risks, China factors

Climate, energy, monetary, and
fiscal policies

Technical risk, policy risk, and
market risk

Based on prospect theory and intuitionistic
fuzzy analytic hierarchy process, the effects
of risk decision models are analyzed.
Three stages of REI investment decision:
Delphi (determining factors), AHP
(evaluation empowerment), FWASPAS
(strategy ranking).

A combination of IT2F-DANP with alpha
cut and IT2F-QUALIFLEX with alpha cut
was used for analysis.

The F-ANP was used to weigh the
identified factors, and the COPRAS,
MABAC, and GRA methods were used to
rank different renewable energy sources
under uncertain conditions.
Network analysis of interview records was
used to identify drivers, and were the main
drivers of factor changes.

Used the ANP network analysis method,
ANP-Cloud framework was established,
considering the randomness of information.
An exploratory method was used to
summarize the previous literature and a
review-based analysis was presented.
The modeling based on the system
dynamics method focused on the analysis
of the main risk factors in each historical
stage of the development of the RE
industry.

Based on the characteristics of RE power generation in different countries, this paper
focuses on the key factors affecting the RE power generation, establishes the factor-risk
dependency relationship, constructs the factor-risk dynamic Bayesian network (DBN)
structure, and divides the risk into three levels: high, medium, and low, with the help
of the Delphi expert consultation method and cloud model. Using Bayesian inference,
we calculate the probability that the annual total risk of the project belongs to the three
levels (high, medium, and low), and judge whether the project has investment value. The
three risk items with the highest annual risks are selected, the risk factor sensitivity test is
carried out, and the corresponding risk reduction measures are given. Finally, the method
proposed in this paper is used to evaluate the wind power projects invested by China in
Pakistan, and the effectiveness of the method is tested.



Sustainability 2023, 15, 11297

50f18

The method proposed in this paper is based on a literature review to predict and

analyze the factors affecting the RE project from many aspects. The innovation of this
paper is to build a Cloud-DBN based on the GM (1,1) algorithm to predict the probability
of risk nodes, propose an improved quantitative data normalization processing formula,
and propose an improved calculation method for joint conditional probability based on
weight and contribution probabilities, reducing the workload of determining numerous
joint conditional probabilities and improving the practicality of BN networks with multiple
parent nodes.

The structure of the risk prediction method in this paper is shown in Figure 1, and its

main contributions are reflected in the following aspects:

\\/ |

In the DBN graph theory, the risk generation mechanism and evolution process in
foreign RE investment are presented, and the probability of risk occurrence is de-
duced based on the statistical data of observation nodes. The DBN diagram makes
the risk prediction structure clear; using statistical data as the starting point of rea-
soning ensures that the reasoning process is scientific. The probability of risk being
high, medium, or low is given, which is highly consistent with the uncertainty and
randomness of risk.

An improved normalization formula for quantitative data processing is proposed. By
means of the Delphi expert consultation method and maximum expected parameter
learning algorithm based on the cloud model [32], continuous and discrete risk items
are uniformly divided into three risk levels: high, medium, and low, which are used
as the evaluation criteria for whether a project has investment value. An improved
calculation method for joint conditional probability based on weight and contribution
probability is proposed, which greatly reduces the workload of determining many
joint conditional probabilities. These three steps improve the practicability of BN
networks with multiple parent nodes.

According to the (20 years” worth of) historical statistical data on observation nodes,
the GM(1,1) algorithm is used to extract the transfer characteristics of the observation
nodes, construct the DBN network, deduce the annual risk probability of each risk
node during the RE project operation period, provide the basis for the investment
decision in the project planning period, and provide targeted risk reduction measures
for the project operation period.
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2. Static Bayesian Structure (BN)

Bayesian reasoning gives the probability of random events in the form of probabil-
ity, which is especially suitable for the risk assessment of various projects. The basis
of Bayesian inference involves the directed acyclic structure graph and joint conditional
probability table.

2.1. Factor—Risk Dependency Directed Acyclic Structure Diagram

Various reasons or conditions that determine RE’a foreign investments are denoted
as factors affecting RE’s foreign investments, which can be summarized into three cate-
gories. First, reflect the user’s demand for RE power-related factors. Second, reflect the
international investment environment-related factors. Third, factors related to the level of
technological development are represented, as shown in Figure 2. Investment risk refers
to the factors that may bring losses to investment returns. There is an interdependent
relationship between factors and risks affecting RE projects. Direct factors that may lead to
income loss in RE investments include the unit kilowatt-hour cost, feed-in tariff, absorption
rate, and financial cost. The uncertainty factors related to the unit electricity costs are the
power generation technology risk, RE resource risk, policy risk (loan interest rate; tariff
rate), economic risks of power generation, and social and environmental risks. The uncer-
tain factors of the feed-in tariff include the policy risk (subsidy) and the economic risk of
the electricity price. The uncertainty factors in the consumption rate include the economic
risk of electricity consumption (the economic payment ability of electricity consumption),
the technical risk of electricity consumption, the proportion of RE electric energy in the
total electric energy, the risk of fossil energy (whether fossil energy can meet the energy
demand of the country), the natural environmental risk (whether it is necessary to reduce
the consumption of fossil energy by increasing the use of RE, so as to reduce the emission
of CO,, improve environmental quality, etc.), and population. These risk factors can be
derived from 25 factors, such as RE power generation technology maturity, power grid
networking degree, research and development ability, effective utilization time of resources,
GDP, CPI, population, etc. The data of these 25 factors are obtained by the World Bank and
the U.S. Energy Information Administration (U.S. EIA) and are denoted as observation
nodes. According to the above analysis, the Bayesian structure diagram (table of factor-risk
dependencies) shown in Table 2 is obtained. “*” in the table represents discrete variables,
and the rest are continuous variables. The data of risk nodes and economic nodes in the
table are obtained by Bayesian network reasoning.

Al. Real option A2. DNPV
. Research
A3, Game theory A4, System dynamics method
AS5. Bayesian reasoning A6. ANP
7y
1. RE permeability B2. RE absorption rate
B3. RE stability B4. Power grid voltage stability Performance
B5. Transient stability of power grid layer index
6. Transmission line loss rate
A N
Uoe 1 C1. Level of economic development C2. Energy consumption level ‘
d d C3. Environmental protection level C4. Energy system :
emar C5. Clean energy quality C6. Energy policy ;
Technical | | ¢7. Power grid technical level C8. Technical level of power supply Fac_tor
level 3 C9. Informatization level C10. Energy storage technology layer index
International ; C11 Exchange rate C12. Loan interestrate C13. Tax level
s T 4‘—b C14. Safety mx.echamsz.n C15, Mal‘ket mechanism
. ! C16. Level of intemational cooperation
environment
Power grid

(grid structure,
interconnection area)

Power generation plant
(type. scale, region)

Figure 2. RE external investment risk assessment structure.
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Table 2. RE project factor-risk dependency.

Economic Node

Risk Node

Observation Node

Technical risk of power generation R11

RE power generation technology
maturity y1 *

Network degree y2 *
Research and development capability y3 *

RE resource risk R12 Efficient use of resources time y4
Cost per kilowatt-hour R1 Loan interest rate y5
Policy risk R13 Tariff rate y6
VAT rate y7
Economic risk of power generation R14 Labor cost y8*
Land lease fee y9 *
Social environmental risk R15 Level of international cooperation y10 *

Feed-in price R2 ' I?olicy risk R21 . Subsidy y11
Economic risk of electricity price R22 CPly12
Economic risk of electricity use R31 GDP y13

Technical risk of electricity use R32

Energy consumption per unit of GDP y14
Energy storage level y15 *

Absorption rate R3

Power substitution level y16 *

Actual RE ratio y17
Policy risk R33 Expected RE ratio y18
Oil reserves y19
Fossil energy risk R34 Coal reserves y20

Natural gas reserves y21

Natural environmental risk R35 CO, emission y22

Population y23

Financial cost R4

Financial risk R41 Exchange. rate fluctuation y24
enterprise Income tax y25

Marked with * as a discrete variable.

2.2. Normalization Processing of Node Variables

In the observation node variables, discrete variables are described by language, such
as RE generation technology maturity (higher, average, low); continuous variables are
represented by specific data, such as tariff rate, GDP, etc. The size and unit of each node’s
variable are inconsistent, and each variable has randomness and uncertainty. Different
evaluation indicators often have different dimensions and dimensional units, which will
affect the results of data analysis. In order to eliminate the dimensional impacts among
indicators, data normalization processing is needed to solve the comparability of data
indicators. After the original data are normalized, each index is in the same order of
magnitude, which is suitable for the comprehensive comparative evaluation. In this paper,
the risks brought about by each variable to RE investment activities are divided into
three levels: S1 (low), 52 (medium), and S3 (high). The practical application can be divided
into five, seven, and nine risk levels, according to the needs.

The processing steps for the normalization of observation node variables are as follows:

1. Score the verbal descriptive variables: Based on a large number of historical data and
the Delphi expert consultation method, the maximum expected parameter learning
algorithm is used to score each linguistic descriptive variable on a scale of 0 to 100.

2. Assign value ranges to variable risk states, S1, S2, and S3: The value ranges of variable
risk state partition parameters m;,a;,n;,b;, S1, S2, and S3 are obtained by means of
Step (1), as shown in Table 3. Tables 4 and 5 show the risk state division of the
25 observation nodes in Table 2. Table 4 shows the risk classification of discrete
variables, and Table 5 shows the risk status classification of continuous variables.
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Table 3. Variable risk state division.

Variables S1 S2 S3
Yi [m;,a;) [mi+a;n;—b;) [n;—b;n;)
Table 4. Risk state division of discrete variables.
Discrete Index
Variable S1 52 53
V1 [100,70) [70,30) [30,0)
1) [100,70) [70,30) [30,0)
Y3 [100,70) [70,30) [30,0)
Y8 [0,30) [30,70) [70,100)
Yo [0,30) [30,70) [70,100)
Y10 [100,70) [70,30) [30,0)
Y15 [100,70) [70,30) [30,0)
Y16 [100,70) [70,30) [30,0)
Table 5. Risk status division of continuous variables.
Continuous
Indicator Variable S1 52 53
Ya [25%,50%) [15%,25%) [0,15%)
Y5 [0,5%) [5%,10%) [10%,50%)
Y6 [0,10%) [10%,20%) [20%,50%)
Y7 [0,10%) [10%,20%) [20%,30%)
y11($/KWh) [0.1,0.4) [0.05,0.1) [0,0.05)
Y12 [—5%,5%) [5%,20%) [20%,200%)
y13(Hundreds of
billions of dollars) [1,30) [0.1,1) [0,0.1)
y1a(thousand Btu/$) [8,20) [4,8) [0,4)
Y17 [0,30%) [30%,60%) [60%,90%)
Y18 [60%,90%) [30%,60%) [0,30%)
Y19(megaton) [0,1) [10,100) [100,500)
Y20(megaton) [0,1) [1,500) [50,3000)
Yo1 (trillion m3 ) [0,1) [1,5) [5,60)
Y22 (megaton) [10,120) [1,10) [0,10)
y23(Hundred million) [1,15) [0.1,1) [0,0.1)
Youa [0,100/0) [100/0,200/0) [200/0,400/0)
Y25 [0,15%) [15%,25%) [25%,40%)

3. Determine the value range of state variables S1, 52, and S3 on [0,1]: The expectations
for 51, S2, and S3 are Ex1 = 0, Ex2 = 0.5, and Ex3 = 1, respectively. According to
the cloud generation method of the golden section rate, as the entropy and super-
entropy move closer to the center of the domain, both entropy and superentropy
values decrease. The relationship between the entropy and superentropy of the two
adjacent evaluation levels is 0.618 times; that is, En3 = Enl = En2/0.618, Hel = He3
= He2/0.618. The rating range on the x-axis is [Exi—3Eni,Exi+3Eni]. Therefore, the
range of the three evaluation status levels 51, S2, and S3 on the x-axis is [0.3En2/0.618],
[0.5—3En2,0.5+3En2], [1-3En2/0.618,1]. In order to ensure that the three evaluation
levels cover all the data between [0,1] and stay within the range, it is required that:

3En2

> 05— 3En2
0.618 = 0>~ 3EN
3En2 (1)
. >1-
05+3Em2> 1~ -

05+3En2 <1
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Then, for 0.1667 > En2 > 0.064, if En2 = 0.07, He2 = 0.005, the cloud features of
the three equivalent evaluations, S1, S2, and S3 are, respectively, [0,0.113,0.0081],
[0.5,0.07,0.005], [1,0.113,0.0081]. S1, S2, and S3 on the x-axis scope is [0,0.339], [0.29,0.71],
and [0.661,1] [32].

4. Variable normalization processing: The value of each variable is normalized to its own
risk level according to the value range of 51, S2, and S3 in Table 3. The value ranges
ofthe 51, S2, and S3 cloud models determined in Step (2) are crossed. The midpoints of
the crossing points of S1 and S2 and S2 and S3 are as follows: A1 = 312/ 0618+0.5 —3En2
A2 = 05+3En2-3En2/0618 Iy this paper, Al = 0.3145, A2 = 0.6855. The variable y; is
normalized according to Formula (2).

Al-g m; <y < m;+a;
1
_ —(nj—bj+m;+a;)/2 1
Vi = (12A1)‘yl(n(,_lb,)l_(ml.+al.; 5 mitaisyi<m-b (2
1 1 1 1
Al'%+1 ni—b; <y <ny
1

2.3. Probability Calculation of Variable Risk Level

The level a variable belongs to is reflected in the form of probability, and its probability
sum is required to be 1, as shown in Formula (3).

Y P@i=5;) =1 ©)

The variable value after normalization is transferred to the risk level cloud model as
the input (features are shown in Section 2.1), and the certainty that the variable belongs to
each risk level is obtained. Because the probability value is transmitted in the BN network,
the certainty is converted into the probability value by Formula (4) [33].

2=

_ u(yi=Sj)
P(yi=Sj) = —
T =)

)

2=

The certainty obtained after cloud model processing has a certain randomness, and it
needs to calculate the average value after multiple cloud processing to ensure the stability
of the membership value.

2.4. Joint Conditional Probability

The risk probability of each child node in Table 2 is strongly dependent on the obser-
vation node and can be obtained through BN network classification. In the BN network,
when the child node has N parent nodes and each parent node has M states, there will be
MN joint conditional probabilities. When there are more parent nodes, it takes a lot of work
to obtain the joint conditional probabilities. In order to reduce the workload of obtaining
joint conditional probability, this paper proposes an improved calculation method for joint
conditional probability based on the risk contribution probability and influence weight.
The number of improved joint conditional probabilities is shown in Table 6.

Table 6. Number of joint probability conditions.

Traditional Method Improved Method of This Paper
MmN LN,

Nj is the sum of the number of variables of the parent and child nodes in the network.
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Y1,Y2, - - ,Yn are the parent nodes of R, and their influences on child node R are indepen-
dent. P(R=s; | y;=Sj) is denoted as the contribution probability of parent node y; = Sy to child
node R = §;. Let the influence weights of y1,2, - - ,yn on Rbe wy,w2, - - ,wn( i’f w; =1),
respectively. The joint influence relation of y1,y2, - - ,y» on R is synthesized according to
the “or” operator relation, namely:

i=n k=3
P(R = Sjly1,y2,- - ,yn) = ), wi- Y P(R=S;ly; = Sg) - P(y; = Sk) 5)
P

The risk contribution probability distribution table is obtained through the EM algo-
rithm experiment, as shown in Table 7. The calculation process of the influence weight is
shown in Figure 3, and the joint conditional probability structure is shown in Figure 4.

Table 7. Probability distribution of the risk contribution.

R =51 R =52 R =53
yi = S1 0.95 0.05 0

yi =52 0.1 0.85 0.05
yi = S3 0 0.1 0.9

Group of child node
variables

Construct the pairwise .
comparison matrix A

v

The eigenvalues of A

v

Normalized
eigenvectors

v

Test indicators RI,
CL CR

is a consisten
matrix ?

Weight vector

Figure 3. Flow chart of the influence weight calculation.

Py, = 5)
P, =S)(yl)  (y2) -
Py, = 5,)

PR=S|y,=5

PR
PR
PR

5 J
S, | Vs Vas oo o,
5 2

Figure 4. Joint conditional probability structure diagram.
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The weight of the influence of the parent node on the child node is shown by the red
number on the arrow in Figure 5. There are 42 in total. If the traditional method is adopted,
the number of joint conditional probabilities to be obtained is:

3B 43 +33 432430 430 431 431 433 431 433 431 432 435 432 437 431 43 = 2670 (6)

The comparison shows that the improved joint conditional probability calculation
method based on the risk contribution probability and influence weight will greatly reduce
the workload of determining the joint conditional probability.

By inputting the obtained joint conditional probability and observation data into the
BN network program, the probability that the static risk node, economic node, and RE
investment risk belong to S1, S2, and S3 can be obtained. After P(R = S]- ly1,Y2, -+ Yn) is
processed by the integrated cloud generation algorithm, the probability that each variable
belongs to a certain risk level can be obtained [34].

[R1t—Dl«{ RIj(t=1)

/ . .
/ . . 4

/

\\ >
[Rit—1) |« [ Rije—1)

Figure 5. DBN structure of RE projects invested abroad.

3. Dynamic Bayesian Network Structure

The operation period of the RE project is generally 20-30 years, so it is necessary to in-
vestigate the annual investment risk during the operation period of the project. By referring
to the idea of the net present value, the annual risk probability should be discounted to the
year of the project investment to consider whether the project has investment value. During
the operation of the project, the data of the observation node are constantly changing, as
well as the risk grade probability. The DBN can effectively predict the variable risk level
trend during the project’s operation period. DBN is the extension of static BN. The dynamic
Bayesian structure of foreign RE investment projects is shown in Figure 5.

R(t) =) wi) wij) yjxwi ?)

i wRi =1
i=1
4

s.t{ Y wRij=1 8)
j=1

q
) wyjr =1
k=1




Sustainability 2023, 15, 11297

12 0f 18

where o is the number of parent nodes of R(t), p is the number of parent nodes of Ri(t), and
q is the number of parent nodes of Rij(t). The number of parent nodes of each child node
varies according to the number of corresponding influencing factors.

It is assumed that the stochastic process satisfies the Markov hypothesis, the BN
structure is stable, and the BN reasoning process is stable. The transfer characteristics of
the observed node variables are given by the GM(1,1) algorithm [35]:

b
P(t+1) = (e = y(T) — _Je~ Y ©)
where 7(t + 1)is the t year predicted value of the random variable; y(T) is the initial value
of the random variable; 4 is denoted as the developmental grayscale, indicating the main
trend of random variables changing with time; b is denoted as the endogenous control gray
level, reflecting the volatility of random variables.

4. Risk Analysis of China’s Investment in Pakistan’s Wind Power Project

Pakistan is deficient in fossil energy but abundant in wind, hydro, and photovoltaic
RE. A coastal corridor extending from Gharo to Geti Bandel to Hyderabad, approximately
180 km in length and 80 km wide, is very suitable for the installation of wind power
generation equipment [34]. In 2019, Pakistan’s wind and solar power generation only
accounted for 3.9% of the country’s total power generation. The main reasons are that
Pakistan’s economy is relatively backward, its own ability to invest in RE power generation
projects is insufficient, and foreign investment risks are high [21], which makes it difficult
to attract foreign funds. In order to attract more foreign RE investments into RE projects,
the Pakistani government offers preferential policies, such as exemptions on RE equipment
tariffs and guarantees of government purchases of electricity generated from the projects.

4.1. Experimental Preparation

The data collected from wind power projects in Pakistan in 2017 are shown in Table 8.
Based on the characteristics of the RE project, the GM(1,1) algorithm was used to analyze
the statistical data of observational nodes from 1998 to 2017. Over the 20-year project
operation period, the data of observation nodes y5, y6, and y25 remained unchanged, and
the transfer characteristics of the other observation nodes are shown in Tables 9 and 10.

Table 8. Pakistan wind power observation node data (2017).

y; Data  Variable Data Variable Data  Variable Data  Variable Data

v 75 Ye 0 Y11 0.13 Y16 20 Y21 0.7
Y2 30 Y7 15% Y12 3.88% Y17 28.6% Y22 0.179
v3 50 ys 25 Y13 3.125 Y18 50% Y23 2.12
Ya 39% Yo 30 Y14 3.096 Y19 0.8 Yoq 0
ys 7% Y10 40 Y15 20 Y20 0.2 Y25 30%

Table 9. Pakistan wind power observation node transfer characteristics—1.

Yi Years 1-3 Years 4-5 Years 6-10 Years 11-15 Years 16-20
y7 0 7.5 15 15 15
Yo 30 30 35 40 45
Y1 0.13 0.13 0.065 0.0325 0

Y18 40 40 45 50 55
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Table 10. Data transfer characteristics of Pakistan’s wind power observation node—2.

vi i) a;j b; Yi yi(0) a; b; yi  yi(0) a; b;

n 75.0 —0.00655 75.17586 Y13 0.063 0.0732 —0.07931  yxo 0.2 0.04713 0.35183

Yo 30.0 —0.02917 34.60665 Y14 3.83098 0.00998 3.75219 Y21 0.7 0.01177 0.69158

Y3 20.0 —0.04822 22.84806 Y15 20.0 —0.03687 21.32189 Yy 99.61 —0.03186 95.60079

Ya 39.0 —0.00213 39.15112 Y16 20.0 —0.0374 22.9961 y3 139 —0.02192 1.38925

Y8 20.0 —0.03009 21.96284 Y17 28.6 —0.03959 25.06037 Yo4 0.0 —0.09648 3.86503
y12  0.0414 —0.00247 0.07471 Y19 0.8 0.01427 0.81058

4.2. Experimental Simulation 1—Risk Probability Analysis

Based on historical data, the variable risk state partitioning parameters
(m;, a;, nj, b;), risk probability contribution probability parameters, and joint conditional
probability data were trained by the program (the state variables were determined accord-
ing to the cloud generation method of the golden ratio, the risk probability contribution
probability parameters were determined according to the cloud model, and the joint condi-
tional probability data were determined according to DBN), and the observation node data
and their transfer characteristic parameters were input into the program for DBN inference.
The total investment risk of RE during the project’s operation is shown in Figure 6, and
the three nodes with the highest annual risks in the past 20 years are shown in Figure 7.
The values of the green, yellow, and red columns in Figure 6 represent the probabilities of
51, 52, and S3, respectively. The probability value of S1 slowly decreases, the probability
value of S3 slowly increases, and the probability value of S2 slowly increases for 1-9 years,
remains stable for 10-15 years, and slowly decreases for 16-20 years. It shows that the
total investment risk of RE increases with the operation time of the project, the project
risk is low in the first 8 years, the project risk is relatively stable for 9-16 years, and the
project risk is relatively high for 17-20 years. In Figure 7, the three dotted columns of green,
yellow, and red represent the probabilities of the three nodes with the highest risks in each
of the 20 years. In Figure 7, the nodes with the greatest risks over the years are as follows:
power generation technical risk (26), policy risk (power generation cost) (28), policy risk
(feed-in tariff) (31), economic risk of electricity use (33), technical risk of electricity use
(34), financial risk (38), and feed-in tariff (40). In the context of renewable energy project
investments—advanced power generation technology, government policies conducive
to project development, and electricity settlement prices provided by power generation
enterprises have the greatest impacts on project investments. During the operation of the
RE project, the distribution of high-risk factors in each stage is shown in Table 11. It can be
seen that during the initial stages of China’s investment in Pakistan’s wind power projects,
the primary risk factors were technical (power generation and electricity consumption) and
economic risks. In the middle stage, technical risks still existed, and policy risks began to
become prominent.

Table 11. Distribution of high-risk factors at each stage of the project’s life cycle.

Time (Year) The Top Three Risk
Factors

1-2 Economic risk of Technical risk of Technical risk of
electricity use (33) electricity use (34) power generation (26)

37 Policy Risk Technical risk of Technical risk of
(Generation Cost) (28) electricity use (34) power generation (26)

Policy Risk . — Technical risk of
8-15 (Generation Cost) (28) Financial Risks (38) power generation (26)

16-20 Policy Risk (Feed-in Feed-in tariff (40) Financial Risks (38)

Tariff) (31)
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Figure 7. Distribution of the three nodes with the highest annual risks during the 20 years. The
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w, and red dashed columns represent the probabilities of the three riskiest

nodes in each of the 20 years.

4.3. Experimental Simulation 2—Node Parameter Sensitivity Test

Four observation nodes, which are closely related to the main risks in Table 11, i.e., RE
subsidy, loan interest rate, exchange rate fluctuation level, and corporate income tax, are

selected for the risk sensitivity test. The four nodes are increased by 30%, respectively, to

observe the fluctuation of the total risk of RE investment.

In Figure 8, the red curve shows the trend of the RE investment risk in the past 20 years

without changing the input data. The black, pink, blue, and green curves, respectively,

represent the exchange rate fluctuation level, +30%, corporate income tax, +30%, loan

interest rate, +30%, and RE subsidy, +30%. The vertical axis of Figure 8 shows the total risk
probability of the RE investment. As can be seen from the figure, the total investment risk

of RE is sensitive to the fluctuation level of the exchange rate and corporate income tax.
When the two observation nodes (exchange rate and corporate income tax) are +30%, the

total investment risk of RE increases significantly but is less sensitive to subsidy and loan
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interest rates. When the two observation nodes (subsidy and loan interest rate) are +30%,
the total investment risk of RE does not fluctuate much.

05 1 1
—reference
Subsidies+30%
0.45 —#— | oan Rate+30%
- —&A— Fxchange Rate Fluctuation+30%
== |ncome Tax+30%
0.4
035
03 r
0.25
02
n-15 1 1 | 1
0 5 10 15 20

Figure 8. Risk sensitivity test.

5. Conclusions

Following the market-oriented reform of the electric power industry, many risks in
foreign investment for RE have surfaced, leading to a reduction in project income, the
forced abandonment of RE power, and even the grounding of sizeable investment projects
in RE, resulting in significant capital and environmental damage. Therefore, in the planning
stage of an RE project, how to effectively conduct risk assessment is an urgent problem that
needs to be solved in the field of foreign RE investment.

DBN diagrams clearly express the generation mechanism and evolution process of
risks in foreign RE investment. Cloud models can better express the uncertainty and
randomness of risks. Observation node information is obtained from statistical data
processing, which ensures the scientific reasoning of DBNs. The improved normalization
formula for quantitative data and the improved joint conditional probability calculation
method based on weight and contribution probability greatly improve the performance of
DBN networks with multiple parent nodes.

The method in this paper was applied to risk analysis for China’s investment in wind
power projects in Pakistan. The simulation results show that the overall risk of the project is
low, and is a viable investment, which is consistent with the actual situation, and proves the
effectiveness of the method in this paper. The simulation results also show that project risks
are sensitive to exchange rate fluctuations and corporate income tax. In project planning,
the Chinese side can consider using RMB as the settlement currency to avoid project risks
brought about by exchange rate fluctuations and consider in-depth communication with the
Pakistani government to negotiate long-term corporate income tax preferential policies and
ensure the healthy operation of the RE project. The simulation results also show that in the
China-Pakistan wind power project, early-stage technical risks (i.e., electricity and power
generation) and economic risks are dominant, medium-term policy risks and technical risks
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(i.e., electricity and power generation) are the most prominent, and later-stage feed-in tariff
and financial risks are more obvious. China can consider introducing more advanced power
generation technologies in Pakistan to reduce technical risks, and negotiate an agreement
with the Pakistani government on RE-related policies to ensure the stability of RE feed-in
tariffs and the high uptake rate of RE electric energy.

The method proposed in this paper aligns with traditional algorithms. In recent years,
the research on neural networks has become a hot topic and has been widely used in risk
assessment and prediction. In further research, we will consider the use of appropriate
neural networks for risk prediction to improve prediction efficiency and accuracy.
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Appendix A

Table A1l. Abbreviated list.

Full Name Abbreviation
renewable energy RE
dynamic Bayesian network DBN
cloud dynamic Bayesian network Cloud-DBN
net present value NPV
decouple net present value DNPV
analytic hierarchy process AHP
analysis network process ANP
conditional value at risk CVaR
argumentative discourse analysis ADA
renewable energy investment REI
multi-criteria decision method MCDM
fuzzy weighted aggregated sum product assessment FWASPAS
fuzzy analysis network process F-ANP
complex proportion assessment method COPRAS
multi-attributive border approximation area comparison MABAC
grey relation analysis GRA
cross-domain gradient discrepancy minimization CGDM
U.S. Energy Information Administration U.S. EIA
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