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Abstract: In the case of missing data, traffic forecasting becomes challenging. Many existing studies
on traffic flow forecasting with missing data often overlook the relationship between data imputation
and external factors. To address this gap, this study proposes two hybrid models that incorporate
multiple factors for predicting traffic flow in scenarios involving data loss. Temperature, rainfall
intensity and whether it is a weekday will be introduced as multiple factors for data imputation
and forecasting. Predictive mean matching (PMM) and K-nearest neighbor (KNN) can find the data
that are most similar to the missing values as the interpolation value. In the forecasting module,
bidirectional long short-term memory (BiLSTM) network can extract bidirectional time series features,
which can improve forecasting accuracy. Therefore, PMM and KNN were combined with BiLSTM as
P-BiLSTM and K-BiLSTM to forecast traffic flow, respectively. Experiments were conducted using
a traffic flow dataset from the expressway S6 in Poland, considering various missing scenarios
and missing rates. The experimental results showed that the proposed models outperform other
traditional models in terms of prediction accuracy. Furthermore, the consideration of whether it is a
working day further improves the predictive performance of the models.

Keywords: traffic flow prediction; missing data; data imputation; KNN; PMM; BiLSTM

1. Introduction

Traffic congestion has now become a common problem in many large cities [1]. When
traffic congestion occurs, it is accompanied by negative impacts such as economic losses, in-
creased difficulty in managing traffic and air pollution [2]. Traffic congestion can be greatly
reduced by accurately predicting traffic flows and helping travelers to make informed
route choices. On the other hand, traffic management department can guide traffic with
traffic flow forecasts and thus provide a comfortable route for travelers. For the entire road
network, relieving traffic congestion requires a sound Intelligent Transport Systems (ITS) of
which traffic flow prediction is a key factor [3]. Efficient and accurate traffic flow prediction
can provide data to support the working of ITS.

In recent decades, traffic forecasting has been studied involving traffic flow prediction,
travel time forecasting, speed forecasting, and so on. In this regard, traffic flow prediction
can be divided into short-term and long-term ones. Short-term traffic flow forecasting is
more widely studied because of its greater applicability. Vlahogianni et al. [4] has shown
that short-term traffic predicting methods fall into two main categories, namely classical
statistical methods and computational intelligence (CI) methods. The most commonly used
classical statistical methods are the autoregressive integrated moving average (ARIMA)
model and its refinements [5,6]. But these methods are usually designed for small data sets
and are not suitable for dealing with complex and dynamic time series data. Currently,
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the most commonly used forecasting methods are CI methods, such as artificial neural
networks (ANNs) [7], convolutional neural networks (CNNs) [8], long short-term memory
(LSTM) [9] neural networks and graph convolutional network (GCN) [10].

Different external factors may have an impact on traffic flow. It is common for some
scholars to add relevant factors within the model in the hope of improving prediction
accuracy. Zhang et al. [11] used a multi-factor gated recurrent unit (GRU) for traffic flow
prediction, incorporating factors such as precipitation, average wind speed, maximum
temperature, minimum temperature and weather types into the model. The results proved
that the multi-factor GRU model provided better prediction results. Chen et al. [12]
proposed the attentive attributed recurrent graph neural network (AARGNN) which
predicts short-term traffic flow considering both static and dynamic factors. Experiments
on real-world datasets showed that the proposed method outperforms all baseline methods.
He et al. [13] proposed the multi-graph convolutional-recursive neural network (MGC-
RNN). They creatively generated five correlation diagrams with multiple external factors
as model inputs to predict subway passenger flow.

Most of the existing studies simply added external factors into prediction models
and drew conclusions that these external factors can improve prediction accuracy. But He
has shown that not all factors improve the accuracy of predictions [13]. Few studies have
focused on the relationship between external factors and prediction accuracy.

The majority of predictive models rely on the completeness of the data set. However,
due to some unavoidable factors, the information collected by the sensors may have
missing data. To reduce the impact of missing data, data imputation has been used in
prediction models. Such prediction models are classified as hybrid and fusion models.
Khan et al. [14] used multiple imputation methods and a combination of neural networks
to predict the daily average traffic flow and hourly traffic volume. The combination of
LSTM and mean-fill models was eventually found to provide the best prediction results.
Traffic flows are significant not only temporally but also spatially. Tensors provide a
simple and effective approach to represent spatio-temporal traffic flows. Therefore, several
scholars have adopted a tensor-based approach to complement traffic flow interpolation
and prediction [15–17]. The graph Laplacian method offers an efficient approach for
extracting spatio-temporal information, which can be combined with LSTM to achieve
accurate predictions in scenarios with missing data [18]. Zhao et al. [19] proposed two
mean imputation methods combined with LSTM to achieve traffic flow prediction under
three missing modes. All of the above studies are the combination of imputation methods
and prediction models to achieve prediction.

On the other hand, fusion models have been proposed which can perform both data
imputation and traffic flow prediction. Cui et al. [20] proposed an LSTM structure with
imputation units (LSTM-I) to fill in the missing values in the input data. The two-layer
bidirectional LSTM-I achieved high accuracy in attribution and prediction under different
missing patterns, even with 80% of the data missing. However, LSTM-I is limited to
extracting only temporal features and lacks the ability to capture spatial feature. For better
consideration of spatial factors, graph convolution is widely used. Cui et al. [21] proposed
graph Markov network (GMN) and spectral graph Markov network (SGMN) with spectral
graph convolution operations. The GMNs and SGMNs were experimentally shown to
perform well in terms of prediction accuracy and efficiency. While GMN and SGMN lack
the capability to extract time series features, GRU excels at capturing time-varying features.
Combining convolutional operations with GRU neural networks provides a distinctive
advantage in spatio-temporal prediction. Zhang and Dong have further enhanced this
approach to enable accurate predictions in various data scenarios [22,23].

In these studies, both hybrid and fusion models ignore the impact of multiple factors
on traffic flow. There is no doubt that multiple factors can have some influence on traffic
flow. Until now, there are relatively fewer studies that consider multiple factors in both
imputation and forecasting models. Due to this reason, we incorporate multiple factors
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into the imputation and forecasting methods to further improve accuracy and reduce the
impact of missing data.

Two hybrid models have been proposed to explore the impact of multiple factors
on prediction accuracy under different missing scenarios with different missing rates as
follows:

1. The influence of multiple factors was considered to enhance the interpretability of
feature selection;

2. Two prediction models have been proposed for the missing data scenario, and multi-
variate data are used to improve accuracy in the missing data scenario;

3. To be more realistic, a random missing scenario and a non-random missing scenario
were set up and the impact of different missing scenarios on prediction accuracy is
explored.

The rest of the paper is organized as follows. Section 2 presents the structure of the
proposed models. Section 3 describes the data sources and correlation analysis. Section 4
analyzes the prediction results of different combinations of models incorporating different
factors. Section 5 highlights the conclusion of this paper and the outlook for future work.

2. Methodologies

In this chapter, the imputation models and the prediction models are introduced firstly,
and then the proposed models are presented in detail.

2.1. Imputation Models
2.1.1. K-Nearest Neighbor

KNN is a basic machine learning algorithm for classification and regression. The
central idea is to use the samples that are closest to the unknown samples to carry out the
classification and prediction. Changes in traffic flow can be influenced by external factors
and the KNN algorithm can interpolate missing traffic data by picking up the traffic flows
that are most similar to the external factors. The advantage of this algorithm is that it takes
into account the impact of external factors on the traffic flow. The KNN algorithm can be
implemented in the following two steps [24].

Step 1: In this step, k samples are selected mainly according to their distances. Too
large or too small k will increase the error. Through repeated experiments and verifications,
we found that when k = 5, the imputation effect is the best. The closer the two samples are,
the higher the similarity, and vice versa. The distance is measured via Euclidean distance,
and its calculation formula is shown in Equation (1):

d =

√√√√ m

∑
j=1

(
xj − yj

)2 (1)

where m represents the number of influencing factors other than traffic flow, xj is the value
of the j-th factor for missing data and yj is the value of the j-th factor of the complete data.

Step 2: After getting all the distances between the missing data and the complete data,
select the k complete data closest to the missing data, and calculate the average of the k
traffic flows to fill in the missing values.

2.1.2. Predictive Mean Matching

Multiple imputation (MI) as an effective data imputation method was first proposed
by Rubin in 1977 [25]. PMM was proposed by Little and has been refined to become one of
the most classical and commonly used MI algorithms [26]. PMM is based on a complete
data set, regressed on the corresponding variables, followed by a regression model to obtain
imputed values which are filled by taking the mean of multiple imputed values. The PMM
algorithm proceeds as follows [27]:
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Step 1: Let the sample size be n. The number of samples with no missing data is nobs
and the number of samples with missing data is nmis. Yobs and Ymis denote the existing
observations and missing values in Y, respectively. X = (X1, X2, . . . Xk) is a set of fully
observed covariates, which includes Xobs and Xmis, with Xmis corresponding to the missing
part observed in Y.

Step 2: Use Yobs and Xobs to calculate the least squares estimates β̂ =
(

β̂0, β̂1, β̂2 . . . β̂k
)
;

errors ε, and residual variances σ̂2 can be computed as:

Y = β0 + β1X1 + β2X2 + . . . + βkXk (2)

Step 3: σ̂2 is subject to a χ2 distribution with degree of freedom nobs − k− 1. Take a
random number g from the χ2 distribution, and obtain the random observation σ2.

σ2 = σ̂2(nobs − k− 1)/g (3)

Step 4: Draw β∗ from a multivariate normal distribution centered at β̂ with covariance
matrix σ2.

Step 5: The fitted and predicted values are calculated as follows:

Yobs = β̂0 + β̂1X1 + β̂2X2 + . . . + β̂kXk (4)

Ymis = β∗0 + β∗1X1 + β∗2X2 + . . . + β∗k Xk (5)

Step 6: Calculate the distance ∆i between Ŷobs,i and Ŷmis as follows:

∆i =
∣∣Ŷobs,i − Ŷmis

∣∣ (6)

where i = 1, 2, 3 . . . nobs.
Step 7: Select the smallest ∆i corresponding to the Ŷobs,i as the imputation value.
Repeat step 2–7 times and choose the mean.

2.2. Prediction Models
2.2.1. Long Short-Term Memory

To solve the gradient vanishing and gradient exploding problems, Hochreiter and
Schmidhuber proposed the LSTM neural network on the basis of recurrent neural networks
(RNNs) [28]. As shown in Figure 1a, an LSTM with a unique chain structure is able to
capture the regular characteristics of time series and thus achieve time series prediction. As
the parameters of each structure are independent, the gradient disappearance and gradient
explosion problems are effectively avoided. In Figure 1b, the internal structure of the LSTM
is shown in detail and is composed of forget gate ft, input gate it, output gate ot, memory
cell ct and current output ht. The output value of its previous unit ht−1, the cell state of the
previous unit ct−1 and the input data xt are used as the input of the current unit. LSTM can
be described using the following formulas [29]:

ft = σ
(

W f xt + U f ht−1 + b f

)
(7)

it = σ(Wixt + Uiht−1 + bi) (8)

ot = σ(Woxt + Uoht−1 + bo) (9)

c̃t = tanh(Wcxt + Ucht−1 + bc) (10)

ct = ft � ct−1 + it � c̃t (11)
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ht = ot � tanh(ct) (12)

where W f , U f , Wi, Ui, Wo, Uo, Wc and Uc are weight matrices, b f , bi, bo and bc are bias
vectors, � is the Hadamard product, and σ and tanh are activation functions. Their
formulas are as follows:

σ(x) =
1

1 + ex (13)

tanh(x) =
ex − e−x

ex + e−x (14)
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The final predicted value ŷt+1 after passing through the fully connected layer is:

ŷt+1 = tanh
(
htWy + by

)
(15)

where Wy is weight matrix, and by is bias vector.

2.2.2. Bidirectional Long Short-Term Memory

LSTM is a forward training model that can only extract forward time series information,
and reverse information is not well extracted. To this end, Graves and Schmidhuber have
proposed a BiLSTM that combines reverse LSTM and forward LSTM [30]. Because it
extracts time series information in both directions, it has more advantages in terms of
prediction. The structure of the BiLSTM is shown in Figure 2. In the figure, x is fed into
the forward and reverse LSTM to obtain the output of the LSTM in different directions,
which are combined to obtain the final prediction y. The final predicted value is calculated
as follows:

ŷt+1 = tanh
(→

h tWy +
←
h tUy + by

)
(16)

where
→
h t and

←
h t denote the output result of the forward LSTM and the one of the reverse

LSTM, respectively. Wy and Uy are weight matrices and by is bias vector.

2.3. Proposed Hybrid Model

In order to solve the problem of missing data, we combine the imputation module and
the prediction module to complete the traffic flow prediction in the presence of missing data.
PMM, KNN and BiLSTM are combined to form P-BiLSTM and K-BiLSTM, respectively,
as shown in Figure 3 with their model structures. In the models, there are two main
modules, namely the imputation module and the prediction module. The imputation
module completes the imputation of the data, while the prediction module predicts the
traffic flow.
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The input is divided into two parts: the traffic flow ym with missing data and three
multiple factors, including whether it is a weekday w, the rainfall intensity r and the
temperature z. The expressions for the inputs at time t is as follows:

xt =


ym

t wt rt zt
ym

t−∆
wt−∆ rt−∆ zt−∆

...
...

...
...

ym
t−n∆

wt−n∆ rt−n∆ zt−n∆

 (17)

where ∆ denotes the time interval and t− n∆ denotes t indicates the traffic flow and the
statistics of each factor for the previous n time periods.

Traffic flow is normalized to a range of [0, 1]. A binary variable is used to indicate
whether it is a weekday, with “1” representing workday and “0” indicating the weekend.

The xt with missing values is fed to the KNN or PMM to obtain the complete traffic
flow data ỹ via the imputation module, followed by the flow and external factors together
into BiLSTM via the fully connected layer to obtain the final output ŷ.
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3. Data Analysis
3.1. Data Sources

The traffic data used for predication are from the permanent traffic counting station
located on the expressway S6 in the Tricity agglomeration area in Poland. The data covers a
three-year period from 2014 to 2017, as well as traffic in one direction (southbound). Tricity
Bypass Road (expressway S6) is the eastern end segment of the Polish National Road No. 6
which runs along the Baltic coast between the cities of Szczecin and the Tricity Metropolitan
Area, comprising the cities of Gdansk, Sopot and Gdynia. As shown in Figure 4, red
pentagram indicates counting stations and blue line represents expressway S6.
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The data are aggregated into 5 min intervals. Traffic volume for each time period,
rainfall intensity, temperature and whether it was a weekend were used as data for our
experiments. However, in the original dataset, the data from 2:50 to 2:55 am on 2 November
2014 was missing, accounting for a mere 0.0165% of the total. And given that it was in
the late evening, there were no obvious features. To avoid any impact on subsequent
experiments, we opted a relatively simple hot-deck imputation method. For the missing
traffic data, data from the same moment in time two days before and after were used to
fill in the missing values. Missing temperature and rainfall intensity were filled in with
data from before and after. After processing, the data are shown in Table 1. The data
used in this study, presented in Table 1, cover the time period from 27 October 2014 to
16 November 2014. “Temperature” represents the average temperature within five minutes;
“Rain intensity” ranges from 0 to 100, the larger the value, the more rainfall; and “Working
day” is calculated and judged by date: “1” means weekday, “0” indicates the weekend.

Table 1. Data sample table.

Date Time Traffic
Volume Temperature Rain

Intensity
Working

Day

27 October 2014 0:00–0:05 17 11.1 0 1
27 October 2014 0:05–0:10 23 11.1 0 1
27 October 2014 0:10–0:15 16 11.1 0 1
27 October 2014 0:15–0:20 11 11.1 0 1
27 October 2014 0:20–0:25 10 11.1 0 1
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3.2. Correlation Analysis

Temperature, rainfall intensity and whether it is a weekday were chosen as influ-
encing factors for traffic forecasting. In order to explore the impact of the correlation on
the prediction accuracy, the Pearson correlation coefficient was adopted to describe the
relationship between traffic flow and the variables. It is worth noting that the variable of
whether it is a weekday is a categorical variable and the traffic flow data are continuous
variables, so the Pearson correlation coefficient cannot describe the relationship between
these two variables well. Therefore, we use the Pearson correlation coefficient to describe
the relationship between traffic flow and temperature and the relationship between traffic
flow and rainfall intensity. The Pearson formula is as follows [31]:

r =

n
∑

i=1

(
Xi − X

)(
Yi −Y

)
√

n
∑

i=1

(
Xi − X

)2
√

n
∑

i=1

(
Yi −Y

)2
(18)

where r represents the Pearson correlation coefficient, Xi and Yi are the i-th value of variable
X and the i-th value of variable Y, respectively, and X and Y denote the mean of the variable.

The Pearson correlation coefficient indicates a linear relation between two indicators.
It ranges between −1 and +1 and values closer to −1 and +1 imply a strong correlation.
Also, a positive correlation coefficient implies that an increase in one indicator would result
in an increase in another indicator, and vice versa. The relationship between the r value
and the correlation strength is shown in Table 2 [31].

Table 2. The relationship between the r value and the correlation strength.

r Value Correlation Strength

|r| = 0 completely irrelevant
0 < |r| ≤ 0.3 basically irrelevant

0.3 < |r| ≤ 0.5 low correlation
0.5 < |r| ≤ 0.8 highly correlated

|r| = 1 completely relevant

The result of Pearson correlation coefficient analysis is displayed in Figure 5. From
the correlation coefficient in Figure 5, it can be seen that the correlation coefficient between
traffic flow and temperature is 0.38, and which is relatively low. The correlation coefficient
between traffic flow and rainfall intensity is only −0.21, implying almost no correlation.

Daily traffic is extracted for autocorrelation. The correlation result is shown in Figure 6.
The time range is from 27 October 2014 to 16 November 2014 of which 1 November,
2 November, 8 November, 9 November, 15 November and 16 November are non-working
days. The conclusion that there is an extremely strong correlation between working days
and working days and the same characteristic between non-working days and non-working
days is revealed in Figure 6. Although there is a strong correlation between working days
and non-working days, the correlation is reduced compared to the previous two. In
addition, the correlation between traffic flow on 10 November and 11 November and traffic
flow between non-working days is higher. This observation may be attributed to that fact
that 11 November was a national holiday (Independence Day), so it is highly likely many
people chose to take an extended holiday. Considering the circumstances, we designated
10 November and 11 November as non-working days for subsequent experiments.
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4. Experiments

In this section, the validity of the proposed models will be explored firstly. Then, we
conduct experiments on different missing scenarios considering different factors, and judge
the impact of different factors on the prediction based on the experimental results. Finally,
predictions are made at different stacking levels to test the effect of stacking levels on the
effect of the models.

4.1. Missing Data Setting

When traffic flow data are missing, the amount and distribution of missing data can
have an impact on the prediction performance. To explore the impact of missing data on
prediction, type of missing data and the rate of missing data are set.

In this paper, two types of missing data scenarios are set by us, which are random
missing data scenario and non-random missing data. In the case of random missing data,
the missing data are random and the missing data do not depend on any variable. As
shown in Table 3, this scenario does not have any pattern in the missing rate. The other
missing case is the non-random missing case. In this missing case, the missing data depend
on other variables to some extent and show some regularity. In this study, we set it as
continuous missing in the same time period. As shown in Table 4, this missing case shows
as consecutive days of missing data in the same time period.

Table 3. Setting of the random missing scenario.

29 October 2014 30 October 2014 31 October 2014 1 November 2014

0:30–0:35 19 18 NA 13
0:35–0:40 19 NA 16 17
0:40–0:45 7 8 10 NA
0:50–0:55 9 NA 9 15
0:55–1:00 6 9 8 NA
1:00–1:05 NA 15 NA 11
1:05–1:10 12 10 10 11

Table 4. Setting of the non-random missing scenario.

29 October 2014 30 October 2014 31 October 2014 1 November 2014

0:30–0:35 19 18 18 13
0:35–0:40 19 13 16 17
0:40–0:45 NA NA NA 20
0:50–0:55 NA NA NA 15
0:55–1:00 NA NA NA 13
1:00–1:05 NA NA NA 11
1:05–1:10 NA NA NA 11

Based on the type of missing data, we set three rates of missing data: 10%, 20% and
30%, respectively.

4.2. Parameter Setting

Through iterative testing, the final parameters of the models were determined as
shown in Table 5.

In addition to the above parameters, the first 16 days were used as the training set and
the last 5 days as the validation set, with mean squared error (MSE) as the loss function,
expressed as follows [32]:

MSE =
1
T

T

∑
t=1

(ŷt − yt)
2 (19)

where ŷt and yt denote the predicted values and actual values at time t, respectively; T is
the total number of predicted samples.
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Table 5. Detailed description of parameters.

Parameter Value

Number of each hidden layer neurons 24
Training epochs 50

Activation function of fully connected layer Tanh
Input length 12

Batch size 32
Learning rate 0.001

Optimizer Adam

4.3. Evaluation Metrics

To evaluate the model performance, three evaluation metrics were used, namely the
mean absolute error (MAE), root mean square error (RMSE) and coefficient of determination
(R2), which can be defined as follows [33]:

MAE =
1
T

T

∑
t=1
|ŷt − yt| (20)

RMSE =

√√√√ 1
T

T

∑
t=1

(ŷt − yt)
2 (21)

R2 = 1−

T
∑

t=1
(ŷt − yt)

2

T
∑

t=1

(
1
T

T
∑

t=1
yt − ŷt

)2 (22)

The MAE is the average of the absolute errors, regardless of the positive or negative
side of the error, and ranges from 0 to infinity. The MAE is characterized as being relatively
insensitive to the point of outliers.

Like the MAE, the RMSE takes on a range of values from 0 to positive infinity; the
larger the error, the larger the value of the RMSE. However, RMSE is more affected by
outliers.

R2 value closer to 1 means that the prediction is better. If the R2 value is 0, this means
that each predicted value of the sample is equal to the mean, exactly the same as the mean
model. If the R2 value is less than 0, it means that the constructed model is not as good as
the mean model [33]. In the subsequent experimental results presentation, the percentages
of R2 will be used.

4.4. Prediction Results without External Factors

In this section, external factors are not taken into account in the model. GRU, RNN and
LSTM were combined with the estimated model to form the corresponding hybrid models
and compared with the proposed models, which illustrate their validity. The prediction
module parameters are the same as those in Table 5. All models were implemented with
tensorflow and keras framework.

The experimental results in Tables 6 and 7 show the prediction results for the random
missing scenario and the non-random missing scenario, respectively. The results show
that K-BiLSTM outperforms other models regardless of the missing scenario and missing
rate, and K-BiLSTM prediction accuracy is better than the combination of KNN and other
models, and P-BiLSTM also shows the same characteristics. The tables revealed that the
improvement in prediction accuracy for the K-BiLSTM and P-BiLSTM is not significant at a
lower data missing rate. However, at the data missing rate of 30%, the prediction accuracy
improvement in both models becomes more prominent. Another conclusion that can be
drawn from these two tables is that the prediction error using the same model in non-
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random scenarios is slightly lower than that in random missing scenarios with the same
missing rate under different missing scenarios. The reason for this phenomenon is that the
interpolation module does a better job of completing the data in the case of non-random
missing scenario and retains more of the traffic flow characteristics. In the random missing
scenario, the prediction effect of the combined model of PMM will be slightly worse than
that of the combined model of KNN. This demonstrates that the KNN module can better
handle missing data without including external factors. Moreover, the increase in the data
missing rate has, to some extent, resulted in a decrease in model prediction accuracy. In
the random missing scenario, as the missing data rate increased from 10% to 30%, the
K-BiLSTM exhibited an increase in MAE and RMSE by 1.94 and 2.88, respectively, and R2

increased by 1.2%. For the P-BiLSTM, the corresponding increase in MAE and RMSE was
1.75 and 3.8, respectively, and R2 increased by 2.25%. A similar trend was observed in the
non-random missing scenario.

Table 6. Prediction results under random missing scenario.

Model
10% 20% 30%

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

K-RNN 13.29 18.42 94.63 13.63 19.21 92.84 14.66 20.59 92.92
P-RNN 13.32 18.23 94.45 13.83 19.16 93.85 15.77 21.87 91.84
K-GRU 13.21 18.54 94.66 13.71 19.05 93.94 15.32 21.55 91.95
P-GRU 13.37 18.86 94.64 13.79 19.45 92.89 15.51 21.91 91.99

K-LSTM 12.64 17.83 94.93 13.58 19.37 93.75 14.82 21.18 92.52
P-LSTM 12.66 17.96 94.81 13.95 19.37 93.42 15.32 21.67 92.16

K-BiLSTM 12.18 17.29 95.01 13.15 18.73 94.15 14.12 20.17 93.81
P-BiLSTM 12.21 17.46 94.96 13.65 19.56 93.61 15.20 21.26 92.71

Table 7. Prediction results under non-random missing scenario.

Model
10% 20% 30%

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

K-RNN 12.97 17.83 94.27 13.43 19.45 93.49 14.47 21.95 91.97
P-RNN 12.38 17.05 94.64 12.68 18.46 94.31 14.98 21.63 92.69
K-GRU 12.53 17.67 95.02 13.98 20 93.32 14.84 21.14 92.35
P-GRU 12.34 17.55 94.97 13.74 19.52 93.27 14.03 21.02 92.62

K-LSTM 12.17 17.19 94.92 13.26 19.39 93.73 13.90 20.67 93.04
P-LSTM 12.31 16.91 95.22 13.19 19.24 93.82 13.95 20.62 92.91

K-BiLSTM 11.71 16.52 95.44 12.34 17.57 94.85 13.57 20.17 93.21
P-BiLSTM 11.94 16.8 95.29 12.51 17.89 94.66 13.69 20.40 93.06

4.5. Prediction Results Considering External Factors

In the previous section, predictive performance of K-BiLSTM and P-BiLSTM has been
proven. Herein, temperature, rainfall intensity and whether it is a weekday will be added
into the model to test the relationship between forecast accuracy and external factors.

Tables 8 and 9 show the prediction results under the random missing scenario and
the prediction results under the non-random missing scenario, respectively. The letters
at the bottom of the model denote the external factors added, with z, r and w indicating
temperature, rainfall intensity and whether it is a weekday, respectively. If there is no
letter, it means no external factor is added. Figures 7 and 8 show the prediction errors with
different missing rates in different missing scenarios, respectively.
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Table 8. Prediction results with different alternative combinations of external factors as in put under
random missing scenario.

Model
10% 20% 30%

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

K-BiLSTM 12.18 17.29 95.01 13.15 18.73 94.15 14.12 20.17 93.81
P-BiLSTM 12.21 17.46 94.96 13.65 19.56 93.61 15.20 21.26 92.71
K-BiLSTM

13.95 18.58 94.23 14.41 20.53 92.96 15.03 21.63 92.18(z)
P-BiLSTM

14.73 14.72 93.34 19.87 26.43 88.34 23.90 29.46 85.51(z)
K-BiLSTM

13.42 18.88 94.06 15.26 22.06 91.87 15.76 22.30 90.94(r)
P-BiLSTM

14.87 20.75 92.81 17.05 24.10 90.31 21.03 28.53 86.39(r)
K-BiLSTM

11.28 15.12 96.04 11.76 17.57 95.65 11.98 17.01 95.02(w)
P-BiLSTM

11.85 16.44 95.49 12.21 17.06 95.14 13.06 17.57 94.85(w)
K-BiLSTM

13.13 18.36 94.02 14.23 20.28 93.15 14.99 20.77 92.89(z, w)
P-BiLSTM

14.55 19.86 93.41 19.03 24.91 89.64 23.25 29.17 86.72(z, w)
K-BiLSTM

13.33 18.59 94.23 14.90 20.75 92.81 15.35 21.66 92.17(z, r)
P-BiLSTM

15.4 20.96 92.68 21.1 27 87.84 24.58 31.49 83.45(z, r)
K-BiLSTM

13.73 19.26 93.99 14.04 19.83 93.44 14.37 20.16 93.27(w, r)
P-BiLSTM

15.54 21.53 92.26 19.72 25.43 88.34 20.88 27.63 84.26(w, r)
K-BiLSTM

13.25 19.25 94.82 14.62 20.45 93.04 15.03 21.34 92.47(w, r, z)
P-BiLSTM

15.89 21.04 92.61 19.30 25.34 89.29 26.53 33.11 82.75(w, r, z)

Table 9. Prediction results with different alternative combinations of external factors as input under
non-random missing scenario.

Model
10% 20% 30%

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

K-BiLSTM 11.71 16.52 95.44 12.34 17.57 94.85 13.57 20.17 93.21
P-BiLSTM 11.94 16.8 95.29 12.51 17.89 94.66 13.69 20.40 93.06
K-BiLSTM

13.17 18.55 94.06 13.32 19.59 93.59 14.36 21.64 92.18(z)
P-BiLSTM

13.87 20.72 92.84 17.07 25.65 89.94 18.57 28.64 86.31(z)
K-BiLSTM

13.25 18.63 94.21 13.76 20.51 92.97 15.35 22.84 91.31(r)
P-BiLSTM

13.91 19.88 93.41 15.24 24.01 90.38 18.81 29.19 85.78(r)
K-BiLSTM

11.78 16.37 95.52 12.25 16.69 95.17 12.46 17.02 95.01(w)
P-BiLSTM

11.84 16.73 95.24 12.35 17.26 94.99 13.26 19.30 93.78(w)
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Table 9. Cont.

Model
10% 20% 30%

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

K-BiLSTM
13.23 18.64 94.21 14.41 19.74 92.75 15.34 21.67 92.04(z, w)

P-BiLSTM
13.86 20.99 92.64 18.91 28.12 86.81 22.74 33.04 81.67(z, w)

K-BiLSTM
13.06 18.64 94.21 14.42 20.29 93.13 15.53 22.83 91.3(z, r)

P-BiLSTM
15.46 22.75 91.36 19.58 28.9 86.06 22.41 33.24 81.55(z, r)

K-BiLSTM
13.27 19.26 93.06 14.08 20.16 92.64 14.77 22.56 91.26(w, r)

P-BiLSTM
14.52 21.32 92.32 17.60 24.61 89.91 21.16 30.08 84.91(w, r)

K-BiLSTM
13.17 18.50 94.32 13.34 19.51 93.65 15.34 21.25 92.61(w, r, z)

P-BiLSTM
14.34 21.58 92.22 20.39 29.09 85.88 23.42 34.61 80.01(w, r, z)

From the experimental results, it can be seen that adding different factors to the model
can have a significant impact on the prediction accuracy. The inclusion of temperature and
rainfall intensity will reduce the prediction accuracy to some extent, while the inclusion of
whether it is a weekday will improve the accuracy of the model. Especially in scenarios
where 30% of data are missing at random, the MAE and RMSE of the K-BiLSTM considering
whether it was a working day decreased by a maximum of 2.11 and 3.36, respectively, and
R2 increased by 1.37%. The MAE and RMSE of the P-BiLSTM decreased by 2.12 and 3.06,
respectively, and R2 rose by 2.37%. The reason for this is that the correlation between
temperature and traffic flow and rainfall and traffic flow is low, but the inclusion of
whether it is a weekday will improve the prediction accuracy due to the strong influence of
weekends on traffic flow. Because PMM uses linear regression for imputation, its prediction
accuracy decreases more significantly when factors with lower correlations are added. The
P-BiLSTM exhibited the most significant decrease in prediction performance in the scenario
with 30% randomly missing data, when all factors were considered. The MAE and RMSE
increased by 11.33 and 11.85, respectively, while R2 decreased by 9.96%. Similarly, in the
scenario with 30% non-randomly missing data, the MAE and RMSE decreased by 9.83 and
14.21, respectively, while R2 increased by 12.17%. Another reason is that the model does not
extract enough sample features, resulting in a larger error. In addition, the conclusion that
the prediction error increases with the increase in missing rate is further verified in this part
of the experiment. Finally, it is clear from Figures 7 and 8 that when the same factors are
added at the same missing rate, the prediction accuracy of K-BiLSTM outperforms that of
P-BiLSTM regardless of the missing data. This indicates that K-BiLSTM is more suitable for
traffic flow prediction with missing data. In Figure 9, the R2 distribution of the predicted
results with the inclusion of different variables is depicted. With an increasing missing
rate, the inclusion of rainfall intensity and temperature leads to a significant decline in
prediction accuracy, particularly pronounced with P-BiLSTM.
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Sustainability 2023, 15, 11092 17 of 19

Sustainability 2023, 15, x FOR PEER REVIEW 18 of 21 
 

 

Figures 7 and 8 that when the same factors are added at the same missing rate, the predic-

tion accuracy of K-BiLSTM outperforms that of P-BiLSTM regardless of the missing data. 

This indicates that K-BiLSTM is more suitable for traffic flow prediction with missing 

data. In Figure 9, the R2 distribution of the predicted results with the inclusion of different 

variables is depicted. With an increasing missing rate, the inclusion of rainfall intensity 

and temperature leads to a significant decline in prediction accuracy, particularly pro-

nounced with P-BiLSTM. 

 
(a) 

 
(b) 

Figure 9. Distribution of R2 of predicted results. (a) Under random missing scenario, and (b) under 

non-random missing scenario. 
Figure 9. Distribution of R2 of predicted results. (a) Under random missing scenario, and (b) under
non-random missing scenario.

5. Conclusions

Data loss is inevitable in the process of traffic flow data collection. Therefore, it is
necessary to simulate the data loss. Random and non-random data loss scenarios were
set up in the experiments. To achieve imputation and prediction, we combined KNN,
PMM and RNN, and GRU, LSTM and BiLSTM to achieve data estimation and traffic flow
prediction. The K-BiLSTM was experimentally demonstrated to be more accurate than
the other models in terms of prediction. In addition, in the experiments where multiple
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factors were added to the models, the results showed that performance is only improved
by including whether or not it is a working day into the model. Especially in the case
of missing 30% of data at non-random, the MAE and RMSE of the K-BiLSTM model,
considering whether it was a working day, decreased by a maximum of 2.11 and 3.36,
respectively, while the R2 increased by 1.37%. Similarly, the MAE and RMSE of the P-
BiLSTM model decreased by 2.12 and 3.06, respectively, and the R2 increased by 2.37%.
This relationship was attributed to the correlation between traffic flow data and external
factors. The inclusion of factors with low correlation led to an increase in prediction error.

In the future, the following research area will be explored: First, in subsequent studies,
the traffic flow prediction can be extended from a single point to the whole urban road
network for interpolation prediction. Second, a fusion model that can achieve both imputa-
tion and prediction will be studied and proposed. Finally, it is important to improve the
application of the model to achieve accurate and efficient prediction under different road
conditions.
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