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Abstract: Renewable energy and energy efficiency are essential for a transition to cleaner and
sustainable energy. Photovoltaic and wind turbine systems introduce operation, control, protection,
and planning issues, particularly affecting frequency stability in the grid. In contrast to more
widespread wind turbines and photovoltaic systems, biomass based electricity systems are more
stable with no negative impacts on the grid stability. The efficiency of bagasse boilers is essential to
guaranteeing adequate economic profit and environmental performance in sugar plants. To realize
universal access to affordable, reliable, and modern energy services by 2030 (SDG 7), the use of
renewable energy sources in energy mixing and energy efficiency must increase globally. Sugar
plants include cogeneration systems to provide heat and electricity to the process and frequently sell
an electricity surplus to the grid, which depends on their energy efficiency. Boilers are an essential
component of cogeneration systems in sugar plants, and their efficiency is crucial to guarantee
electricity surplus. Therefore, this study assessed a bagasse boiler to optimize its operational efficiency.
To this end, the exergy assessment and multiobjective optimization based on a genetic algorithm are
used. The results show that the exergy efficiency of the boiler improved by 0.8% with the optimization,
reducing bagasse consumption by 23 t/d.

Keywords: water-tube boilers; cogeneration; energy efficiency; exergy efficiency; bagasse

1. Introduction

The industrial sector faces many economic and environmental challenges, including
increasing energy and raw materials costs, global warming, and resource depletion. Thus,
new strategies to achieve sustainability and competitiveness, motivated to reduce energy
costs while reducing GHG emissions, are under development in the industry [1]. A way to
reduce GHG emissions in the industry is to improve energy efficiency, which is projected to
be critical in meeting the GHG emissions reduction targets defined by 2050 [2]. Realizing
sustainable development goals (SDGs) is essential for developing countries to reach the
development of industrialized countries while balancing the use of natural resources
with socioeconomic development [3]. Environmental sustainability is achievable, among
other factors, by reducing the negative environmental consequences of fossil fuel-based
electricity generation with renewable energy sources [4]. Notably, bagasse boilers have
gained increased attention since the 1970s energy crisis [5].

Although energy consumption is a cornerstone in many countries’ long-term de-
velopment, it is increasingly evident that renewable energy and energy efficiency are
a cornerstone to addressing the climate crisis while meeting sustainable development
goals [6]. Primarily based on fossil fuels, electricity is the energy carrier most widely used
globally [7]. Researchers globally acknowledge that further use of fossil fuels continuously
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raises pollution levels [8]. However, the transition in the electric systems points to replacing
fossil fuel based synchronous electricity generation systems with inverter interfaced renew-
able based energy sources such as photovoltaic panels, wind turbines, and batteries [9].
These systems are decoupled from the grid and provide no inertial support, which results
in a low inertial system [10] and has caused blackouts worldwide [11]. Lower grid inertia
results in grid issues in system operation, control, protection, and planning, predominantly
presenting issues with frequency stability [11,12]. In contrast, bagasse-based electricity
generation technology in sugar plants is similar to fossil-fuels based systems and has no
negative impact on the grid inertia. Consequently, bagasse-based electricity is a sound
alternative to increase clean energy availability. Moreover, energy efficiency in sugar plants
can further increase the available clean electricity in the grid.

Steam production in boilers is highly irreversible, driving the rising concern for
the correct operation of industrial boilers. Different studies have aimed to improve the
energy performance of boilers using trial-and-error approaches or based on complex
mathematical models. Some mathematical models include the heat exchange in the boiler
surfaces simulated by integrating combustion and hydrodynamic models [13]. Other
mathematical models were developed to describe the pressure drop in superheater heat
exchangers [14,15]. Moreover, different computational tools have been used to analyze the
phase change process and the pressure drops in boilers [16]. A hybrid mathematical model
was used for the dynamic operation of a boiler during transient processes such as hot and
cold starts [17]. Combustion irreversibilities, chemical energy transformation, and heat
transfer between combustion gases and steam have been simulated using mathematical
models [18]. Validating the mathematical model used in boilers needs data from different
partial loads from operations [19].

Different studies discussed the energy performance in the sugar industry. An experi-
mental energy performance optimization was developed in three RETAL boilers in two
sugar plants in Cuba [5]. The optimization was based on the indirect efficiency method
and a minimum total cost function. This experimental approach proved to be resource
and time-consuming. A different study combined the indirect efficiency with a non-linear
optimization using fmicon function in Matlab to optimize the fuel consumption in a bagasse
boiler [20]. Another study assessed a bagasse boiler using the second law of thermodynam-
ics to quantify improvements in the boiler’s performance for increased steam temperatures
and pressures [21]. The exergy balance in an Indian sugar plant shows that combustion
and heat transfer account for most irreversibilities in bagasse boilers operating at an exergy
efficiency of 25% [22]. Likewise, the electricity output of a sugar plant cogeneration system
was optimized using an exergy-based thermoeconomic approach [23]. The exergy assess-
ment of a bagasse boiler in Colombia identified the need for technological upgrades to
improve the exergy efficiency from 25.8% to 27% with a reheating cycle [24]. An integrated
multi-criteria tool to evaluate the sustainability of bagasse burning in a Mexican sugar
mill reduced GHG emissions by 55% and particulate matter emissions by 58% [25]. Using
multiobjective optimization based on the simulation of the steam heaters with a focus on
steam generation permits the improvement of the boilers’ control loops [26]. A different
study assessed the competing uses of bagasse for energy and non-energy applications in
31 sugar plants in India with three objective functions: NPV maximization, GHG emissions
minimization, and water footprint minimization [27]. The results show that using bagasse
for electricity production optimizes the NPV and GHG emissions. A comparative analysis
of four technologies in a Cuban sugar plant shows the potential of technological improve-
ments to upgrade energy efficiency and sugar yields while reducing GHG emissions and
economic costs [28].

It is challenging to simultaneously optimize maximum steam flow and power output
in boilers to obtain optimum efficiency. Thus, it is necessary to balance output and efficiency
in boilers. Consequently, a multiobjective optimization approach considering different
cost functions is indicated to optimize these parameters simultaneously. Meta-heuristic
techniques are widely used in complex optimization problems, with different algorithms
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available [29]. These algorithms have been used in the multiobjective optimization of
Stirling engines [30,31]. Moreover, exergy analysis is a practical approach for identifying
and quantifying losses and irreversibilities in boilers [32]. The exergy approach permits
highlighting inefficiencies in the different components of power systems [33]. Therefore,
the main question is as follows: How does one define the best operating point in a bagasse
boiler combining multiobjective optimization and exergy assessment? Thus, this work aims
to implement a multiobjective optimization of a bagasse boiler’s efficiency and steam flows.

2. Materials and Methods

This section describes the Pareto front optimization approach used in this study and
its implementation in the ModeFRONTIER software. Additionally, it presents the main
steam boiler characteristics. Furthermore, it includes a description of the mathematical
model of the steam boiler used in the optimization.

2.1. Steam Boiler

This study assesses a cogenerating sugarcane bagasse steam boiler of 34 MW. The
boiler consists of a two drum water tube system with natural circulation. Furthermore, the
boiler can operate with either bagasse (Lower Heating Value (LHV) of 8839 kJ/kg), coal
(LHV of 23,818 kJ/kg), or a mix of both fuels. On average, bagasse accounts for some 93%
of the fuel energy, while coal contributes to the remaining 7% during regular operation.
Table 1 shows the technical characteristics of the steam boiler.

Table 1. Characteristics of the boiler.

Features Unit Value

Primary fuel - Bagasse

Secondary fuel - Coal

Grate - Traveling grate with
frontal discharge

Maximum fuel flow (100% bagasse) t/h 181
159 (100% Carbón)

Nominal pressure * MPa 7.991

Live steam temperature ◦C 510

Feed water temperature ◦C 125

Thermal efficiency (100% bagasse) % 66.71

Thermal efficiency (100% coal) % 83.17

Steam production (100% bagasse) kgs/kgf 2.01

Steam production (100% coal) kgs/kgf 6.67
* Nominal pressure refers to the maximum steam outlet pressure of the boiler.

The sugar plant produces enough bagasse to support its energy demand. However, an
agreement with a paper plant establishes an exchange of some bagasse for coal. The paper
plant provides coal to the sugar plant in exchange for bagasse to support paper production.

The boiler is considered a system formed by different subsystems for assessment.
Figure 1 describes the systems and flows interaction within the steam boiler.

In the boiler, combustion gases flow into the steam production system (i.e., the steam
and feedwater drums and the water tubes) to produce saturated steam. Afterward, the gases
flow to the superheaters, producing high pressure and temperature superheated steam.
The gases flow to the overfire air heater and to the air preheater to preheat combustion air.
Finally, combustion gases flow to the economizer to preheat the input water to the boiler.
The steam temperature at the exit of superheater 2 is one critical operational parameter in
the boiler, affecting process safety, efficiency, and emissions.
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Table 2 shows the values of the operational parameters of the boiler for the different
flows depicted in Figure 1.

The boiler produces high temperature superheated steam at 513 ◦C and 6.7 MPa to
support the sugar plant cogeneration system.
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Figure 1. Steam boiler.

Table 2. Operational parameters of the regular boiler operation.

Fluid Flow Flow
(t/h)

Temperature
(◦C)

Pressure
(MPa)

Feedwater
1 166.5 116.5 7.72

2 166.5 185 7.72

Saturated steam 5 164.95 290 7.40

Superheated steam
6 164.95 400 7.10

7 164.95 513 6.71

Pneumatic air 8 21.18 - 0.030

Over-fire air 9 77.8 384 -

Primary air 10 177.2 243 -

Fuel 11 80.212 30 -
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Table 2. Cont.

Fluid Flow Flow
(t/h)

Temperature
(◦C)

Pressure
(MPa)

Combustion gases

12 388.25 1442 -

13 388.25 755 -

14 388.25 527 -

15 388.25 443 -

16 388.25 374 -

17 388.25 277 -

18 388.25 180 -

Continuous purge 19 1.55 290 7.40

Air
9.1 77.8 30 0.101

10.1 177.2 30 0.101

2.2. Pareto Front Multiobjective Optimization

Evolutionary optimization for multiple objective optimization problems has been
increasingly discussed in engineering problems [34] and has gained a preference towards
sustainability [35]. Evolutionary optimizations identify a population of possible solutions
approximating the Pareto front, defined as a set of trade-off solutions between given
criteria [36]. Multiobjective optimization methods aim to balance two or more conflicting
objectives to achieve optimal decisions [37]. The most important feature of these methods
is that more than one candidate solution is obtained, identifying a set of optimum solutions
rather than a single optimum solution [38].

The multiobjective optimization problem aiming at maximizing or minimizing the m
objective functions evaluated at different values of the decision variables vector x with n
decision variables [39]:

min [ f1(x) f 2(x) . . . fm(x)] (1)

where:
x = (x1,x2,..., xn,) ∈ X (2)

with the constraints:
g(x) ≤ 0 (3)

h(x) = 0 (4)

xl ≤ x ≤ xu (5)

where X ⊆ < n is the n-dimensional decision space and functions g(x) and h(x) are the
constraint functions. The function value f is evaluated at point xi (f 1(xi), f 2(xi),..., fn(xi),).

The set of Pareto optimal solutions obtained is referred to as Pareto set, and its image is
referred to as the Pareto front [40,41].

In multiobjective optimization, a solution is optimal if, assuming minimization, there
is no feasible vector x that would decrease some criterion without causing a simultaneous
increase in at least one other criterion [29]. Otherwise, assuming maximization, the solution
is optimal if there were no feasible vector x that would increase some criterion without
causing a simultaneous decrease in at least one other criterion. This set of solutions (located
on the Pareto front) is known as nondominated solutions [29,42]. All other solutions
outside the Pareto front are dominated solutions [42]. Every solution associated with a
point on the Pareto front is a vector whose components represent trade-offs in the decision
space [29,42]. Therefore, without additional information, Pareto optimal solutions are
considered equally good [43,44]. Selecting an optimal solution thus depends on the trade-
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offs between objective functions. For example, in a boiler is possible to optimize thermal
efficiency and superheated steam flow; the selection of an optimal nondominated solution
depends on the superheated steam demand. Therefore, the optimal solution, in this case,
guarantees the highest efficiency for a given steam flow.

Evolutionary algorithms are an efficient approach to exploring the Pareto front, and
the Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) is one of the most used al-
gorithms for multiobjective optimization [45]. NSGA-II has been increasingly implemented
for different multiobjective optimization problems in engineering, performing better than
other algorithms [46]. The superior performance f NSGA-II is based on the mutation opera-
tor, population distribution precluding local optimum points entrapment, good crowding
distance operator performance during selection, and well-preserved population diversity
through different generations [47]. It is suggested that the proposed NSGA-II be used to
optimize multiobjective system operation with more reservoirs.

The NSGA-II algorithm and The ModeFRONTIER software are used to develop the
multiobjective optimization.

One significant challenge to address when obtaining a Pareto front is the decision-
making process to select the solution to be implemented in the actual process. Various
approaches have been discussed to select the optimal operational configuration within the
Pareto front. Ferreira et al. [48] suggested a method with a weighted stress function to
incorporate the user’s preferences in the decision. This approach enables the identification
of the optimal region within the Pareto frontier that aligns with the user’s preferences. A
different approach [49] considers the standard error of the predictions for the responses
during the solution selection process. Moreover, the R-Method involves ranking the
objectives based on their importance within the optimization problem and ranking the
alternative solutions based on their corresponding objective data [50]. In this case, the
ranks assigned to the objectives, and the alternative solutions for each objective are then
converted into appropriate weights. Next, these weights are used to compute the final
composite scores for the alternative solutions, and the ranking of solutions is determined
based on these scores. This study implements the max-min strategy [51] to select the
optimal operational configuration in the Pareto Front. The solution in this case is selected as
the closest one that satisfies the operational constraints in the actual process. This approach
involves the formulation of normalized vectors for each objective function, based on the
following equation [52]:

MFk =
Fmax

k − Fk

Fmax
k − Fmin

k
(6)

where Fmax
k is the maximum value of the kth objective function, Fmin

k is the minimum value
of the kth objective function, and Fk is the value of the kth objective function.

The optimal value for this study is derived from the highest value of the new vector
generated with the max-min strategy. This strategy permits the identification of the best
solutions within the Pareto front.

2.3. Mathematical Model

A mathematical model based on mass, energy, and exergy balances was developed
for each subsystem to simulate the boiler performance. The model used in this study
combines the first and second principles of thermodynamics and the concept of exergy in
the balances.

The exergy of a flow, which depends on the reference temperature and pressure, is
calculated as in [53]:

∑
(

1− T0

Tk

)
·

.
Qk −

[
.

W − P0·
dVCV

dt

]
+ ∑in

.
mi·xi −∑out

.
mj·xj −

.
XD =

dXCV
dt

(7)
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where:
x = (h− ho)− To·(s− so) (8)

For ideal gases such air and combustion gases, this equation is simplified to:

xg = cpg·
(
Tg − To

)
− To·

[
cpg·Ln

(
Tg

To

)
− Rg·Ln

(
Pg

Po

)]
(9)

where the exergy destroyed is calculated with the Gouy-Stodola relation [53]:

.
XD =

.
Sgen·To (10)

The entropy generation is calculated as follows:

.
Sgen =

dS
dt
−∑n

k=0

.
Qk
Tk
−∑in

.
m·s + ∑out

.
m·s ≥ 0 (11)

The exergy of the fuel is calculated as follows:

.
X f =

.
m f ·(ϕ·LHV) (12)

where ϕ is the ratio between the chemical exergy and the lower heating value of industrial
fuels. For solid fuels, ϕ is a function of hydrogen (H), oxygen (O), nitrogen (N), and
carbon (C) [54]:

ϕ = 1.0437 + 0.1882·H
C

+ 0.0610·O
C

+ 0.0404·N
C

(13)

The energy and exergy balance of the steam boiler is shown in Table 3.

Table 3. Energy and exergy balance of the steam boiler.

System Equation No.

Combustion
chamber

A

.
m8·h8 +

.
m11·LHV =

.
m12·h12 (14)

X8 + X11 −
.

XDI = X12 (15)

Steam
production
system

B

.
m2·h2 +

.
m12·h12 =

.
m5·h5 +

.
m13·h13 +

.
m19·h19 (16)

X2 + X12 −
.

XDI I = X5 + X13 + X19 (17)

Superheater I C

.
m5·h5 +

.
m14·h14 =

.
m6·h6 +

.
m15·h15 (18)

X5 + X14 −
.

XDI I I = X6 + X15 (19)

Superheater II D

.
m6·h6 +

.
m13·h13 =

.
m7·h7 +

.
m14·h14 (20)

X6 + X13 −
.

XDIV = X7 + X14 (21)

Over fire air
heater

E

.
m9.1·h9.1 +

.
m15·h15 =

.
m9·h9 +

.
m16·h16 (22)

X9.1 + X15 −
.

XDV = X9 + X16 (23)

Primary air
heater F

.
m10.1·h10.1 +

.
m16·h16 =

.
m10·h10 +

.
m17·h17 (24)

X10.1 + X16 −
.

XDVI = X10 + X17 (25)

Economizer G

.
m1·h1 +

.
m17·h17 =

.
m2·h2 +

.
m18·h18 (26)

X1 + X17 −
.

XDVII = X2 + X18 (27)

Based on the exergy balance is possible to assess the boiler efficiency. According to [21],
the exergy efficiency of a boiler (ηboiler) can be determined with two different approaches:
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1. The ratio of exergy gained by water between the input and output of the boiler to the
fuel exergy:

ηboiler =

.
XSH

.
Xin

(28)

2. The ratio of the exergy destroyed and lost in each subsystem to the fuel exergy (this
approach provides more information on the boiler’s performance) [55]:

ηboiler = 100− ∑
.

XD + ∑
.

Xloss
.

Xin
(29)

Efficiency approach one shows the boiler efficiency, providing no information on
the inefficiencies of the different subsystems (e.g., superheaters). Moreover, although
more complex, the second approach permits identifying and quantifying the sources of
exergy destruction; thus, it is adequate for detecting and locating inefficiencies. Therefore,
this study used the second approach to calculate the exergy efficiency of the boiler. The
mathematical model is programmed in MATLAB.

The objective functions of the multiobjective optimization model are the exergy efficiency
defined by the ratio of the exergy destroyed and lost in each subsystem (Equation (28)) and
the superheated steam production (Equation (20)) in the boiler

(
ηboiler;

.
m7

)
.

max[ f1(x) f2(x)] (30)

f1(x) = ηboiler = 100− ∑
.

XD + ∑
.

Xloss
.

Xin
(31)

f2(x) =
.

m7 =

.
m6·x6 +

.
m13·x13 −

.
XDIV −

.
m14·x14

x7
(32)

The constraints of each operational variable used in the steam boiler model and the
optimization, defined by the operating range, are shown in Table 4. These variables coincide
with the decision variables of the multiobjective optimization.

Table 4. Operating parameters constraints in the optimization model.

Parameter Unit ModeFRONTIER
Nomenclature

Range
Considered

Steam temperature ◦C T7 505–515

Steam pressure kPa P7 6541–6580

Feedwater temperature (economizer input) ◦C T1 120–130

Feedwater flow (economizer output) t/h F1 175–190

Feedwater pressure kPa P1 6669–6865

Primary airflow m3/s F10 20–50

Primary airflow temperature ◦C T10 190–210

Overfire airflow m3/s F9 7–20

Overfire airflow temperature ◦C T9 280–315

Pneumatic airflow m3/s F8 5–16

Pneumatic airflow temperature ◦C T8 30

Combustion gas temperature (Chimney output) ◦C T18 165–175

Steam production system temperature ◦C T12 780–943

Combustion gas temperature (Overfire air heater) ◦C T15 377–450

Combustion gas temperature (Primary air heater) ◦C T16 280–370

Combustion gas temperature (Economizer) ◦C T17 225–280
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The multiobjective function is optimized using the NSGA-II and MATLAB integrated
into ModeFRONTIER, as shown in Figure 2. The optimization model includes the mathe-
matical model and the objective functions.
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Figure 2. ModeFRONTIER workspace.

The workspace shown in Figure 2 presents the input variables used in the model,
which is combined with the NSGA-II optimization method within the ModeFRONTIER.
The evolutionary algorithm compares the results obtained from the model for different
inputs to define the Pareto front. The design of experiments (DOE) model was developed
using the Sobol method, which is suitable for medium to large samples [56]. The NSGA-II
selects the best operating configuration in the Pareto front using the max-min technique,
which guarantees the diversity of subsets by maximizing the minimum distance between
the selected elements [51,52].

When setting genetic algorithm parameters, it is recommended to increase the pop-
ulation size rather than the generations [57]. Based on the model characteristics, the
optimization was developed using the genetic algorithm parameters shown in Table 5.

Table 5. Genetic algorithm parameters.

Parameter Value

Population size 500

Number of generations 50

Probability of directional 0.5

Probability of selection 0.05

Probability of mutation 0.1

Several iterations of the algorithm were assessed by comparing computational demand
and the Pareto front to define the value of these parameters. During the tests, the population
increased to 500 and the generations increased up to 50. Further increments did not improve
the algorithm’s performance but increased the computational demand.
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3. Results and Discussion

This section presents the implementation of steam boiler optimization. The mathe-
matical model described in Section 2 was validated using operating parameters measured
during the regular operation of the steam boiler. Once the model is validated, it is combined
with the optimization approach. Finally, the results from optimization are implemented in
the steam boiler operation.

3.1. Model Validation

The temperature values of different flows measured during the regular operation of
the boiler for 22 days were compared with the results of the mathematical model. Figure 3
shows the comparison of the results.
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Figure 3. Temperatures measured in the boiler.

Results show that the error of the model contrasted with the temperature measured
values averaged between 5.8% for T15 and 2.2% for T13. These results show the validity of
the model in predicting the performance of the boiler.

3.2. Exergy Balance

Figure 4 shows the exergy balance of the boiler. This figure shows that the exergy
destruction and loss in the boiler account for 72.2% of the exergy input. The exergy destruc-
tion in the combustion chamber and the economizer sums up 49.2% of the exergy input,
while the steam production system accounts for 12.8%. Overall, the exergy destruction
accounts for 72.2%, and the current operation’s boiler efficiency results in 27.8%.

The share of exergy lost and destroyed in the different subsystems in the general oper-
ation is highlighted in Figure 5. Overall, 65% of the exergy destruction and loss occurs in
the combustion chamber as a result of combustion irreversibilities. Furthermore, the steam
production system accounts for 18% of the exergy destruction. In total, the combustion
chamber, and the steam production system account for 83% of the exergy destruction in
the boiler. Moreover, the superheaters account for 11% of the exergy destruction. The
remaining systems combined account for 6% of the exergy destruction and loss.
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3.3. Optimization of the Steam Boiler

The optimization identifies the Pareto front, as shown in Figure 6. Table 6 shows the
operation parameters of the steam boiler obtained with the optimization process and their
comparison with the measured parameters during the optimal operation.
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Table 6. Current and optimized operation of the boiler.

Operation Parameters Flow Unit Acronym
Optimized

Operating Point
(ModeFRONTIER)

Optimized
Operating Point

(Implementation)

Steam flow 7 t/h 166.7 165.1

Steam temperature 7 ◦C T7 506 513

Steam pressure 7 kPa P7 6691 6552

Feedwater flow 1 t/h F1 166.7 163.5

Feedwater temperature 1 ◦C T1 124.6 116.5

Feedwater pressure 1 kPa P1 6900 6800

Water temperature 2 ◦C T2 182.3 185

Primary airflow 10 t/h F10 177 165

Primary air temperature 10 ◦C T10 190 243

Secondary airflow 9 t/h F9 75 70

Secondary air temperature 9 ◦C T9 280 384

Pneumatic airflow 8 t/h F8 21 20

Pneumatic air temperature 8 ◦C T8 30 30

Input air
9.1 ◦C T9.1 30 30

10.1 ◦C T10.1 30 30

Gas temperature

12 ◦C T12 1534 1520

18 ◦C T18 175 180

17 ◦C T17 273.7 277

Table 6 shows that, although it is feasible to improve the boiler efficiency, the control
over the variables is complex and the improvement is limited. The bagasse flow for the
optimized operation point accounts for 1886.6 t/day.
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The optimal operating point was implemented during 18 days of boiler operation
following different strategies to guarantee the highest performance efficiency:

• To improve the combustion process:

X Primary airflow: This flow is set by the boiler operator. Usually, this is the main
combustion airflow, which is suboptimal for 100% bagasse.

X Secondary airflow: Pneumatic air flow (AFPF): This flow complements the
primary air flow to increase combustion efficiency with preheated air.

X Pneumatic air flow: Flow is needed to blow bagasse away from the discharge
to prevent shorter particle residence time, leading to lower combustion effi-
ciency. However, due to its lower temperature contrasted to the primary and
secondary air flows, it must be controlled to the minimum to obtain higher
combustion efficiency.

The operational points measured during regular operation and from the optimization
are depicted in Figure 6. These points are classified as follows:

• Regular operating configuration from Table 2 (green point in Figure 6).
• Pareto front: nondominated optimal points for different flows (black points in

Figure 6).
• Optimal operating point from the model: operational point selected from the Pareto

front (red point in Figure 6).
• Result from implementing the optimized operating point (yellow point in Figure 6).

In the sugar plant, using high-efficiency extraction mills results in an average bagasse
moisture of 47%. This average value is used for the optimization of the model.

The implementation of multi-objective optimization resulted in a Pareto front includ-
ing 1765 solutions in the vicinity of the regular operating point of the boiler. The boiler
regularly operates, producing 166.7 t/h at an exergy efficiency of 27.8%. The optimal
efficiency in the Pareto front was thus selected at this steam flow. The optimal point, in this
case, coincides with an exergy efficiency of 29.1%. Implementing the optimal operating
configuration obtained from the optimization in the boiler yielded an exergy efficiency of
28.6% (0.8% higher than the regular operation).

Figure 7 shows the fuel consumption and the exergy efficiency for 18 days of imple-
menting the optimized parameters.
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Overall, the exergy efficiency averaged 28.6% while varying between 28% and 29.1%
during the implementation. In this period, the efficiency varied little, showing good control
of the boiler operation. The differences with the model are explained since certain properties
and characteristics of bagasse, such as chemical composition and moisture, vary with the
sugarcane processed in the plant. Other considerations are also used in the mathematical
model, which affects its accuracy. These are the main limitation of this study. Future studies
are projected to improve these limitations by developing a model considering heat transfer,
pressure drops, bagasse combustion, and other processes that will improve the accuracy of
the model.

Furthermore, the measured characteristics of bagasse at the plant input need to be
integrated into the model to improve the prediction accuracy. Overall, bagasse demand
during the test reduced from an average of 1909 t/d to 1887 t/d, with monthly savings
of 7471 t. Excess bagasse can be commercialized to paper production plants at 10.6 USD,
equivalent to 50,000 COP/t considering an exchange rate of 4700 COP/USD. Bagasse
savings account for 7225 USD per year.

4. Conclusions

Based on the results obtained for the boiler, the model can be used to forecast and
control the fuel demand with an error lower than 6%. In total, the combustion chamber
accounts for 65% of the exergy destruction in the boiler, mainly as a result of fuel com-
bustion. Thus, closely monitoring the combustion process is essential in maintaining and
improving boiler efficiency. Furthermore, the steam production system accounts for 18% of
the exergy destruction, mainly due to the heat and momentum transfer. The multiobjective
optimization upgrades the boiler efficiency by 0.8%, which increases plant energy produc-
tion. Consequently, the bagasse sales for paper and cardboard production can be increased.
Thus, this approach improves the economic profit of the plant.

Moreover, these results encourage the expansion of biomass-based electricity systems
and the improvement of the energy efficiency of biomass-based power plants under ex-
ploitation. Furthermore, this approach can be expanded to other sectors relying on biomass
based electricity such as the oil palm industry. Biomass based electricity systems contribute
to the stability of electric grids, preventing grid stability and security issues associated with
exploiting other renewable energy sources.
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Nomenclature

cp Specific heat
GHG Greenhouse gases
h Specific enthalpy
KE Kinetic exergy
LHV Lower heating value
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m Mass flow
P Pressure
PE Potential exergy
Q Heat flow
R Gas constant
S Entropy
t Time
T Temperature
TL Temperature of the heat sink
TH Temperature of the heat source
x Specific exergy
X Exergy flow
W Power
V Volume
Greek letters:
ϕ Fuel factor
η Exergy efficiency
Subscripts:
a Air
boiler Boiler
CV Control volume
D Destroyed
f Fuel
g Gas
gen Generation
loss Loss
s Steam
SH Superheater
0– Ambient/Reference value
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