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Abstract: Driven by a variety of factors, including the advent of digitalization, increasing population
and urbanization, and rapid technological advancements, electronic waste (e-waste) has emerged as
the fastest growing waste stream globally. Effective management of e-waste is inherently aligned
with environmental, social, and governance (ESG) frameworks and is typically examined within
this context. Accurate quantification of the current and future accumulation of e-waste is a key step
towards ensuring its proper management. Numerous methodologies have been developed to predict
e-waste generation, with the grey modeling approach receiving considerable attention due to its
ability to yield meaningful results using relatively small datasets. This study aims to introduce a novel
forecasting technique for predicting e-waste, particularly when limited historical data are available.
The proposed approach, the non-linear grey Bernoulli model with fractional order accumulation
NBGMFO(1,1) enhanced by Particle Swarm Optimization, demonstrates superior accuracy compared
to alternative forecasting models. Additionally, the Fourier residual modification method is applied
to enhance the precision of the forecast. To provide a practical illustration, a case study utilizing
waste mobile phone data from Turkey is presented.

Keywords: electronic waste; fractional order; improved grey modeling; particle swarm optimization;
environmental, social, and governance (ESG) framework

1. Introduction

Electronic waste, also known as e-waste, is a rapidly growing environmental problem,
as the amount of discarded electronic devices continues to increase at a rapid pace. In
2019, the world generated 53.6 million metric tons of e-waste, and this amount is projected
to increase to 74.7 million metric tons by 2030 [1]. E-waste contains valuable materials
such as metals and rare earth elements, but also hazardous substances (e.g., lead, mercury,
nickel, and cadmium) that pose significant health and environmental risks if not managed
properly [2].

Earlier studies also provide evidence regarding the negative social effects, such as
domestic fires, child labor, and unsafe work conditions during the storage and recycling of
e-waste. Soil quality is also one of the primary concerns related to electronic waste. The
toxic materials can leach into the soil when electronic waste is disposed of inappropriately,
potentially contaminating agricultural and livestock products. Furthermore, toxic metals
can impair soil fertility and reduce crop productivity. E-waste can also have indirect
impacts on food safety. Many electronic devices contain chemicals such as phthalate, esters,
benzene, dioxins, polyaromatic hydrocarbons, and polyvinyl chloride that can pose health
risks when they enter the environment [3]. These chemicals can bioaccumulate in the food
chain, potentially leading to health problems for both animals and humans [4].

Moreover, electronic waste disposal contributes to greenhouse gas emissions, which
can lead to changes in climate patterns with significant potential impacts on food produc-
tion. Climate change can result in food stress in some regions by affecting crop diversity
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and availability. Additionally, the cost of dealing with electronic waste is significant, with
estimates suggesting that it costs billions of dollars each year to manage electronic waste
properly. These costs are often passed on to consumers in the form of higher prices for
electronic devices. Hence, the proper management of electronic waste is critical to mitigate
these risks and ensure a sustainable future for all.

While this staggering accumulation of waste makes the issue more pressing from an
environmental and societal perspective [5], the accelerated growth of e-waste brings with
it an opportunity allowing economies of scale to be in effect for the financially viable raw
materials recovery. The precious metal content makes these end-of-life (EOL) products
viable candidates for material recovery which would concurrently lead to e-waste reduction.
E-waste contains approximately 60 different kinds of metal, including copper, gold, silver,
palladium, and platinum. The value of raw materials in the global e-waste generated in
2019 was equal to approximately 57 billion USD, with iron, copper, and gold being the three
metals that contributed most to this value [1]. Recovery of these metals from e-waste could
reduce the total global demand for new metal production to some extent [6–8], making
EOL processing of e-waste an integral part of environmental, social, and governance
(ESG) frameworks.

The economic efficiency of EOL processing activities heavily relies on accurate pre-
dictions of e-waste, its homogeneity, and location, highlighting the importance of e-waste
disclosure. Currently, of the 53.6 million tons of e-waste generated, only 17.4% is docu-
mented as processed [1,9] whereas the remaining EOL products join the accumulating
stock, resale, and landfill inventories. The increasing amount of stringent environmental
regulations while pawing the path for greener solutions also require that the manufacturers
consider the impact of their products on the environment as early as the product design
stage to consumption, reuse, remanufacturing, recycling, and proper waste disposal. The
current practice, especially in developing regions, however, is that e-waste joins informal
economies where waste collectors and scrap pickers dismantle EOL products for their raw
materials, components, and subassemblies. This makes location, quantity, quality, and
content tracing very difficult, hindering the ESG management practices and reducing the
e-waste value proposition for manufacturers.

Motivated by these factors, this study elucidates upon the importance of forecasting
e-waste for the betterment of ESG management practices. Such forecasting can help
governments, organizations, and businesses develop effective strategies and policies to
manage e-waste in a sustainable and responsible manner. By linking the forecasting of
e-waste to ESG management practices, this study suggests that accurate predictions about
e-waste generation can inform and improve sustainability efforts and corporate strategies.
This implies that organizations that proactively address e-waste issues can enhance their
ESG performance and contribute positively to environmental and social goals.

The rest of this article is organized as follows. Section 2 details the relationship between
e-waste collection and ESG management. The literature review, providing information
regarding the related work, is in Section 3. In this section, the focus is on previously
proposed e-waste prediction techniques, along with the grey models used in this study.
Section 3 also provides a detailed explanation of our research contribution, which focuses on
addressing the existing research gap in the field of electronic waste prediction. Specifically,
we propose a novel grey forecasting model to accurately forecast electronic waste, and this
model is elaborated upon in Section 3. Section 4 outlines the research methodology and
provides information on the applied model. A case study utilizing waste mobile phone
data from Turkey is presented in Section 5. Conclusions and directions for future research
are provided in the final section, Section 6.

2. E-Waste Collection and Environmental, Social, and Governance (ESG)

In their study, Murthy and Ramakrishna [9] stated that out of the total e-waste gener-
ated in 2019, only a small proportion of 17.4% (9.3 Mt) was gathered and recorded, while
the remaining 82.6% (44.3 Mt) was uncertain and had varying effects on the environment,
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such as soil and water contamination and human health (e.g., skin irritations, neurological
disorders, memory disorders, and cognitive debilities) in different parts of the world [3,10].
E-waste is a valuable resource that contains a range of natural and processed materials,
including precious and platinum group metals, base metals, plastics, and other non-metals.
The total value of these metals is estimated to be USD 57 billion, which is equivalent to
the GDP of many countries [1]. However, instead of being processed at formal facilities
to recover these valuable materials as secondary raw materials and extend their life, they
were often disposed of openly or incinerated [9,11].

Environmental, social, and governance (ESG) management is a holistic approach
that considers the sustainability and ethical impact of an organization’s operations. The
topic has gained increasing attention from investors, regulators, and other stakeholders
in recent years, reflecting a growing awareness of the interdependence between business
performance and sustainable development [12]. ESG also provides investors with a com-
prehensive understanding of a company’s long-term financial prospects and sustainability.
The relationship between electronic waste recycling and ESG management is expected to
become even stronger as the pressure to address the environmental and social impacts of
organizational operations increases.

E-waste often contains toxic materials and persistent organic pollutants (e.g., bromi-
nated flame retardants), which can contaminate soil, water, and air when their disposal is
not managed correctly [13]. This pollution can have severe consequences for ecosystems,
including the loss of biodiversity, depletion of natural resources, and the disruption of food
chains. Moreover, the extraction of valuable materials, such as gold, silver, and copper,
from e-waste often involves informal recycling processes that release toxic chemicals into
the environment [14].

The social implications of e-waste are equally concerning and highlight the impor-
tance of integrating social factors into ESG management. In many developing countries,
informal e-waste recycling is a prevalent practice, involving manual dismantling and the
extraction of valuable materials from discarded electronic devices. This informal recycling
often takes place in unsafe working conditions, exposing workers, including children, to
hazardous substances and increasing their risk of experiencing adverse health effects, such
as respiratory illnesses, skin diseases, and neurological disorders [9,15,16].

Governance plays a significant role in addressing these challenges that e-waste intro-
duces. Implementing and enforcing regulations that promote responsible e-waste man-
agement, such as extended producer responsibility (EPR) policies to achieve a reduction
in e-waste amounts, reduces the e-waste disposed of, reduces hazardous constituents in
the e-waste, decreases the use of virgin materials and metals, mitigates environmental
pollution, and enhances the design for the environment [16]. Implementing robust gover-
nance policies to ensure that organizational operations are compliant with national and
international regulations is also proving effective in addressing the issue. To ensure the
community buy-in, engaging with stakeholders that include governments, NGOs, and
local communities, to promote responsible e-waste management practices and increase
awareness, would potentially be impactful in sustaining these efforts. International cooper-
ation and global partnerships are vital components of combating the illegal transboundary
movement of e-waste, which often results in the transfer of e-waste in countries with
ineffective environmental and health regulations [17,18].

As the awareness of environmental compliance grows among purchasing groups, there
is an increasing number of organizations that use green supply chain management [19]
and other ESG practices as a leverage to remain competitive. The literature indicates that
regardless of the size of the organization, suppliers associate green innovation with positive
returns. However, ESG with a focus on e-waste offers different challenges due to its unique
characteristics. First and foremost, e-waste predictions are required to handle a great deal of
uncertainty while dealing with scarce datasets. Furthermore, the ESG models that focus on
e-waste should consider governmental regulations while tackling organizational responses
to the changing legislations.
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Focusing on supply chain alignment, Kim et al. [20] stated that sustainable supply
chains require transparency, information sharing, and commitment from all supply chain
entities, including upper-tier suppliers, consumers, and the reverse supply chain. Further,
contributing to ESG research that focuses on e-waste, Cotta [21] emphasized the problems
of access to resources and allocation of responsibilities, risks, and burdens in the global
trade of e-waste. Given that ESG committees usually involve C-level decision makers,
Abd-Mutalib et al. [22] looked at the issue from the lens of corporate disclosures, and
investigated the extent and quality of e-waste disclosure and its variability based on the
businesses and boards’ characteristics. The authors indicated that the size of the corporate
boards was positively correlated with the e-waste management and disclosure.

E-waste collection has been investigated by researchers under the general concept of
closed loop supply chain and reverse logistics. Majority of these studies have addressed the
issue from the operational point of view, namely, the reverse logistics network design using
multi-criteria decision making and linear programming approaches [23–29]. However,
these studies mainly focused on the economic aspect of the reverse logistics operations [30].
Closed loop supply chain and reverse logistics operations contribute to the sustainable sup-
ply chain management framework and environmental and social aspects of sustainability
need to be included [31].

Due to the exclusive nature of e-waste, the triple bottom line approach, namely,
economic, environmental, and social aspects of sustainability, can be integrated into the
reverse logistics of e-waste. To address this issue, Bal and Satoglu [32] and Safdar et al. [30]
applied goal programming and multi-objective programming methods to include the triple
bottom line approach of sustainability for the reverse logistics network design of e-waste.
Duman et al. [33] stated that accurate e-waste forecasts were essential in designing reverse
logistics infrastructures that would ensure the proper collection, recycling, and disposal
of e-waste.

In 2015, the United Nations and all member states adopted the 2030 Agenda for
Sustainable Development and identified 17 Sustainable Development Goals (SDGs) [34].
The improper and unsafe treatment of e-waste and disposal through incineration or in
landfill delivers significant challenges to the environment and human health, and hinders
these goals. E-waste management is organically aligned with many SDGs, specifically, with
SDG8 on decent work and economic growth, SDG3 on good health and well-being, SDG6
on clean waste and sanitation, and SDG14 on life below water. SDG 12 further discusses
the importance of e-waste [1] and provides up-to-date data hazardous waste generated by
type, including e-waste.

ESG has been heavily scrutinized in the private sector, while, compatible with the
increasing consumer demand, more and more local governments are also seeking ways to
qualify for ESG labels. Trying to map this trend, Shittu et al. [35] reviewed global e-waste
trends and legislations. Although Europe and America have been predominantly the
biggest generators of e-waste per capita [35], only 9.4% e-waste has been documented as
having been collected and properly recycled in the Americas, compared to Europe’s 42.5%
in 2020 [9,36]. European Union directives allow consumers to return discarded electronics
and related equipment free of charge. Contrary to this governance, the authors indicated
that e-waste management in the USA varied between states due to a lack of federal e-waste
laws and legislations. Since then, initiated by the State of California legislators in 2003,
25 states and the District of Columbia have passed legislations mandating statewide e-waste
recycling [37–39]. E-waste management in these states is generally handled via municipal
waste management services [40]. Among these 25 states, the state of Washington has a
well-established e-waste recycling program with publicly available data to demonstrate its
capabilities [38]. The state releases publicly available reports about the quantity and types
of e-waste through its “e-cycle” program on an annual basis [38]. Several studies have
investigated the Washington State e-cycle program [7,33,38,39,41–44], with it being one of
the only available historical datasets available to researchers. Among these, Schumacher
and Agbemabiese [39] noted that approximately 125 new e-waste recycling-related jobs
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had been created in the state of Washington, further strengthening the social impact of the
ESG and Sustainable Development Goals.

3. Literature Review

The U.S. Environmental Protection Agency (EPA) conducted two studies on Electronics
Waste Management [45,46] in the past decade to address this issue. The first study used
electronic product sales data to predict lifespans and quantities of specific end-of-life
products, while the second study utilized statistical information on electronic product sales
along with the lifespan data from the first approach to estimate the quantities of end-of-life
products. Both approaches employed material flow analyses (MFA) to track the sources,
pathways, and destinations of materials. Similar MFA methods have been used in Japan
and Chile to analyze e-waste from various electronic products [47–51]. Additionally, other
methods such as the Carnegie Mellon method [52] and the Market Supply method [53]
have been proposed and applied in different countries such as the United States and India
to predict e-waste quantities. Various forecasting techniques, including logistic models
and a range of forecasting models such as Bass, Gompertz, and ARIMA, have also been
employed to estimate e-waste generation and accumulation in different regions of the
world. Various forecasting methods have also been employed to estimate the generation
of electronic waste. For instance, Yang and Williams [54] utilized a logistic model-based
forecasting technique specifically for obsolete computers. Petridis et al. [55] employed
multiple forecasting models such as Bass, Gompertz, logistic, trend model, level model,
ARIMA, and exponential smoothing to estimate the accumulation of obsolete computers
in different global regions. Similarly, Albuquerque et al. [56] utilized an autoregressive
integrated moving average (ARIMA) technique to estimate both computer production
quantities and the resulting e-waste in Brazil.

3.1. Grey Forecasting Model

After being introduced by Deng [57], the first-order grey model with one variable,
GM(1,1), has gained widespread application in forecasting due to its capacity to deliver
highly accurate predictions. Over the years, various adaptations of this initial forecasting
model, as well as enhanced grey forecasting models, have been proposed with the aim of
further improving accuracy in the field of forecasting.

As grey forecasting evolved, various models with better forecasting accuracy have
also emerged. Out of these, the grey Verhulst model, GVM(1,1), is the integration of the
Verhulst method into grey modeling. GVM(1,1) has the ability to deal with data series
forming a sigmoid or s-curve. Another grey forecasting model, the nonlinear grey Bernoulli
model, NGBM(1,1), was proposed by Chen [58] as a generalized form of the Verhulst model.
In that study, the NGBM(1,1) was applied to predict the annual unemployment rate in
specific countries. In another study, Chen et al. [59] utilized the NGBM(1,1) to forecast the
foreign exchange rates of Taiwan’s major trading partners. Wang et al. [60] developed an
optimized version of the NGBM(1,1) to estimate the qualified discharge rate of industrial
wastewater in China. Additionally, Pao et al. [61] applied the NGBM(1,1) to forecast carbon
emissions, economic growth, and energy consumption in China.

Developed by Wu et al. [62], grey modeling with fractional order accumulation,
GMFO, is another technique that aims to enhance the forecasting accuracy. Unlike the
first-order accumulation used in GM(1,1), the GMFO model incorporates the fractional
accumulation generating order, allowing it to handle the nonlinearity inherent in real
systems [63]. Wu et al. [64] further applied GMFO to minimize errors arising from the
inverse accumulated generating operator of the grey model. Several studies have employed
grey modeling with fractional order in various domains [65–68].

3.2. Optimized Grey Forecasting Models

The primary objective of the aforementioned improved grey models is to achieve
higher accuracy in forecasting. The literature includes a range of studies focused on op-
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timizing the background value coefficient, which is typically set to 0.5. This coefficient
helps smooth the data, reducing randomness and emphasizing the most recent data point.
To determine the optimal or near-optimal background value coefficient, various heuristic
methods have been integrated into both traditional and improved grey models. Exam-
ples of these methods include Genetic Algorithm [69–74], Ant Colony Algorithm [75],
Ant Lion Optimizer [76], Moth-Flame Optimization [77], and Particle Swarm Optimiza-
tion (PSO) [78–81]. Furthermore, recent studies in the grey modeling domain indicate
that integrating a Fourier approximation method increases the forecast accuracy signifi-
cantly. Jiang et al. [82] proposed an improved grey multivariable Verhulst model integrated
with Fourier series to forecast China’s CO2 emissions. Hu [83] applied a fractional grey
prediction model with Fourier series to forecast tourism demand in Taiwan. Hu [84] also de-
veloped a grey prediction with Fourier series using Genetic Algorithm for tourism demand
forecasting. Jiang et al. [85] analyzed China’s Outward Foreign Direct Investment (OFDI)
using a novel multivariate grey prediction model with Fourier series. Nguyen et al. [86]
employed Fourier series to improve the prediction accuracy of a univariate nonlinear grey
Bernoulli model. Kiran et al. [87] proposed an improved multivariate discrete grey model
combining Fourier Transform and an exponential smoothing technique that was used to
forecast the in-use stock of mobile phones, televisions, and personal computers considering
the Gross Domestic Product and rural and urban populations.

With this motivation, this paper proposes an improved nonlinear grey Bernoulli model
with fractional order accumulation, which is further improved using Particle Swarm Opti-
mization (PSO) in conjunction with the Fourier residual modification method. The aim of
this approach is to enhance the accuracy of the forecasting process. To our knowledge, this
study is the only research integrating fractional order accumulation and Fourier residual
modification to NBGM(1,1) with PSO to estimate e-waste. An important contribution of this
study involves the utilization of PSO to optimize all variables, for instance, the optimiza-
tion of both the background value coefficient and the fractional order in the same model.
Specifically, both the background value coefficient and the fractional order are optimized
within the same model. This is noteworthy since the background value coefficient plays
a crucial role in enhancing prediction accuracy, while the fractional order eliminates the
constraint of representing the model’s order solely with integer values. These combined
improvements enhance the overall robustness of the model.

4. Methodology

As mentioned previously, accurate estimation of generated e-waste is crucial when
planning and designing reverse logistics infrastructures and resource allocation. Early work
embodies material flow analysis, life cycle analysis, and various forecasting techniques.
The accuracy of these methods, however, heavily relies on the availability of large amounts
of data. Given that the data collected in the e-cycle program is relatively new and small in
scale, grey modeling-based forecasting methods provide more accurate results [33,41,88].

In their early work, Duman et al. [41] proposed a non-linear grey Bernoulli model,
NBGM(1,1), improved by Particle Swarm Optimization (PSO). The efficiency and robust-
ness of the proposed algorithm are depicted via a comparative analysis that included a
variety of forecasting models. This novel method applied to forecast-generated e-waste in
Washington State. Recent studies in the grey modeling domain indicate that integrating
fractional order accumulation increases the forecast accuracy significantly.

In the following section, the multivariate grey Bernoulli model with fractional order
accumulation (NBGMFO(1,1)) improved by Particle Swarm Optimization (PSO) integrated
with Fourier series is detailed. The schematic representation of the research flow is provided
in Figure 1.
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The nomenclature used in this study is given in Nomenclature, and the details relating
to the formulas utilized in each method are provided in the following sections.

4.1. NBGMFO(1,1)–PSO Integrated with Fourier Series

The GM(1,1) can only be used in positive data sequences and requires at least four
observations [89]. An accumulation generator is applied to the data sequence and the
differential equation is solved. An inverse accumulating generator is then applied to obtain
the predicted values of the data sequence [90]. Deng [57] constructed the GM(1,1) as follows.
Other developed models have essentially been built on the original GM(1,1) method.

Let us denote X(0) as the original data sequence:

X(0) = x(0)(1), x(0)(2), . . . , x(0)(n) (1)

The time sequence is subjected to the accumulating generation operator:

X(1) = x(1)(1), x(1)(2), .., x(1)(n), (2)

where
x(k)(1) = ∑n

i=1 x(i). (3)
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The background sequence values of X(1) is defined as Z(1):

Z(1)= z(1)(1), z(2)(1), .., z(n)(1), (4)

where

z(k)(1) = px(k)(1) + (1− p)x(1)(k− 1) k = 2, 3, .., n and p ∈ [0, 1]. (5)

The background value coefficient p is commonly utilized as 0.5. However, several
studies indicate that optimizing the background value coefficient improves the forecasting
accuracy. Hence, various heuristic methods have been integrated into the traditional and
improved grey models to obtain the optimal/near-optimal background value coefficient, for
instance, Genetic Algorithm [69–74], Ant Colony Algorithm [75], Ant Lion Optimizer [76],
Moth-Flame Optimization [77], and Particle Swarm Optimization (PSO) [78–81].

The basic form of GM(1,1) is:

x(0)(k) + az(1)(k) = b. (6)

Parameters a and b are obtained via the least squares method.

[a, b]T =
(

BT B
)−1

BTY, (7)

where B and Y matrices are constructed as:

Y =
[

x(0)(2), x(0)(3), . . . , x(0)(n)
]T

, (8)

And

B =


−z(1)(2) 1
−z(1)(3) 1

. .

. .
−z(1)(n) 1

. (9)

The whitening equation is given as:

dx(1)(t)
dt

+ ax(1)(t) = b, (10)

so that the predicted cumulative x̂1(k) can be obtained as follows:

x̂(1)(k + 1) =
[

x(1)(0) − b
a

]
e−ak + b/a. (11)

Here, x(1)(1) = x(0)(1) and the predicted values of the original sequence are:

x̂(0)(k + 1)= x̂(1)(k + 1)− x̂(1)(k). (12)

4.1.1. Grey Model with Fractional Order

Grey modeling with fractional order accumulation was proposed by Wu et al. [62] to
improve prediction accuracy. Unlike GM(1,1), which uses first order accumulation, GMFO
applies a fractional order accumulation generating approach that can handle nonlinear
characteristics of real systems, as explained by Wu et al. [63]. Additionally, the authors
applied GMFO to reduce errors in the inverse accumulated generating operator of grey
models. Numerous studies have employed GMFO in various fields [65–67].
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Let r = p/q and X(0) = x(0)(1), x(0)(2), . . . , x(0)(n) is the original data sequence as in
Equation (1). Then, X(r) = x(r)(1), x(r)(2), . . . , x(r)(n) is called the r.th order cumulative
generation sequence. Thus, x(r)(k) can be expressed as follows:

x(r)(k) =
k

∑
i=1

(k− i− 1)(k− i + 2) . . . (k− i + r− 1)
(r− 1)!

x(0)(i) r ∈ R , k = 1, 2, . . . , n (13)

In order to express the r.th order cumulative, the Gamma function Γ is utilized.
Therefore,

x(r)(k) =
k

∑
i=1

Γ(k− i− 1)
Γ(r)Γ(k− i− 1)

x(0)(i) r ∈ R , k = 1, 2, . . . , n (14)

The grey reducing generation X(−r) = x(−r)(1), x(−r)(2), . . . , x(−r)(n) corresponds
to the grey accumulating generation, implying that these two operators meet the
reciprocity condition.

x(−r)(k) =
k−1

∑
i=0

Γ(r + 1)
Γ(r + 1)Γ(r− i− 1)

x(0)(k− i) r ∈ R , k = 1, 2, . . . , n (15)

As in the original GM(1,1), the background sequence values of X(r) are defined as Z(r),
where:

Z(r)= z(r)(1), z(r)(2), . . . , z(n)(r), (16)

and
z(k)(r) = px(k)(r) + (1− p)x(r)(k− 1)k = 2, 3, . . . , n and p ∈ [0, 1]. (17)

Similarly, the basic form of GMFO is:

x(r−1)(k) + az(r)(k) = b. (18)

Parameters a and b are obtained via the least squares method.

[a, b]T =
(

BT B
)−1

BTY (19)

B and Y matrices are constructed as:

Y =
[

x(r−1)(2), x(r−1)(3), . . . , x(r−1)(n)
]T

, (20)

and

B =


−z(r)(2) 1
−z(r)(3) 1

. .

. .
−z(r)(n) 1

. (21)

The predicted r.th cumulative data sequence can be obtained using Equation (22):

x̂(r)(k) =
[

x(0)(1)− b
a

]
e−a(k−1) + b/a (22)

The restored value of the original data sequence is computed using Equation (23):

x̂(0)(k) = x(r)(−r)(k) =
k−1

∑
i=0

(−1)i Γ(r + 1)
Γ(i + 1)Γ(r− i− 1)

x̂(r)(k− i) (23)



Sustainability 2023, 15, 11281 10 of 20

4.1.2. Nonlinear Grey Bernoulli Model

Chen [58] proposed the nonlinear grey Bernoulli model, NGBM(1,1), as a generalized
form of the Verhulst model. The model was applied by the author to forecast the annual
unemployment rate of selected countries. Similarly, Chen et al. [91] used an improved
NGBM(1,1) to predict foreign exchange rates of Taiwan’s major trading partners. Wang and
Li [92] developed an optimized version of NGBM(1,1) to forecast the qualified discharge
rate of industrial wastewater in China. Pao et al. [61] employed NGBM(1,1) to predict
carbon emissions, energy consumption, and economic growth in China.

The nonlinear grey Bernoulli model NGBM(1,1) can be formed as:

x(0)(k) + az(1)(k) = b(z(1)(k))
m

(24)

where

z(k)(1) = px(k)(1) + (1− p)x(1)(k− 1) k = 2, 3, . . . , n and p ∈ [0, 1]. (25)

Similarly, to the original:

GM [a, b]T =
(

BT B
)−1

BTY (26)

where B and Y matrices are constructed as:

Y =
[

x(2)(0), x(3)(0), . . . , x(n)(0)
]T

(27)

B =


−z(1)(2) z(1)(2)

m

−z(1)(3) z(1)(3)
m

. .

. .
−z(1)(n) z(1)(n)

m

 (28)

When m = 0, NGBM(1,1) becomes traditional GM(1,1) and when m = 2, it is the grey
Verhulst model GVM(1,1). Thus, the predicted cumulative x̂1(k) is obtained as:

x̂(1)(k + 1) =
[
(x(0)(1)− b

a
)e−a(1−m)k + b/a

]1/(1−m)

(29)

The restored values of X(0)(k) are computed by:

x̂(0)(k + 1)= x̂(1)(k + 1)− x̂(1)(k) (30)

4.1.3. Particle Swarm Optimization

Particle Swarm Optimization (PSO), first proposed by Eberhart and Kennedy [93],
is a population-based heuristic computation technique that simulates the social behavior
metaphor of the birds. In the algorithm, the population is considered as the swarm and the
individuals are called the “particles”. PSO performs iterative searches to obtain the optimal
or near-optimal solution, where each particle changes its searching direction according to
its own best previous experience and the best experience of the entire swarm.

The five basic steps of the PSO are as follows:
Step 1. Initialize randomly the position (pBest) and speed for each particle.
Step 2. Set pBest as the current position and gBest as the optimal particle position in

initial swarm.
Step 3. Compute the RMSE of the model when the value of the variable is pBest.



Sustainability 2023, 15, 11281 11 of 20

Step 4. Compute the velocity and the position for each particle using:

V = w ∗ V + c1 ∗ rand ∗ (pBest− Present) + c2 ∗ rand ∗ (gBest− Present), (31)

and
Present = Present + V, (32)

where V is the velocity, rand is the random number generator in the range [0, 1], w is the
inertia factor, and c1 and c2 are the learning factors. If the fitness of this particle is superior
to pBest, then pBest becomes the new position. If the fitness of this particle is superior to
gBest, then gBest is accepted as the new position.

Step 5. Go back to Step 3 until one of the two termination criteria is met: i. obtaining
sufficiently good fitness value, or ii. reaching the maximum number of iterations. In this
study, PSO is utilized to find the optimal or near optimal parameters of the grey models
while minimizing the calculated Root Mean Square Error (RMSE):

RMSE =

√
∑n

k=1

(
x(0)(k)− x̂(0)(k)

)2/n . (33)

4.1.4. Residual Error Modification by Fourier Series

A Fourier approximation method increases the forecast accuracy significantly.
Jiang et al. [82] proposed an improved grey multivariable Verhulst model integrated with
Fourier series to forecast China’s CO2 emissions. Hu [83] applied a fractional grey pre-
diction model with Fourier series to forecast tourism demand in Taiwan. Hu [84] also
developed a grey prediction with Fourier series using Genetic Algorithm for tourism de-
mand forecasting. Jiang et al. [85] analyzed China’s Outward Foreign Direct Investment
(OFDI) using a novel multivariate grey prediction model with Fourier series. Nguyen
et al. [86] employed Fourier series to improve the prediction accuracy of a univariate non-
linear grey Bernoulli model. Kiran et al. [87] proposed an improved multivariate discrete
grey model combining Fourier Transform and an exponential smoothing technique that
was used to forecast the in-use stock of mobile phones, televisions, and personal computers
considering the Gross Domestic Product and rural and urban populations.

To build a residual modification model, Fourier series can be used to alter the residuals
generated by the NBGMC(1,1)–PSO model, further improving prediction performance. Let
ε = (ε1, ε2, . . . . . . , εn) denote the sequence of residual values, where:

εk = x(0)k − x̂(0)k , k = 2, . . . , n (34)

Since any periodic function can be represented by an infinite series composed of sine
and cosine functions, εk can be expressed through a Fourier series:

x(0)k =
1
2

a0 +
F

∑
i=1

[
aicos

(
2πi

n− 1
k
)
+ bisin

(
2πi

n− 1
k
)]

, k = 2, . . . , n (35)

where F = ((n − 1)/2) − 1 is called the minimum deployment frequency of the Fourier
series and takes only integer values. Therefore, the residual series can be rewritten as:

ε(0) = PC (36)

where

P =



1
2 cos

(
2π1
n−1 ∗ 2

)
sin
(

2π1
n−1 ∗ 2

)
. . . cos

(
2πF
n−1 ∗ 2

)
sin
(

2πF
n−1 ∗ 2

)
1
2 cos

(
2π1
n−1 ∗ 3

)
sin
(

2π1
n−1 ∗ 3

)
. . . cos

(
2πF
n−1 ∗ 3

)
sin
(

2πF
n−1 ∗ 3

)
...

...
... . . .

...
...

1
2 cos

(
2π1
n−1 ∗ n

)
sin
(

2π1
n−1 ∗ n

)
. . . cos

(
2πF
n−1 ∗ n

)
sin
(

2πF
n−1 ∗ n

)

 (37)
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and
C = [a1, b1, a2, b2, . . . , aF, bF]

T (38)

The parameters a1, b1, a2, b2, . . . , aF, bF are obtained using the ordinary least squares
method, resulting in the following equation:

C =
(

PT P
)−1

PT
[
ε(0)
]T

(39)

Once the parameters are calculated, the predicted residuals ε̂(0)k are easily obtained via
Equation (40).

ε̂
(0)
k =

1
2

a0 +
F

∑
i=1

[
âicos

(
2πi

n− 1
k
)
+ b̂isin

(
2πi

n− 1
k
)]

, k = 2, . . . , n (40)

The new predicted values can then be calculated via Equation (30).

∼
x
(0)
k = x̂(0)k + ε̂

(0)
k , k = 2, . . . , n (41)

The proposed model highlights the nonlinear grey Bernoulli model and its enhance-
ment with two techniques: Particle Swarm Optimization and Fourier approximation. The
grey Bernoulli model is a mathematical tool for prediction and forecasting, particularly
suited for nonlinear systems. To improve its accuracy, Particle Swarm Optimization op-
timizes model parameters, while Fourier approximation represents complex functions
using simpler trigonometric functions. The combined model offers improved accuracy and
reliability for predicting outcomes, especially in nonlinear scenarios, providing a robust
forecasting tool across different domains. The proposed model employed in this study
provides valuable insights into the e-waste prediction process. However, to gain a more
comprehensive understanding, it is recommended to complement these results with a
detailed case study. Furthermore, a case study could provide practical implications and
recommendations for improving e-waste prediction and management strategies. In the
following section, a case study utilizing waste mobile phone data is presented to illustrate
the applicability of the proposed model.

5. Case Study in WMP Predictions

In their study, Ozsut Bogar and Gungor [94] employed the Distribution Delay (DD)
method to calculate the waste mobile phone (WMP) quantity in Turkey between 2001 and
2020. Furthermore, the authors applied seven different time series methods (namely, simple
exponential smoothing, Holt’s, logistics, Gompertz, logarithmic, Bass, and ARIMA models)
and calculated the MAPE and RMSE values for each method. For the given data, also
provided in Table 1, Holt’s method was determined to be the best method to forecast the
WMP quantities for the years from 2021 to 2035.

Table 1. Waste mobile phone (WMP) data [94].

Year WMP Quantity

2001 1,515,539

2002 1,661,498

2003 1,851,941

2004 2,127,025

2005 2,580,265

2006 3,140,099

2007 4,026,068
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Table 1. Cont.

Year WMP Quantity

2008 5,146,729

2009 6,097,611

2010 6,602,838

2011 7,098,585

2012 7,688,849

2013 7,919,715

2014 8,180,400

2015 8,419,223

2016 8,761,059

2017 9,024,298

2018 9,192,462

2019 9,136,731

2020 9,286,120

This study builds on Ozsut Bogar and Gungor’s [94] study and proposes an optimized
univariate nonlinear grey Bernoulli model with fractional order accumulation. Nonlinear
grey Bernoulli models are essentially the integration of the Bernoulli distribution to tradi-
tional grey models and are generally applied to handle series with saturated regions such
as the s-curve or sigmoid [60,61,95,96]. As can be observed from Table 1 and Figure 2, the
actual e-waste data sequence forms a saturated distribution. Hence, the nonlinear grey
Bernoulli model with fractional order accumulation is applied to obtain higher accuracy in
the e-waste prediction model.
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Figure 2. Waste mobile phone (WMP) data [94].

Similarly, to Ozsut Bogar and Gungor’s [94] study, the data from 2001 to 2020 are
employed for modeling using Equation (1) to Equation (32). The corresponding RMSEs
(via Equation (33)) are then computed. The PSO configuration and the range for associated
variables, i.e., background value coefficient p, exponential coefficient m, and fractional
order value r, are provided in Table 2.
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Table 2. PSO configuration and computed parameter values.

Population 30 Learning factor 1 1

Maximum iteration 300 Learning factor 2 1

Inertia value 0.8 Range for p (0 < p < 1)

Range for m (0 < m < 1) Range for r (0 < r < 1)

Results

Method RMSE p m r

NBGMFO(1,1) 537,926.78 0.9615 0.6035 0.1047

To increase the prediction accuracy and obtain a lower RMSE value, Fourier Series
were applied via utilizing Equations (34)–(41) and the obtained results, along with actual
and NBGMFO(1,1)–PSO estimates, are presented in Table 3.

Table 3. Estimated values of generated e-waste via NBGMFO(1,1)–PSO and NBGMC(1,1)–PSO with
Fourier Series.

Year NBGMFO(1,1)–PSO Estimates NBGMFO(1,1)–PSO with
Fourier Series Estimates

2001 1,515,539 1,515,539

2002 1,992,497 1,644,780

2003 2,551,513 1,868,659

2004 3,140,572 2,110,307

2005 3,738,236 2,596,983

2006 4,330,556 3,123,381

2007 4,907,595 4,042,786

2008 5,462,248 5,130,011

2009 5,989,585 6,114,329

2010 6,486,393 6,586,120

2011 6,950,802 7,115,303

2012 7,381,991 7,672,131

2013 7,779,947 7,936,433

2014 8,145,260 8,163,682

2015 8,478,967 8,435,941

2016 8,782,418 8,744,341

2017 9,057,175 9,041,016

2018 9,304,931 9,175,744

2019 9,527,444 9,153,449

2020 9,726,488 9,269,402

As can be observed from Table 3, there is a significant increase in the estimation
accuracy after employing the Fourier residual modification method. The obtained RMSE
is 16,717.744.

In their study, Ozsut Bogar and Gungor [94] utilized various forecasting methods and
compared the obtained RMSE values. Our proposed model outperforms its counterparts
discussed in Ozsut Bogar and Gungor’s [94] study. They provided forecasted WMP quan-
tities for 2001–2035 using Holt’s method. The forecasted WMP quantities for 2001–2035
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obtained via our proposed method are presented in Figure 3. As anticipated, the generated
WMP quantity will approach 11 million in 2035.
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6. Conclusions

Electronic waste is an emerging environmental issue, with the quantity of discarded
electronics escalating rapidly year after year. This has raised concerns about the impact of
electronic waste on the environment, public health, and the economy. Although there is no
direct link between electronic waste and food, the environmental effects of electronic waste
can have indirect impacts on food production, safety, and supply chains. This makes proper
management of electronic waste critical to mitigate these risks and ensure a sustainable
future for all. E-waste management also aligns with the Sustainable Development Goals
adopted by the United Nations and efficient management of e-waste is crucial to achieve
environmental, social, and governance goals.

Government agencies and municipalities are usually responsible for waste manage-
ment in a particular region. They are tasked with planning and implementing strategies to
effectively manage e-waste generated by households, businesses, and industries within
their jurisdiction. They can utilize the proposed forecasting methods to plan their e-waste
collection, recycling, and disposing to build and sustain green cities. Accurate e-waste
predictions are crucial for formulating strategies aimed at the prevention and reduction
of e-waste.

Several forecasting techniques have been proposed to predict the generated e-waste
accurately. Among these techniques, grey models are known to provide reliable predictions
in the presence of limited data. With this motivation, this paper utilizes the nonlinear
grey Bernoulli model with fractional order accumulation improved by Particle Swarm
Optimization (PSO) integrated with the Fourier residual modification method to predict
waste mobile phone in Turkey. To the best of our knowledge, this study is the only research
that utilizes this particular methodology to estimate waste mobile phone in Turkey. The
findings indicate that the model performs superiorly to the available prediction algorithms
and is especially suitable for scarce datasets, which is a common characteristic of electronic
waste recovery systems. One of the limitations of this study is that the dataset does not
include data for the years 2021 and 2022, which can directly affect the accuracy in forecasting
for the following years. In the future, this study can be extended by multivariate grey
models to increase the accuracy in forecasting.
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Nomenclature

Xi
(0) Original data series

Xi
(1) Accumulated data series

n Total number of data series
r Fractional order value
bi Model parameters
u Grey control parameter
zi Background value
p Background value coefficient
B Input matrix
Y Output vector
m Exponential coefficient
RMSE Root Mean Square Error
w Inertia weight
V Velocity of a particle
c1, c2 Learning factors
ε Residual values
P Input matrix in Fourier series
C Output vector in Fourier series
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