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Abstract: Worker safety is a key concern in the construction industry. Making construction safer by
reducing safety hazards is critical to sustainably developing the construction industry. Big data, the
Internet of Things, artificial intelligence, and other emerging information technologies are deeply
integrated within the construction industry. The real-time monitoring of important physiological
indicators of the physical state of construction workers is possible with the use of wearable sensing
equipment and can pre-emptively give warning of safety hazards. Data mining and analysis of the
monitoring data enable an assessment of the safety status of construction workers and can thus reduce
potential hazards faced by construction workers on site. This study firstly reviewed the applications
of common wearable devices in various industries, focusing on their use in construction safety. Then,
CiteSpace 6.1 R4 software was used to visually analyze the literature data related to wearable devices
in construction safety. Thirdly, a comprehensive review was conducted on the psychological state and
safety evaluation methods of construction workers. Finally, several challenges and future research
trends of wearable devices in the construction safety field were discussed. This paper has important
theoretical value in advancing the field of construction safety risk management and improving risk
control strategies.
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1. Introduction

Building construction is characterized by sustainability, mobility, complexity, depen-
dence, and coordination, which is the reason for the difficulty of safety management and
the low input–output ratio [1]. Safety in building construction has always been of ma-
jor scientific and technical concern to the research and engineering communities. The
flourishing economy of China is inseparable from the development of the construction
industry. However, accidents often occur during construction, resulting in casualties and
property loss. The most frequent and direct cause of accidents is the unsafe behavior of
construction workers [2]. Construction workers are essential to building construction, and
they are inevitably exposed to danger on the construction site. However, as construction
workers adapt to their dangerous environment, they become less sensitive to the risk of
accidents. The difference between actual work environment accident risk and worker
perceived accident risk leads to unsafe behavior [3]. Researchers have typically focused
on environmental and technical factors in construction accidents because major accidents
cause economic and property loss, injuries, and death, but physiological and psychological
factors that affect construction workers have been largely ignored. Construction workers
endure long working hours and high outdoor temperatures and perform single repetitive
operations that cause physical and psychological fatigue [4]. Foreseeable mistakes hide
other dangers for the safety of construction workers and eventually lead to construction
accidents. It is necessary to dynamically monitor and assess the safety of construction
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workers in a complex construction environment in order to prevent safety violations and
ultimately reduce the risk of accidents or even eliminate them.

The transforming development of digital technologies such as cloud computing, big
data, the Internet of Things, 5G, and artificial intelligence has become an important driving
force for innovation and development in the construction industry [5]. The creation of a
smart construction site that incorporates the Internet of Things, artificial intelligence, and
sensing technology provides a new model for construction safety and risk management.
In order to reveal the application of wearable devices in the construction industry, some
studies have reviewed past developments and proposed new research trends in this field.
For example, Awolusi et al. [6] conducted a systematic review of the application of wear-
able devices in construction safety monitoring and analyzed relevant safety performance
indicators. Ahn et al. [7] reviewed the application of wearable devices in the construction
safety field and summarized the current main problems. However, most of these reviews
have focused on specific subfields or may have relied on qualitative analyses, potentially
overlooking important research.

This study firstly reviewed the applications of wearable devices such as wristbands,
headsets, and smart garments in various industries, focusing on their use in construction
safety. Then, CiteSpace software was used to visually analyze the literature data related
to wearable devices in construction safety from 2015 to 2023. The structure, rules, and
distribution of scientific knowledge were presented using visual analysis. This study
not only analyzed the application and research progress of wearable devices in various
industries but also provided a quantitative summary of the research status of wearable
sensing technology in construction safety. Building upon this, a comprehensive analysis
was conducted on the psychological state and safety evaluation methods. Finally, some
challenges of wearable devices in the construction safety field were discussed, and future
research trends were proposed. This study expands the traditional literature review method
and the use of wearable devices by increasing their application range in construction. The
results of this research are of significant importance in enhancing the existing construction
risk analysis methods and further improving the management of construction risks.

2. Background and Research Questions

With the advancement of new urbanization construction, the construction industry is
thriving. The number of high-rise buildings and super-high-rise buildings is constantly
increasing. To complete the complex and dangerous construction tasks, higher requirements
are placed on the construction safety of construction personnel. At present, the construction
industry still mainly uses human monitoring to monitor the safety status of construction
personnel, and there is still a lack of efficient safety monitoring methods for construction
personnel under special working conditions. Faced with the special task requirements
of high-rise and super-high-rise operations, traditional safety monitoring methods have
obvious limitations. In addition, at the management level, in addition to being responsible
for the efficiency and quality of the construction project, the project leader also needs to
be more responsible for the health level of workers. However, due to various factors and
potential situations, the safety of on-site construction personnel is often overlooked. If the
safety of construction personnel cannot be guaranteed, the quality and efficiency of the
construction project will inevitably be greatly affected. Therefore, our work could provide
an overview of various wearable devices, monitoring technologies, and safety evaluation
methods, aiming to explore an objective, dynamic, and quantitative method for evaluating
the safety status of construction personnel. This work has important theoretical value
for enriching the theory of construction safety risk management, innovating risk analysis
methods, and improving risk control levels.

3. Research Method

Wearable device technology has developed to such a degree that wearable devices are
widely used in various industries because they offer the benefits of real-time measurement,
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convenience, and speed. In construction, wearable devices are used for physiological
monitoring, environmental sensing, proximity detection, and location tracking. The main
purpose of using wearable devices is to ensure construction safety and to promote a
safe working environment, which is supported by monitoring various psychological and
physiological factors of wearers, leading to an improved worker health and increased work
efficiency [8–11]. Common wearable devices are wristbands, head-mounted sensors, and
smart garments. Figure 1 illustrates these three types of wearable device.

Figure 1. Three common types of wearable device. (a) Wristband [12]. (b) Head-mounted sensors [13].
(c) Smart garments [12].

In this study, firstly, the applications of common wearable devices were summarized
in various industries, such as the mining and construction industries. Secondly, CiteSpace
software was used to visually analyze the literature data, and the structure, rules, and dis-
tribution of scientific knowledge were presented by means of visual analysis. The literature
used in the analysis of this paper is from the Scopus database, and a total of 70 pieces of
literature from 2015 to 2023 were retrieved. The Scopus database fully includes all journals
published by mainstream publishers such as Elsevier, Springer, Nature, Science, and Amer-
ican Chemical Society. Compared to other index databases, the Scopus database has a more
comprehensive content and a wider range of disciplines. In addition, the citation indicators
in the Scopus database consider more influencing factors, which are more comprehensive
and objective, and could eliminate the impact of different disciplines and research types
on the evaluation indicators. The visualization analysis was mainly based on keyword
co-occurrence analysis, keyword cluster analysis, and country publication analysis, and
the visualization knowledge map of the field was plotted to describe the research content
and frontier trend of the field. In our study, the top 10 most frequently occurring key-
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words were presented in keyword co-occurrence analysis, such as: construction safety,
wearable technology, occupational risks, construction workers, wearable sensors, and so
on. Finally, a comprehensive review was conducted on the psychological state and safety
evaluation methods of construction workers. This review was performed in accordance
with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines [14] (see supplementary materials).

4. Results and Discussion

Figure 2 shows the data sources of this work. The literature used in the analysis of
this study is from the Scopus database, and a total of 70 pieces of literature were retrieved.
A total of 13 pieces of literature were excluded. Finally, 57 pieces of literature were used
for analysis.

Figure 2. PRISMA flow diagram.

4.1. The Application of Common Wearable Devices in Various Industries
4.1.1. Wristband Devices

Wristband wearable devices are used by researchers to monitor the physiological
activity of construction workers and to assess their physical status. Relevant literature that
we reviewed is shown in Table 1.
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Table 1. Literature on the monitoring of physiological indicators of construction workers by wristband
wearable devices.

References Sensor Type Physiological Indicator(s) Obtained

Hwang and Lee [15] Heart rate (HR) sensor Heart rate

Guo et al. [16] Basis–peak smart watch Heart rate, skin temperature, calories, steps

Jebelli et al. [17,18]
Photoplethysmography (PPG) sensor,

electrodermal activity (EDA) sensor, and infrared
heat sensor

PPG, EDA, skin temperature

Shakerian et al. [19] PPG sensor, EDA sensor, and infrared heat sensor PPG, EDA, skin temperature

Lee et al. [20] E4 wristband biosensor PPG, EDA, skin temperature

Moohialdin et al. [21] HR sensor Heart rate

Chen et al. [22] HR sensor Heart rate

Hwang and Lee [15] first investigated the feasibility of using wristband devices to
monitor various physiological indicators of construction workers and an analysis of the
HR data measured by wristbands to evaluate the physical status of construction workers.
Guo et al. [16] analyzed the physiological factors to infer psychological states; they corre-
lated the psychological state of a worker with their physical state by analyzing the measured
physiological data and concluded that the physiological data can be used to indirectly
measure a worker’s mental state. Jebelli et al. [17,18] analyzed wristband biosensor data
to create a stress recognition application and a physical demand recognition application.
Shakerian et al. [19] created a model to predict safety risks, and Lee et al. [20] developed a
model for evaluating risks perceived by workers. Both studies provided valuable bases for
increasing construction safety.

The preceding studies also found that different types of work, worker age, and the
working environment all had different effects that were indicated by physiological changes
in workers. The current research has examined and assessed physiological demand [21]
and monitored workers [22] in specific environments (such as extremely hot and humid
environments or a tunnel) or engaged in specific types of work. Such research improves the
validity and increases the accuracy of the models developed. Currently, limited research
has been conducted on using wristband devices for the stress assessment of construction
workers. Jebelli et al. [17], in research into the stress assessment of construction workers
using wristband devices, used a supervised learning algorithm to predict worker stress
from data recorded by a wristband device that showed a stress prediction accuracy of
approximately 80%.

Based on the above analysis, it can be concluded that wristband devices are widely
used in safety status monitoring in the construction industry due to their convenience,
affordability, and non-disruptive nature. However, they are mostly used to collect basic
physiological indicators. The investigation of mental stress among construction workers is
still in its initial stage, and there is still room for improvement. Furthermore, it is important
to note that wristband devices have limitations in terms of the number of physiological
indicators that they can monitor, and their accuracy may not be very high. Additionally, not
many evaluation models are developed based on data acquisition from wristband devices.

4.1.2. Head-Mounted Wearable Devices

Head-mounted wearable devices that monitor body activity have been developed
rapidly, and industries and workers are more widely using this technology. The relevant
literature that we reviewed is shown in Table 2.
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Table 2. Literature on the monitoring of physiological indicators of construction workers by head-
mounted wearable devices.

References Sensor Type Monitoring Indicators

Constant et al. [23] PPG sensor Heart rate

Agashe et al. [24] Head-mounted blood-oxygen-monitoring sensor Blood oxygen

Ko et al. [25] Head-mounted wireless electroencephalography
(EEG) sensor EEG

Lin et al. [26] Scan NuAmps Express system EEG sensor EEG

Rohit et al. [27] The MUSE brain sensing headband EEG

Sharma and Maity [28] Safety monitoring smart helmet The concentration of methane and
CO, Temperature

Wang et al. [29] NuAmps EEG test module EEG

Li et al. [30] Inertial measurement unit (IMU) and EEG sensors IMU and EEG

Colombo et al. [31] Acoustic sensors and gas sensors Noise and harmful gases

Zhang et al. [32] aNIRS, electrocardiogram (ECG), and
accelerometry/actigraphy

Brain function, systemic hemodynamics,
ECG, actigraphy

Pulse-sensing smart glasses containing a photoplethysmography (PPG) sensor moni-
toring the heart rate continuously were developed by Constant et al. [23]. Agashe et al. [24]
improved a head-mounted blood-oxygen-monitoring device that operated in real-time
using elastic tension headwear by significantly reducing the reading errors. Ko et al. [25]
designed a head-mounted device to monitor classroom student attention by recording
brainwaves in order to make teaching more effective. Lin et al. [26] developed a driver
attention system that monitored EEG signals, which provided driver feedback when it
detected driver distraction. Rohit et al. [27] developed an effective head-mounted EEG
monitoring device to objectively determine driver fatigue from EEG signals. Sharma and
Maity [28] investigated signal acquisition technology for smart helmets that provided
miners with safety protection by monitoring the concentration and temperature of harmful
gases in their working environment. Wang et al. [29] recorded EEG signals from miners to
monitor their anxiety level, which prevented the miner from operating improperly; thus,
the operation safety can be improved. Li et al. [30] monitored head movement and EEG
signals to indicate drowsiness in workers; if drowsiness was detected, the worker was
alerted through a vibration motor. Colombo et al. [31] designed a head-mounted device to
monitor harmful gases and noise in a work environment that provided visual and audible
warnings when workers were in a dangerous environment. Zhang et al. [32] developed a
head-mounted multimodality neuromonitoring detector that recorded brain function (via
cerebral hemodynamics), systemic hemodynamics, electrocardiography, and actigraphy
simultaneously and continuously for up to 24 h.

Based on the above research, it can be found that, compared to wristband devices,
head-mounted monitoring devices have a wider range of applications. They have been
developed and used in various situations to monitor physiological indicators in research
subjects. Moreover, the analysis shows that head-mounted monitoring devices could collect
more types of data, and that these data have higher accuracy. However, due to the high cost
of head-mounted monitoring devices and the potential to disrupt the work of construction
workers, there are few studies in the construction field. In addition, the data collected
by head-mounted monitoring devices is more complex than those collected by wristband
devices, and they require professional analysis equipment.

4.1.3. Smart Garments

In recent years, with the exploration and development of bendable, ductile, and bio-
compatible organic materials, smart garments have become a topic of intense research. A
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smart garment integrates sensors and garment through materials technology, textile tech-
nology, and electronics technology. It is therefore a conventional garment for keeping the
wearer warm that is capable of information acquisition, analysis, storage, and transmission.
A smart garment must be comfortable to wear, so each sensor must be a flexible device to
ensure integration with the garment and maintaining wearability. However, in the current
state of research, some key sensing devices cannot be made flexible. The development of a
smart garment is more challenging than the development of more common wristband and
head-mounted sensors. There are fewer physiological indicators to monitor, the garment is
relatively expensive, and the market for the devices is small. Research into smart garments
lags behind research into the other two categories of wearable smart devices. Current re-
search into smart garments is primarily concerned with monitoring common physiological
indicators, such as heart rate and body temperature, and there are few smart garments that
monitor stress and mood.

Paradiso et al. [33] used fabric sensing equipment to monitor ECG, respiration, and
activity. The information contained in the signal obtained by the health monitoring sys-
tem based on this can be equivalent to the information obtained by standard sensors.
Song et al. [34] compared fabric electrodes, dry microneedle electrodes, and noncontact
dry electrodes and found that fabric electrodes were ideal physiological sensors. However,
more research is needed into the stability of fabric electrodes and their fitting to the wear-
ers as well as the wire and lead technology for connection with fabric electrodes used in
physiological monitoring. Researchers have suggested that incorporating pH sensors in
the fabric of military combat clothing will ensure the detection and warning of biochemical
agents, toxic and harmful particles, and nerve gases on the battlefield, thus increasing
combat preparedness and the survivability of soldiers. Flexible fabric sensors can also be
tailored into protective garments for firefighters, workers in high-risk work environments,
and workers exposed to toxic environments. The underlying principle of sensor fabrics
is to incorporate active fluorescent dyes into optical fibers to form inductive sensors that
detect temperature and pH and can trigger a real-time alarm [35].

The preceding research shows that most research into smart garments is still at the
stage of laboratory research, although research into smart garments has recently become
more intensive and has produced new biosensors. However, more research is needed into
factors that affect the function and comfort of wearable equipment, such as high external
temperatures and individual sweating, to ensure the effectiveness of smart garments in
practical applications, especially in construction safety monitoring and other applications
of smart garments in special working conditions.

4.2. Visualization Analysis of Wearable Devices in Construction Safety
4.2.1. Keyword Co-Occurrence Analysis

Keyword co-occurrence network analysis involves examining the keywords provided
by authors in the literature. Keywords serve as a refinement of the article’s topic and
represent the direction and core of the research. High-frequency keywords can reveal the
current popular issues and concerns among scholars in the field.

Figure 3 provides an overview of the keyword co-occurrence network, which consists
of 227 nodes derived from the dataset. Each node represents a keyword term specified in
the articles.

Table 3 presents the top 10 most frequently occurring terms with a total of 642 co-
occurrence frequencies, representing 38% of all keyword frequencies in the dataset.

According to the analysis presented in Figure 3 and Table 3, construction safety was
identified as the most frequently used keyword, appearing 54 times, indicating that most
studies are focused on addressing the risks and hazards prevalent in the construction
industry. Wearable technology was the second most frequently used keyword, appearing
37 times, highlighting its centrality to research in this area. Other keywords, such as
occupational risks, hazards, risk assessment, and safety engineering, are related to the
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problems to be addressed and the objectives to be achieved, thereby reflecting the primary
research direction of wearable devices in construction safety.

Figure 3. Keyword co-occurrence network of wearable devices in construction safety.

Table 3. Co-occurrence frequencies of specified keywords in the literature of wearable devices in
construction safety.

Keywords Frequency Keywords Frequency

Construction safety 54 Hazards 17
Wearable technology 37 Human resource manage 14

Occupational risks 28 Accident prevention 14
Construction workers 24 Risk assessment 10

Wearable sensors 20 Safety engineering 9

4.2.2. Keyword Cluster Analysis

Keyword clustering involves extracting words with distinct characteristics as cluster-
ing objects in complex networks within the research field. Subsequently, complex data are
mined to classify and aggregate words. Keyword clustering can reflect the research hotspot
in this field. The map showed overlapping clusters, indicating close relationships between
clusters and concentrated research topics. An inverse relationship exists between the num-
ber of clusters and cluster size. The fewer the clusters, the more closely related keywords
that they contain. The figure illustrates the cluster analysis diagram of the application of
wearable devices in the construction safety field.

Figure 4 presents a cluster view of the knowledge domains related to wearable devices
in construction safety.

In Figure 4, the nine clustering words can be roughly divided into the following four
categories: the first category is the problems to be solved in this field (#5 hazards); the
second category is the cause of the hazards (#1 labor intensity, #6 mental fatigue); the third
category is data collection methods (#0 technology, #3 wearable sensors, #7 surveys); and
the fourth category is the functions of wearable devices (#2 accident prevent, #4 hazard
classification, #8 fall detection). These four cluster labels describe the research content of
wearable devices in construction safety in a more comprehensive way.
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Figure 4. Cluster view of knowledge domains related to wearable devices in construction safety.

4.2.3. Country Publication Analysis

Figure 5 displays the country publication analysis of wearable devices in construc-
tion safety.

Figure 5. The country publication analysis of wearable devices in construction safety.

The size of the concentric circles indicates the number of publications in a country over
the years, the color of the concentric circles represents the year of publication, and the lines
between nodes represent cooperation between countries. The United States, China, and
South Korea are the top three countries in terms of the number of publications, reflecting
their academic development and industry leadership in this field. Hong Kong, China
has close cooperative relationships with many countries and plays a significant role in
promoting globalization and accelerating development in this field. The number of articles
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published by countries worldwide has increased since 2020, indicating that research on
wearable devices in construction safety has become a popular topic in recent years.

4.3. Effects of Attention Level Change on Construction Safety

The rate of fatal accidents in the construction industry is much greater than in other
industries [36]. Studies have shown that 88% of accidents in construction projects are
caused by the unsafe actions of construction workers [37]. Construction workers are often
employed in high-temperature, high-intensity, and high-paced work environments, which
leads to worker fatigue and distraction that affect the quality of work and cause cost
overruns [38] and, more seriously, major accidents [39,40]. Seevaparsaid-Mansingh [41]
analyzed a sample accident using accident causation theory and found that distraction was
a causal factor of the accident. Research into worker attention can therefore help to prevent
accidents and establish good safety, health, and environmental management systems. Nnaji
and Gambatese [38] investigated the effects of worker attention on safety and on work
quality by reviewing an extensive literature survey and found that distraction reduces work
quality and increases the likelihood of improper equipment operation, accidents caused by
carelessness, and accidents involving falls, which can affect both project cost and schedule.
However, there are also studies [42] that use the Pearson correlation coefficient between
computational attention networks and safety perception to show that no significant link
exists between worker attention and safety, but that such results may be due to a small
experimental sample size. To date, research into worker attention forms a small corpus,
and additional research into this aspect of worker safety is urgently needed.

Researchers have recently begun to use wearable EEG devices to monitor worker
attention objectively and quantitatively during construction. Wang et al. [43] first used
EEG to monitor worker attention and used time frequency analysis and event-related
potential (ERP) analysis to extract various features from EEG data for modeling. They
concluded that the frequency, power spectrum density, and spatial distribution of EEG
signals quantified and indicated the level of risk perceived by construction workers. The
study demonstrates the effectiveness of using EEG sensors to study worker attention levels.
Ke et al. [44] used a sustained attention response task (SART) to introduce distraction in
a simulated construction safety inspection task. They hypothesized that the distraction
promoted certain cognitive responses, which made it possible to discover and therefore
control inherent distractions that lead to unsafe behavior or otherwise diminish the task
performance. Hasanzade et al. [45] used multivariate analysis of variance (ANOVA) on
worker eye-tracking data to assess the effects of hazard recognition on visual attention and
found that hazard recognition significantly affected a worker’s visual search strategies.
Another study also found, from monitoring visual attention, that knowledge gained from
work experience and injury exposure significantly improved construction workers’ hazard
detection and visual search strategies.

The above analysis could provide two major insights for improving construction safety.
(1) Measuring the risk perception of construction workers is important in construction
site safety management. (2) Quantifying the degree of cognitive load by analyzing the
strength of different EEG signal channels is necessary to identify vulnerable individuals
on the construction site. However, EEG equipment cannot be used in its present state in
complex environments; considering the complexity and multiple characteristics of brain
waves, further research is required to improve the future sensor performance.

4.4. Construction Safety Assessment Methods

Questionnaire surveys are widely used in construction safety management research [46]
to study the unsafe behavior of construction workers. Li et al. [47] analyzed the influencing
factors during the construction workers’ cognitive process from the perspective of safety
cognition, and constructed the interaction and cognition of the agent under the bidirectional
effect of formal rule awareness and a conformity mentality model. They showed that the
higher the level of conformity intention of construction workers, the easier it is to increase



Sustainability 2023, 15, 11165 11 of 15

the unsafe behavior of the group, and that formal rule awareness can play a greater role
only when the management standard is at a high level. Choudhry and Fang [48] used
behaviorism theory to identify the external characteristics of habitual unsafe behavior by
construction workers. They identified psychological and behavioral changes and factors
that influenced them through behavioral investigation and case analysis. Chen et al. [49]
investigated causal paths between various influencing factors and unsafe behaviors in
subway construction workers according to expert interviews, accident case analysis, and
references in the FCE method. Czarnocka et al. [50] developed a scaffold by using a risk
assessment model (SURAM) to assess risk levels in construction and other types of work.
Alomari et al. [51] identified and quantified worker perspectives of the key factors affecting
worker safety using the Delphi method. Liang et al. [52] used exploratory factor analysis
(EFA) and confirmatory factor analysis (CFA) to build a structural equation model (SEM)
of safety capability.

Some researchers have used gradually maturing vision technology to determine the
state of individual safety. Han et al. [53] used eye-tracking safety monitoring technology
to identify the cognitive load of a subject when detecting dangers. They suggested a
novel technique for evaluating the ability of construction workers to detect dangers and
thereby improve safety education. Ding et al. [54] developed a novel hybrid deep learning
model that combined a convolutional neural network (CNN) with long short-term memory
(LSTM) to automatically identify unsafe worker behavior. The model accurately detected
safe–unsafe worker acts on site. Seo et al. [55] reviewed the application of computer vision
technology in construction from both a technical and a practical perspective and identified
directions for future research in computer vision in health and safety monitoring. Teizer
and Vela [56] investigated the possibility of using cameras to track workers on construction
sites. Guo et al. [57] developed a framework for the real-time recognition of unsafe behavior
that combined image technology, construction safety knowledge, and ergonomics.

The rapid development of wearable sensor devices has led researchers to investigate
their potential applications in civil engineering and construction safety, as well as in other
fields. Lee et al. [58] investigated the usability and reliability of wearable sensors for
monitoring the on- and off-duty activities of roof workers. Hwang et al. [59] used wearable
EEG sensors to determine the influence of a construction worker’s emotional state on their
behavior. Guo et al. [16] determined the correlation between a worker’s mental state and
the physiological data recorded by wearable devices. They used a positive and negative
affect schedule (PANAS) and a day reconstruction method (DRM) to collect psychological
data. Hinze et al. [60] used a wearable EEG device to assess the degree of recklessness of
construction workers during work. Yang et al. [61] developed a method of smartphone
sensor data acquisition and used a labor intensity framework to assess the workload
of construction workers. Choi et al. [62] used the physiological responses recorded by
wearable sensors for a continuous and quantitative assessment of worker perception of risk.

The preceding research shows that questionnaire design tends to produce subjective
results, so the survey results may not accurately represent the actual situation. Safety
situations as captured by computer vision provide researchers with data from only a single
viewpoint. However, current research into wearable devices focuses on the relationship
between physiological characteristics and safety, and there is little available research into
the mechanisms that relate several physiological indicators to an individual’s state of safety.

5. Conclusions and Outlook

This study firstly reviewed the applications of common wearable devices in various
industries, with a focus on their use in construction safety. Secondly, CiteSpace software was
applied to visually analyze the literature data related to wearable devices in construction
safety. Finally, a comprehensive review was conducted on the psychological state and safety
evaluation methods of construction workers. The results indicate that wearable devices are
rapidly gaining popularity among researchers and practitioners as an emerging technology
for collecting safety data on construction sites. Notably, wristband devices have emerged
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as the most widely used wearable technology for safety monitoring in the construction
industry when compared to other wearable devices. Moreover, the above analysis reveals a
significant gap in research and experimental work on using wearable devices to monitor
distraction in construction workers. At present, there lacks reliable and comprehensive
indicators for monitoring worker distraction on construction sites. Furthermore, while
neurophysiological monitoring techniques such as EEG and ECG have been developed to
provide an objective real-time detection of mental fatigue, their dependence on recording
the electrical activity of the human body can be very invasive for workers. Moreover, the
electrical signals can be easily affected by the harsh environment of the construction site,
which raises concerns about the accuracy of the measurements.

Based on the above analysis, several existing challenges are summarized. The first
challenge is that wearable devices are rarely used in the construction industry. The second
challenge is the low accuracy of data collected by wearable devices. The third challenge
is the issue of data privacy. The other two challenges are the selectivity of physiological
indicators characterizing attention changes and the limitations of the construction safety
evaluation method, respectively.

According to the above challenges, future research can focus on the following aspects.
(1) In future research, it is recommended to combine the characteristics of the three

types of wearable devices and to develop smart wearable devices that are portable, com-
fortable, and unintrusive.

(2) Future research needs to increase the number of sampling workers and various
construction workers with different characteristics as much as possible to improve the
reliability and universality of the data.

(3) Future research needs to focus on the impact of changes in construction environ-
mental factors on construction workers, especially the construction status of workers under
special working conditions.

(4) For future research, advanced transfer learning algorithms should be used to reduce
the impact of individual differences so as to improve the universality of the model.

(5) There is a need to focus on the research of the labor intensity and mental fatigue of
construction workers. Additionally, a more accurate safety assessment model for quantita-
tively assessing the construction safety of construction workers needs to be further studied.
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