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Abstract: Modeling the photovoltaic (PV) generating unit is one of the most important and crucial
tasks when assessing the accurate performance of the PV system in power systems. The modeling
of the PV system refers to the assigning of the optimal parameters of the PV’s equivalent circuit.
Identifying these parameters is considered to be a complex optimization problem, especially with the
deviation of the solar irradiance and the ambient temperature. In this regard, this paper proposes a
novel hybrid multi-population gorilla troops optimizer and beluga whale optimization (HMGTO-
BWO) model to evaluate the optimal parameters of the PV cell/panel; it is based on a multi-population
strategy to improve its diversity and to avoid the stagnation of the conventional GTO. The BWO
explorative and exploitative powers, which are based on synchronized motion and Lévy flight, are
used. The suggested HGTO-BWO is implemented to minimize the root mean square error (RMSE)
between the simulated and measured data for each cell/panel represented by a double diode model
(DDM) and triple diode model (TDM). The proposed HGTO-BWO is investigated according to the
standard and CEC-2019 benchmark functions, and the obtained results are compared with seven
other optimization techniques in terms of statistical analysis, convergence characteristics, boxplots,
and the Wilcoxon rank sum test. The minimum obtained RMSE values of the PVW 752 cell were
2.0886 × 10−4 and 1.527 × 10−4 for the DDM and TDM, respectively. Furthermore, the minimum
fetched fitness value for the STM6-40/36 modules was 1.8032 × 10−3. The obtained results proved
the effectiveness and preference of the suggested HGTO-BWO in estimating the parameters of the
PV modules.

Keywords: multi-population; HGTO-BWO; parameters estimation; PV cell/panel

1. Introduction

Renewable energy sources (RESs) like wind and solar should be considered in order
to mitigate the effects of climate change and rising temperatures, as well as to protect
the planet from the pollution and destruction produced by traditional fossil energy [1].
The process of ecological transition involves identifying consumption and sustainable
community models to reduce harmful emissions and to create reliance on power generation
from renewable sources [2]. One of the aims of the sustainable development goals (SDGs),
especially the seventh goal, is to obtain modern energy which is sustainable and highly
reliable at the lowest cost [3]. There is a great deal of interest in RESs due to the enormous
financial and environmental problems associated with traditional energy sources like fossil
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fuels. It is essential to transform the solar energy into different forms that may be utilized
in daily life with the assistance of an appropriate device to exploit it [4,5]. Even though
solar energy is abundant, its expansion is hampered by problems like fractional shadow,
high construction cost, weather variation, and the need for costly storage. As a result,
photovoltaic (PV) modeling is necessary to estimate the performance of a PV system before
installation. Furthermore, the prediction of PV panel operating attributes is critical in solar
PV system design, evaluation, simulation analysis, and control. Also, modeling aids in
comprehending the functioning precept and attributes of the solar PV system under variable
meteorological situations. The PV solar system is useful for capturing the solar energy
and converting it into electrical power [5–7]; it has penetrated into many applications [5].
Moreover, the economic implications of the decreased lifetime and its causes are presented
in [8]. One of the scientists’ priorities is to improve the efficiency and dependability of these
technologies. Understanding the mechanisms of power absorption and conversion in solar
cells, as well as correct modelling, can help in forecasting and designing them properly.
One of the most critical challenges that researchers are facing is how to build a reliable
model of the solar panel [9–11].

Changes in temperature and sun irradiance have significant impacts on the perfor-
mance of PV systems [12]. Therefore, to maximize the performance of these systems,
adequate mathematical models are required that precisely replicate the PV system behavior
under several operational scenarios. Three of the most common PV system models, the
single, double, and triple diode models (SDM, DDM, and TDM), are used [13,14].

The parameters of the SDM are simple to estimate as it only has five parameters, but its
performance suffers from minimal irradiance scales and as a consequence of temperature
changes. The DDM includes seven unknown parameters; it employs a second diode to
achieve current reunification and to deal with other non-idealities [15]. However, the DDM
suffers from some defects in recombining the current and other non-idealities. The final
model is TDM, with nine ungiven parameters; it was introduced in [16]. Unfortunately, the
nine parameters should be calculated as the manufacturers do not directly give them. To
decrease the difference between the measured assessed power–voltage (P-V) and current–
voltage (I-V) curves, the issue is converted into an optimization problem with a nonlinear
objective function and a significant number of local minima.

Researchers are interested in employing metaheuristic algorithms to estimate the PV
model parameters due to their notable success in handling various real-world optimization
problems [5–7]. A hybrid seagull optimization algorithm architecture (HSOA) has been
described for assessing the PV model parameters and developing a nonlinear control factor,
which is dependent on the cosine function, to stabilize exploitation and exploration capabil-
ities [1]. A springy whale optimization algorithm is described as an enhanced optimization
technique to determine the parameters of PV cell/panel models [9]. Changes have been
made to the way that the whales move in order to improve the algorithm performance.
This helped the algorithm avoid the local solution, and the algorithm convergence speed
was enhanced. In [13], an improved cuckoo search optimizer (ICSO) and a modified cuckoo
search optimizer (MCSO) are implemented to solve the parameter evaluation issue of a
PV system. Solar cell parameters have been evaluated through a genetic neural network
(GNN) strategy [14]. The PV module characteristics have been identified with the aid of the
tabu search optimizer (TSO) [15]; moreover, the lightning search algorithm, pattern search
(PS), gravity search algorithm (GSA), genetic algorithm (GA), and PSO have been applied
and compared to the presented approach [16].

In order to define the values of the ungiven parameters, the sooty tern optimization
(STO) approach was developed for parameter evaluation of the PV cells/modules [17]. The
hybrid particle swarm optimization (PSO) and rat search algorithm have been presented
and combined as a hybrid approach for extracting the parameters of hybrid systems,
including those of fuel cells and solar PVs [18]. The presented approach in that work
reduced the likelihood of a local minimum and increased the algorithm accuracy. In [19],
the animals migration optimizer (AMO) was introduced to construct the SDM of a PV
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system. The approach capacity for producing prompt, dependable, and consistent outcomes
has been considered. In [20], a chaotic WOA for estimating the solar cell parameters was
introduced; the key benefit of this method is that its parameters are automatically computed
and adjusted using chaotic maps. In [21], a mathematical model for PV solar cells was
created using the equilibrium optimizer (EO). The results using the EO have been compared
with Harries hawk optimization (HHO), the teaching learn-based optimizer (TLBO), and
PSO. In [22], the many approaches employed in constructing the SDM, DDM, and TDM of
PV systems were reviewed and compared in terms of pros and cons.

The fractional-order Darwinian PSO methodology was used in [23] to enhance the
conventional PSO method in evaluating the electrical parameters of PV cells/modules.
To assign the solar cell parameters, the authors in [24] presented a hybrid honey badger
algorithm and GTO [25]. These algorithms reduced the root mean square error (RMSE)
between the simulated and measured results. In [26–28], a marine predatory animal (MPA)
algorithm is described for computing the parameters of PV cells/panels in constant and
varying weather situations. An improved stochastic fractal search algorithm has been used
to solve the parameter appreciation of SDM solar cells and PV panels [29]. The authors
in [30] presented the computational optimization method for extracting the parameters
of solar cells/panels using an enhanced arithmetic optimization algorithm. In order to
study the DDM-based circuit of a PV panel, practical tests to obtain the measured I-V and
P-V characteristics have been conducted while considering various statistical analyses to
determine the average, maximum, minimum, and standard deviations. A quick and effi-
cient method for collecting the solar cell/panel parameters from the datasheet is provided
in [31]. A niche PSO using a parallel computing technique was presented in [32] to identify
the PV panel parameters. A multi-agent system (MAS) has been combined with CSO to
estimate the parameters of various PV cells [33]. The circuits of SDM, DDM, and TDM
for PV cells have been analyzed using the atomic orbital search to determine the ungiven
parameters [34]. The tree seed algorithm has been used to calculate the parameters of
the STM6-40/36 PV panel with different maximum fitness evaluations [35]. Moreover, a
heterogeneous mechanism for the differential evolution algorithm (DE) [36], population di-
versity controlled DE [37], the artificial parameter-less optimization algorithm [38], random
reselection PSO [39], the arithmetic operation algorithm based on the Newton–Raphson and
Lambert W approaches [40], and adaptive slime mold [41] have been utilized to construct
different equivalent circuits of PV cells/panels. A mayfly algorithm [42], northern goshawk
optimization [43], and Newton–Raphson (NR) with an enhancement of a tuna swarm opti-
mizer by a chaotic tent map [44] have been presented to evaluate the parameters of a TDM
circuit. The parameters of a PV equivalent circuit were resolved by a chimp optimization
algorithm with a robust niching approach [45], hybrid PSO with a gravitational search
algorithm [46], chaos game optimization [47], an improved gradient-based optimizer based
on sine cosine [48], DE enhanced by a chaotic map [49], and the predict output-based
backpropagation neural network with EO [50]. Furthermore, the forensic-based investi-
gation algorithm [51], the supply–demand optimizer [52], the enhanced hunger games
search via the Laplacian Nelder–Mead approach [53], the Rao-1 optimization-based chaotic
sequence [54], the arithmetic optimization algorithm-based guaranteed convergence and
modified third-order NR [55], and the hybridized wind-driven optimization with fruit fly
optimization [56] have been used to compute the parameters of various types of PV models.

Most of the reported studies have limitations, such as the falling into local optima, the
requirement for numerous controlling parameters, and the complexity in implementation,
in addition to the use of absolute algorithms without fundamental changes or modifications.
The motivation of this study is to introduce a novel hybrid multi-population gorilla troops
optimizer and beluga whale optimization (HGTO-BWO) to determine the PV cell/panel
parameters such that all the gaps in the previous works are covered.

GTO is characterized by its ability to solve real-world problems with limited and
unknown search space. On the other hand, the BWO has better stability, good convergence
accuracy, stronger search ability, and a faster convergence rate. Therefore, hybridization



Sustainability 2023, 15, 11089 4 of 33

between GTO and BWO results in a strong optimizer which is able to solve the handled
problem with good efficiency. Table 1 provides a comparison of the recent work published
in 2023 with regard to parameter estimations of PVs. The multi-population technique
is applied to enhance the algorithm performance and avoid early convergence through
dividing the entire population into many subgroups to preserve population variety. Dif-
ferent subgroups can be discovered throughout the whole search area and can reach the
optimal solution efficiently by searching in different locations inside the search area at one
time. Moreover, the optimization techniques can be easily and efficiently incorporated into
multi-population methods [57,58]. The following are the major contributions of this article:

• A novel approach of hybrid multi-population GTO-BWO is proposed in this work.
• The classical and CEC-C06 2019 benchmark functions are utilized to test and assess

the proposed technique’s performance.
• The proposed HGTO-BWO is implemented to determine the ungiven parameters of

TDM and DDM equivalent circuits of PV cells/panels.
• A comparison is made with TSA, the grey wolf optimizer (GWO), the whale optimiza-

tion algorithm (WOA), the sine cosine algorithm (SCA), harmony search (HS), beluga
whale optimization (BWO), and the artificial gorilla troops optimizer (GTO).

• The fetched results assure the effectiveness and validity of the suggested HGTO-BWO.

Table 1. A comparison of recent work published in 2023.

Ref. Obj. Function Model Type Algorithm Remark

[59] RMSE SDM, DDM and TDM Hybrid chaotic NSO-PS
One type of PV is R.T.C used in all
case studies; complexity and
improved performance

[60] RMSE SDM and DDM Growth optimizer
Ability to determine ungiven PV
model parameters; low
convergence

[61] RMSE SDM, DDM, and TDM
Chaos game
optimization with least
squares

Speed convergence and the RMSE
values are similar to those of some
other methods

[62] Non-linear square with
RMSE SDM GWO Complexity in obj. function

[63] RMSE SDM, DDM, and TDM Improved moth–flame
algorithms Low obj. function

Proposed RMSE SDM, DDM and TDM HGTO-BWO
High performance and efficiency;
avoids local optimum; fast
convergence

The rest of this article is as follows. Section 2 describes the mathematical model
of solar PVs. Section 3 illustrates the problem expression, while the proposed hybrid
multi-population GTO and BWO algorithm is presented in Section 4. The testing of the
benchmark functions is presented in Section 5, and the application of the PV parameter
estimation is given in Section 6. The conclusions are clarified in Section 7.

2. Modeling of Solar Photovoltaic (PV)

A solar PV cell is typically described through an electrical analogous circuit that
includes current source, resistors, and a diode. Numerous PV cell modeling systems have
evolved due to nonlinearity. The models of a PV cell are divided into three categories: single,
double, and triple diode models. The prediction accuracy of the I-V curve is defined by the
number of diodes in the model. Also, adding another diode, from one to three, enhances
the model performance and precision at minimal irradiance levels. Similarly, the growth of
modeling results in the development of the TDM. The model of the analogous circuit, its
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equations, and the specifications of the ungiven parameters are shown in Figures 1 and 2.
As the number of diodes grows, the number of model parameters to be evaluated grows
and then the complexity of the problem is increased [64,65].
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2.1. Double Diode Model (DDM)

The DDM uses dual diodes and dual resistors coupled in a series and shunted to the
diode; this configuration is designed to compensate for the losses. The DDM of a solar cell
is shown in Figure 1; with this concept, a second diode is added to reduce the transmission
losses caused by the depletion layer carrier recombination and surface recombination, as
specified by Id2 [29,66]. The component of the current is represented by the current of the
first diode Id1.

The DDM can be formulated as follows:

IPV = Iph − Id1 − Id2 − Ish (1)

IPV = Iph − Id1

[
exp
[

q[VPV + Rs IPV ]

A1KT

]
− 1
]
− Id2

[
exp
[

q[VPV + Rs IPV ]

A2KT

]
− 1
]
−
[

VPV + Rs IPV
Rsh

]
(2)

This model has seven parameters to be computed; they are provided as a vector, as
given in Equation (3).

x =
[

A1 A2RsRsh Id1 Id2 Iph

]
(3)

where Id1, Id2, and Iph are the reversal saturation currents of the diodes and photon cur-
rent; q is the electronic charge; A1 and A2 are the diodes’ ideality factors; T denotes the
temperature in Kelvin; K refers to the Boltzmann constant; and Rsh and Rs are the shunt
and series resistances.

2.2. Triple Diode Model (TDM)

Another model described in this work is the TDM; this model includes a current
source, two resistors, and triple diodes, as shown in Figure 2. Dual diodes are considered
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in the model and are similar to those of the DDM, due to the reassembly and connec-
tion losses, while the third diode is due to the losses of the reassembly flow zones and
boundaries [65,67].

The TDM can be expressed by following equations:

IPV = Iph − Id1 − Id2 − Id3 − Ish (4)

IPV = Iph − Id1

[
exp
[

q[VPV+Rs IPV ]
A1KT

]
− 1
]
− Id2

[
exp
[

q[VPV+Rs IPV ]
A2KT

]
− 1
]

−Id3

[
exp
[

q[VPV+Rs IPV ]
A3KT

]
− 1
]
−
[

VPV+Rs IPV
Rsh

] (5)

There are nine parameters to be evaluated in this model. The following vector can be
used to represent them:

x =
[

A1 A2 A3RsRsh Id1 Id2 Id3 Iph

]
(6)

2.3. PV Panel Model

The PV panel comprises numerous cells coupled in a series or parallel to produce
greater voltage and current. Figure 3 illustrates the PV panel equivalent circuit.
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The cells coupled in a series produce the same current. As a result, the panel output
current can be written as given in Equation (7).

IPV = Iph × Np − Id1 × Np

[
exp
[

q[VPV /Ns+Rs/Np×IPV ]
A1KT

]
− 1
]

−Id2 × NP

[
exp
[

q[VPV /Ns+Rs/Np IPV ]
A2KT

]
− 1
]
−
[
VPV/Ns + Rs/Np×IPV Rsh

] (7)

where Ns denotes the number of solar cells combined in a series, while Np denotes the
number of cells connected in parallel [67,68]. Seven parameters should be calculated in the
PV panel circuit; these are A1, A2, Rs, Rsh, Id1, Id2, and Iph.
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3. Problem Expression

In order to find the PV cell/panel equivalent circuit parameters, an optimization
problem was formulated and solved to mitigate the RMSE between the measured current
(IM ) and the simulated one (IS ). In the optimization formula, the unknown parameters are
defined as design variables; the fitness value can be formulated as follows:

RMSE =

√√√√ 1
Nm

Nm

∑
i=1

fPV(VPV , IPV , x)2 =

√√√√ 1
Nm

Nm

∑
i=1

(IM − IS )2 (8)

where Nm indicates the number of measured patterns, fPV refers to the PV model function,
and IM and IS are the measured and simulated currents, respectively. The DDM objective
function contains seven unknown parameters; it can be written as,

fDDM(VPV , IPV , x) = IPV − x7 + x5

(
exp
(

q(VPV+IPV x3)
x1KT

)
− 1
)
+ x6

(
exp
(

q(VPV+IPV x3)
x2KT

)
− 1
)

+ (VPV+IPV x3)
x4

(9)

where x =
[

A1 A2RsRsh Id1 Id2 Iph

]
.

On the other hand, the TDM objective function comprises nine unknown parameters,
which can be expressed as,

fTDM(VPV , IPV , x) = IPV − x9 + x6

(
exp
(

q(VPV+IPV x4)
x1KT

)
− 1
)
+ x7

(
exp
(

q(VPV+IPV x4)
x2KT

)
− 1
)

+x8

(
exp
(

q(VPV+IPV x4)
x3KT

)
− 1
)
+ (VPV+IPV x4)

x5

(10)

where x =
[

A1 A2 A3RsRsh Id1 Id2 Id3 Iph

]
.

Finally, the TDM of the PV panel objective function can be written as,

fPV_p(VPV , IPV , x) = IPV − x7 ∗ Np + x5 ∗ Np

[
exp
[

q[VPV /Ns+x3/Np∗IPV ]
x1KT

]
− 1
]
+ x6

∗NP

[
exp
[

q[VPV /Ns+x3/Np IPV ]
x2KT

]
− 1
]
+
[

VPV /Ns+x3/Np∗IPV
x5

] (11)

4. The Proposed Solution Methodology

This section describes and explains the main aspects of GTO, BWO, and the proposed
HMGTO-BWO.

4.1. Gorilla Troops Optimizer (GTO)

The GTO is an efficient optimization algorithm that was inspired by the social life
of gorillas, including their movements and lifestyles [69]. The leader in a gorilla group is
known as a silverback and all the males and females follow it. The young male gorillas
are known as blackbacks; they help the silverback and act as backup protection for the
group. Two phases of exploitation and exploration form the GTO. Three operators are used
in the exploration phases; the first operator is the migration to new locations, while the
second operator is based on the movement of other gorillas; the third operator is dependent
on the motion of the groups to known areas. In the GTO, the parameter X refers to the
gorilla position, and the GX denotes the candidate gorilla locations, while the best solution
position is represented as the silverback position. The exploitation phase is based on three
motions of the gorillas, including their motion to a new unknown area, their motion to
each other, and their movement to unknown locations. Mathematically, the exploration
phase of the GTO can be described as follows:
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GX(t + 1) =


(UB− LB)× r1 + LB, rand < p
(r2 − C)× Xr(t) + L× H, rand ≥ 0.5
X(i)− L× (L× (X(t)− GXr(t)) + r3 × (X(t)− GXr(t))) rand < 0.5

(12)

where r1, r2, and r3 are random values in the range [0, 1]; UB and LB are the upper and
lower limits of the variables; the P operator is a generated random value; and C, L, and H
are operators that can be computed as follows:

C = F×
(

1− t
tmax

)
(13)

F = cos(2× r4) + 1 (14)

L = C× l (15)

H = Z× X(t) (16)

Z = [−C, C] (17)

where tmax and t are the maximum and current iterations, and r4 is a random value in
the range [0, 1]. The exploitation phase in this algorithm is based on the motion of the
followers to the silverback gorilla. However, when the silverback dies or becomes ill, the
male blackback gorillas become leaders; these gorillas fight to obtain the female gorillas.
The exploitation phase mimics the motion of the males and females to the silverback. In
addition to that, when the silverback dies or becomes old, the blackback gorilla males
become leaders. Thus, the group may follow the silverback or the blackback gorilla males.
The transition between the two movements can be adjusted using two operators, C and W.
In the case that C ≥ W, the gorillas update their locations with respect to the silverback
as follows:

GX(t + 1) = M× L× (X(t)− Xbest ) + X(t) (18)

M =

(∣∣∣∣∣ 1
N

N

∑
i=1

GXi(t)

∣∣∣∣∣
g) 1

8

(19)

g = 2L (20)

where Xbest represents the silverback’s location. If C < W, the other gorillas follow the
adult males; this may be described as follows:

GX(i) = Xsilverback − (Xbest ×Q− X(t)×Q)× A (21)

Q = 2× r5 − 1 (22)

A = β× E (23)

where r5 represents a random value in the range [0, 1], β denotes a predefined operator,
and E is a random value obtained from the normal distribution. The GTO’s pseudocode is
depicted in Algorithm 1.
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Algorithm 1 The Pseudocode of GTO

Start GTO
Input : Set the parameters of the GTO (N, tmax , UB, LB
Output : The best position of the population (Xbest ) the corresponding fitness function.
Initialize the populations and calculate the objective functions and assign the best result.
While t < tmax

Update the values of the C, L using Equations (13) and (15).
Update the positions of the gorillas according to (12).
Compute the fitness function and assign the best solution.

If C ≥W
Update the positions of the gorillas using Equation (18).

Otherwise
Update the positions of the gorillas using Equation (21).

end
Calculate the objective functions for the new locations and include them,
if their values are better than the previous solutions

End while
End GTO

4.2. Beluga Whale Optimization (BWO)

BWO is a new optimizer that was conceptualized from the motion, preying, and
behavior of beluga whales (BWs) in the seas and oceans [70]. BWs are social creatures that
share information and communicate together to search for food locations. Initially, the
fitness function is expressed as follows:

FX =


f (x1,1, x1,2, . . . , x1,d)
f (x2,1, x2,2, . . . , x2,d)

...
f (xn,1, xn,2, . . . , xn,d)

 (24)

The swimming motion of the two BW pairs represents the exploration phase, which
may be mathematically described as follows:

Xt+1
i,j =

Xt
i,pj

+
(

Xt
r,p1
− Xt

i,pj

)
(1 + r1)sin(2πr2), j = even

Xt
i,pj

+
(

Xt
r,p1
− Xt

i,pj

)
(1 + r1)cos(2πr2), j = odd

(25)

where Xt
r,p1

is a whale selected randomly from the generated BWs. The BWO exploitation
phase is conceptualized from the hunting and preying process of BWs. They update their
locations based on the best solution using the Levy flight strategy, as follows:

Xt+1
i = r3Xt

best − r4Xt
i + C1 · LF ·

(
Xt

r − Xt
i
)

(26)

C1 = 2r4(1− t/tmax) (27)

where Xt
best represents the best location, Xt

r refers to a randomly selected BW, and LF is a
Lévy flight function, which can be determined as follows:

LF = 0.05× u× σ∣∣v|1/β
(28)

σ =

(
sin(πβ/2)× Γ(1 + β)

β× Γ((1 + β)/2)× 2(β−1)/2

)1/β

(29)
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where u and v are random variables, and β is an adaptive variable used to enable the
transition between the exploitation and the exploration phases; it can be calculated as,

B f = B0(1− t/2tmax) (30)

where B0 is a random value in the range [0, 1]. If B f > 0.5, the BWs update their locations
in the exploration phase; otherwise, they update their locations in the exploitation manner.
The final stage of the BWO is based on the whale fall of BWs when they have been
attacked by the killer whales. The dead BWs are deposited on a deep seabed. This stage is
represented as follows:

Xt+1
i = r5Xt

i − r6Xt
r + r7Xstep (31)

Xstep = (Ub − Lb)exp(−C2t/tmax) (32)

C2 = 2W f × n (33)

W f = 0.1− 0.05t/tmax (34)

where r5, r6, and r7 denote random variables in the range [0, 1]. The pseudocode of BWO is
depicted in Algorithm 2.

Algorithm 2 The Pseudocode of the BWO

Start BWO
Input : Set the parameters of the BWO (N, tmax , UB , LB).
Output : The best position (Xbest ) of the populations and the corresponding fitness

function.
While t < tmax

Update the values of the using C1, B f , and W f using Equations (27), (30) and (34).
If B f > 0.5

// Exploration phase
Update the locations of the BWs using Equation (25).

Otherwise
// Exploitation phase

Update the locations of the gorillas using Equation (26).
end

Compute the fitness functions for the new positions and select the best result.
If B f ≥W f
// whale fall

Update the locations of the BWs using Equation (31).
End

Compute the fitness functions for the new positions and select the best result.
End while

End BWO

4.3. The Proposed Hybrid Multi-Population GTO and BWO

The proposed HMGTO-BWO is introduced to solve complex and nonlinear optimiza-
tion issues. The following steps describe the procedure of the proposed HMGTO-BWO:

Step 1: Define the parameters of the proposed HMGTO-BWO as well as the constraints
of the problem.

Step 2: Generate a set of populations randomly.
Step 3: Divide the populations into three subpopulations (N1, N2, N3), where N1 = N2

= N/3 and N3 = N− (N1 + N2), where N, N1, N2, and N3 are numbers of the population, the
first subpopulation, the second subpopulation, and the third subpopulation, respectively.

Step 4: Update the populations in each subpopulation group based on the GTO, as
illustrated in Section 4.1.
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Step 5: Accept the new updated subpopulations if their values are better than those of
the old populations.

Step 6: Combine the three subpopulations as one vector; it represents the initial
populations of the BWO technique.

Step 7: Update the populations based on BWO, including the swimming motion, the
Levy flight motion, and the fall of BWs.

Step 8: Repeat Step 3 to Step 7 until the stopping criterion is satisfied.
The step procedures of the suggested algorithm are depicted in Figure 4.
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Figure 4. Flowchart of the proposed HMGTO-BWO.
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The HGTO-BWO computational complexity is based on the initialization, fitness
assessment, and updating of the silverbacks and BW, and it can be described as follows:

O(HGTO− BWO) = (Sub.Population1 + Sub.Population2 + Sub.Population3)GTO + BWO (35)

O(HGTO− BWO) =
[
O
(

tmax × 1
3 N1

)
+ O

(
tmax × 1

3 N1 × D
)
× 2
]
+
[
O
(

tmax × 1
3 N2

)
+ O

(
tmax × 1

3 N2 × D
)
× 2
]

+
[
O
(

tmax × 1
3 N3

)
+ O

(
tmax × 1

3 N3 × D
)
× 2
]
+ O(N × (1 + 1.1× tmax))

= O(N× (1 + tmax + TD)× 2 + (1 + 1.1× tmax))

(36)

where D is the dimension of the problem.

5. Testing of Benchmark Function

For a fair comparison between the suggested HGTO-BWO and the other algorithmic
approaches, the maximum iterations number was set to 500; the population size was
assigned to 30; and 30 runs were conducted for each considered optimizer. The proposed
HGTO-BWO was investigated via the traditional benchmark functions and CEC 2019
functions. The fetched results were compared to TSA, GWO, WOA, SCA, HS, BWO, and
GTO. The algorithms’ parameters are presented in Table A1 in Appendix A.

5.1. Traditional Benchmark Functions

The proposed HGTO-BWO was investigated via the solving of various traditional
benchmark functions [71]; F1 to F13 have constant dimensions of 30, while the functions
F14 to F23 have different dimensions. These functions are divided into the functions from
F1 to F7, which are unimodal; F8 to F13, which are multi-modal; and F14 to F23, which are
composites (See Supplementary Materials). Table 2 shows the statistical results of all the
traditional benchmark functions; it includes the worst, average, best, standard deviation
(std), and p-value. The values given in bold indicate the best solutions obtained by the
proposed HGTO-BWO approach.

Table 2. Statistical analysis of traditional benchmark functions solved via the HGTO-BWO approach
and other techniques.

Function No Algorithm Worst Mean Best std p-Value

F1

TSA 6.062× 10−21 8.593 × 10−22 1.829 × 10−24 1.367 × 10−21 1.21 × 10−12

GWO 3.300 × 10−26 2.105 × 10−27 4.759 × 10−29 6.022 × 10−27 1.21 × 10−12

WOA 6.553 × 10−70 2.364 × 10−71 2.778 × 10−83 1.197 × 10−70 1.21 × 10−12

SCA 4.516 × 102 3.588 × 101 2.339 × 10−2 1.003 × 102 1.21 × 10−12

HS 3.079 × 103 2.476 × 103 1.562 × 103 3.939 × 102 1.21 × 10−12

BWO 1.925 × 10−257 1.272 × 10−258 1.274 × 10−272 0.00 × 100 1.21 × 10−12

GTO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 1.21 × 10−12

HGTO-BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN

F2

TSA 4.979 × 10−13 1.128 × 10−13 1.047 × 10−14 1.206 × 10−13 3.02 × 10−11

GWO 4.515 × 10−16 9.566 × 10−17 1.246 × 10−17 8.300 × 10−17 3.02 × 10−11

WOA 1.156 × 10−48 7.100 × 10−50 1.076 × 10−56 2.454 × 10−49 3.02 × 10−11

SCA 1.346 × 10−1 2.449 × 10−2 8.107 × 10−5 3.647 × 10−2 3.02 × 10−11

HS 1.370 × 101 1.057 × 101 7.436 × 100 1.673 × 100 3.02 × 10−11

BWO 1.849 × 10−129 6.467 × 10−131 1.310 × 10−137 3.37 × 10−130 3.02 × 10−11

GTO 1.835 × 10−190 6.261 × 10−192 3.521 × 10−206 0.00 × 100 3.02 × 10−11

HGTO-BWO 6.916 × 10−247 2.305 × 10−248 5.079 × 10−268 0.00 × 100 NAN
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Table 2. Cont.

Function No Algorithm Worst Mean Best std p-Value

F3

TSA 2.826 × 10−3 3.329 × 10−4 1.572 × 10−8 7.279 × 10−4 1.21 × 10−12

GWO 3.698 × 10−4 2.062 × 10−5 7.248 × 10−9 6.741 × 10−5 1.21 × 10−12

WOA 7.244 × 104 3.723 × 104 2.987 × 103 1.716 × 104 1.21 × 10−12

SCA 2.274 × 104 9.511 × 103 1.459 × 103 5.359 × 103 1.21 × 10−12

HS 3.362 × 104 2.686 × 104 1.965 × 104 3.983 × 103 1.21 × 10−12

BWO 1.555 × 10−242 1.060 × 10−243 2.864 × 10−257 0.00 × 100 1.21 × 10−12

GTO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 1.21 × 10−12

HGTO-BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN

F4

TSA 7.663 × 10−1 2.588 × 10−1 1.258 × 10−2 2.234 × 10−1 3.02 × 10−11

GWO 7.987 × 10−6 8.996 × 10−7 4.183 × 10−8 1.485 × 10−6 3.02 × 10−11

WOA 9.425 × 101 5.178 × 101 7.053 × 10−2 3.113 × 101 3.02 × 10−11

SCA 5.758 × 101 3.099 × 101 1.005 × 101 1.173 × 101 3.02 × 10−11

HS 4.145 × 101 3.622 × 101 3.042 × 101 2.199 × 100 3.02 × 10−11

BWO 3.880 × 10−126 3.095 × 10−127 2.571 × 10−133 7.804 × 10−127 3.02 × 10−11

GTO 1.694 × 10−192 8.353 × 10−194 9.838 × 10−208 0.00 × 100 3.02 × 10−11

HGTO-BWO 6.349 × 10−238 2.187 × 10−239 5.440 × 10−257 0.00 × 100 NAN

F5

TSA 2.889 × 101 2.838 × 101 2.609 × 101 7.737 × 10−1 2.37 × 10−12

GWO 2.852 × 101 2.682 × 101 2.566 × 101 7.761 × 10−1 2.37 × 10−12

WOA 2.877 × 101 2.794 × 101 2.728 × 101 5.032 × 10−1 2.37 × 10−12

SCA 4.983 × 105 4.696 × 104 1.048 × 102 9.858 × 104 2.37 × 10−12

HS 1.768 × 106 1.070 × 106 6.292 × 105 2.773 × 105 2.37 × 10−12

BWO 8.153 × 10−6 1.346 × 10−6 1.618 × 10−9 2.176 × 10−6 2.37 × 10−12

GTO 2.477 × 101 2.445 × 100 6.987 × 10−8 7.461 × 100 2.37 × 10−12

HGTO-BWO 1.395 × 10−28 5.853 × 10−30 0.00 × 100 2.608 × 10−29 NAN

F6

TSA 4.820 × 100 3.817 × 100 2.590 × 100 6.004 × 10−1 1.212 × 10−12

GWO 1.754 × 100 8.393 × 10−1 6.737 × 10−5 4.021 × 10−1 1.212 × 10−12

WOA 9.864 × 10−1 3.725 × 10−1 1.355 × 10−1 1.979 × 10−1 1.212 × 10−12

SCA 2.624 × 102 2.762 × 101 4.337 × 100 4.997 × 101 1.212 × 10−12

HS 3.225 × 103 2.582 × 103 1.422 × 103 4.447 × 102 1.212 × 10−12

BWO 2.490 × 10−13 1.879 × 10−14 1.153 × 10−17 4.703 × 10−14 1.212 × 10−12

GTO 7.369 × 10−7 1.292 × 10−7 7.310 × 10−11 1.675 × 10−7 1.212 × 10−12

HGTO-BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN

F7

TSA 2.022 × 10−2 9.471 × 10−3 1.816 × 10−3 4.734 × 10−3 3.02 × 10−11

GWO 6.588 × 10−3 1.963 × 10−3 6.607 × 10−4 1.299 × 10−3 3.02 × 10−11

WOA 1.522 × 10−2 3.099 × 10−3 5.474 × 10−5 3.995 × 10−3 3.16 × 10−10

SCA 4.586 × 10−1 8.768 × 10−2 9.960 × 10−3 9.341 × 10−2 3.02 × 10−11

HS 1.093 × 100 7.266 × 10−1 3.535 × 10−1 1.790 × 10−1 3.02 × 10−11

BWO 4.232 × 10−4 1.563 × 10−4 3.893 × 10−7 1.160 × 10−4 1.70 × 10−2

GTO 3.524 × 10−4 1.005 × 10−4 1.298 × 10−5 8.193 × 10−5 4.12 × 10−1

HGTO-BWO 3.263 × 10−4 8.538 × 10−5 2.321 × 10−6 7.039 × 10−5 NAN

F8

TSA −4.628 × 103 −5.706 × 103 −6.921 × 103 5.559 × 102 1.720 × 10−12

GWO −3.023 × 103 −6.026 × 103 −7.397 × 103 9.273 × 102 1.720 × 10−12

WOA −6.738 × 103 −1.051 × 104 −1.257 × 104 1.872 × 103 1.720 × 10−12

SCA −3.240 × 103 −3.726 × 103 −4.747 × 103 3.438 × 102 1.720 × 10−12

HS −1.130 × 104 −1.160 × 104 −1.196 × 104 1.851 × 102 1.720 × 10−12

BWO −1.257 × 104 −1.257 × 104 −1.257 × 104 1.548 × 10−8 4.562 × 10−11

GTO −1.257 × 104 −1.257 × 104 −1.257 × 104 1.868 × 10−5 4.562 × 10−11

HGTO-BWO −1.257 × 104 −1.257 × 104 −1.257 × 104 3.317 × 10−3 NAN
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Table 2. Cont.

Function No Algorithm Worst Mean Best std p-Value

F9

TSA 2.745 × 102 1.924 × 102 1.364 × 102 3.806 × 101 1.212 × 10−12

GWO 1.195 × 101 2.920 × 100 5.684 × 10−14 3.451 × 100 1.188 × 10−12

WOA 5.684 × 10−14 1.895 × 10−15 0.00 × 100 1.038 × 10−14 3.337 × 10−1

SCA 1.144 × 102 3.067 × 101 1.303 × 10−2 3.118 × 101 1.212 × 10−12

HS 6.129 × 101 5.208 × 101 3.510 × 101 6.576 × 100 1.212 × 10−12

BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN
GTO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN
HGTO-BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN

F10

TSA 1.926 × 101 1.676 × 100 1.077 × 10−12 3.633 × 100 1.212 × 10−12

GWO 1.714 × 10−13 1.039 × 10−13 6.839 × 10−14 2.216 × 10−14 1.112 × 10−12

WOA 7.994 × 10−15 4.796 × 10−15 8.882 × 10−16 2.529 × 10−15 1.233 × 10−9

SCA 2.035 × 101 1.628 × 101 1.762 × 10−02 7.960 × 100 1.212 × 10−12

HS 1.198 × 101 1.022 × 101 9.181 × 100 7.230 × 10−1 1.212 × 10−12

BWO 8.882 × 10−16 8.882 × 10−16 8.882 × 10−16 0.00 × 100 NAN
GTO 8.882 × 10−16 8.882 × 10−16 8.882 × 10−16 0.00 × 100 NAN
HGTO-BWO 8.882 × 10−16 8.882 × 10−16 8.882 × 10−16 0.00 × 100 NAN

F11

TSA 7.086 × 10−2 1.139 × 10−2 0.00 × 100 1.437 × 10−2 3.453 × 10−7

GWO 1.466 × 10−2 2.227 × 10−3 0.00 × 100 4.603 × 10−3 1.104 × 10−2

WOA 1.334 × 10−1 8.450 × 10−3 0.00 × 100 3.220 × 10−2 1.608 × 10−1

SCA 1.395 × 100 9.139 × 10−1 3.508 × 10−1 3.097 × 10−1 1.212 × 10−12

HS 3.395 × 101 2.408 × 101 1.598 × 101 4.187 × 100 1.212 × 10−12

BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN
GTO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN
HGTO-BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN

F12

TSA 1.763 × 1001 8.358 × 100 1.229 × 100 4.909 × 100 1.2 × 10−12

GWO 8.906 × 10−2 4.194 × 10−2 1.302 × 10−2 1.904 × 10−2 1.2 × 10−12

WOA 4.461 × 100 1.803 × 10−1 6.551 × 10−3 8.092 × 10−1 1.2 × 10−12

SCA 7.264 × 106 2.860 × 105 6.013 × 10−1 1.328 × 106 1.2 × 10−12

HS 2.270 × 105 5.098 × 104 1.847 × 103 5.045 × 104 1.2 × 10−12

BWO 6.621 × 10−13 7.690 × 10−14 1.117 × 10−16 1.543 × 10−13 1.2 × 10−12

GTO 1.505 × 10−7 3.881 × 10−8 3.088 × 10−10 4.298 × 10−8 1.2 × 10−12

HGTO-BWO 1.571 × 10−32 1.571 × 10−32 1.571 × 10−32 5.567 × 10−48 NAN

F13

TSA 4.576 × 100 2.978 × 100 1.628 × 100 6.748 × 10−1 1.2 × 10−12

GWO 1.141 × 100 6.990 × 10−1 1.132 × 10−1 2.570 × 10−1 1.2 × 10−12

WOA 1.704 × 100 6.341 × 10−1 6.034 × 10−2 3.425 × 10−1 1.2 × 10−12

SCA 2.870 × 106 2.229 × 105 2.964 × 100 6.961 × 105 1.2 × 10−12

HS 2.840 × 106 1.215 × 106 3.453 × 105 5.884 × 105 1.2 × 10−12

BWO 8.110 × 10−12 4.565 × 10−13 2.230 × 10−15 1.484 × 10−12 1.2 × 10−12

GTO 6.478 × 10−2 4.357 × 10−3 8.216 × 10−12 1.414 × 10−2 1.2 × 10−12

HGTO-BWO 1.35 × 10−32 1.35 × 10−32 1.35 × 10−32 5.567 × 10−48 NAN

F14

TSA 1.830 × 101 9.339 × 100 9.98 × 10−1 4.957 × 100 1.21 × 10−12

GWO 1.267 × 101 4.948 × 100 9.98 × 10−1 4.243 × 100 1.21 × 10−12

WOA 1.076 × 101 3.154 × 100 9.98 × 10−1 3.622 × 100 1.21 × 10−12

SCA 1.076 × 101 2.114 × 100 9.98 × 10−1 2.498 × 100 1.21 × 10−12

HS 9.980 × 10−1 9.980 × 10−1 9.98 × 10−1 1.873 × 10−7 1.21 × 10−12

BWO 1.992 × 100 1.064 × 100 9.98 × 10−1 2.522 × 10−1 1.21 × 10−12

GTO 9.980 × 10−1 9.980 × 10−1 9.98 × 10−1 5.831 × 10−17 1.61 × 10−01

HGTO-BWO 9.980 × 10−1 9.980 × 10−1 9.98 × 10−1 0.00 × 100 NAN
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Table 2. Cont.

Function No Algorithm Worst Mean Best std p-Value

F15

TSA 1.103 × 10−1 1.267 × 10−2 3.077 × 10−4 2.256 × 10−2 6.542 × 10−10

GWO 2.036 × 10−2 6.373 × 10−3 3.075 × 10−4 9.316 × 10−3 1.651 × 10−9

WOA 1.590 × 10−3 7.336 × 10−4 3.223 × 10−4 3.649 × 10−4 3.411 × 10−9

SCA 1.624 × 10−3 1.029 × 10−3 5.172 × 10−4 3.986 × 10−4 9.499 × 10−10

HS 1.562 × 10−2 2.036 × 10−3 6.734 × 10−4 2.721 × 10−3 4.490 × 10−10

BWO 7.762 × 10−4 3.639 × 10−4 3.091 × 10−4 9.203 × 10−5 8.286 × 10−9

GTO 1.223 × 10−3 3.991 × 10−4 3.075 × 10−4 2.794 × 10−4 7.665 × 10−1

HGTO-BWO 1.223 × 10−3 3.685 × 10−4 3.075 × 10−4 2.323 × 10−4 NAN

F16

TSA −1.000 × 100 −1.028 × 100 −1.032 × 100 9.652 × 10−3 6.319 × 10−12

GWO −1.032 × 100 −1.032 × 100 −1.032 × 100 3.067 × 10−8 6.319 × 10−12

WOA −1.032 × 100 −1.032 × 100 −1.032 × 100 2.284 × 10−9 6.319 × 10−12

SCA −1.031 × 100 −1.032 × 100 −1.032 × 100 3.080 × 10−5 6.319 × 10−12

HS −1.031 × 100 −1.032 × 100 −1.032 × 100 1.986 × 10−4 6.319 × 10−12

BWO −1.03 × 100 −1.031 × 100 −1.032 × 100 3.914 × 10−4 6.319 × 10−12

GTO −1.032 × 100 −1.032 × 100 −1.032 × 100 6.321 × 10−16 7.639 × 10−1

HGTO-BWO −1.032 × 100 −1.032 × 100 −1.032 × 100 6.388 × 10−16 NAN

F17

TSA 3.985 × 10−1 3.980 × 10−1 3.979 × 10−1 1.141 × 10−4 1.21 × 10−12

GWO 3.988 × 10−1 3.979 × 10−1 3.979 × 10−1 1.706 × 10−4 1.21 × 10−12

WOA 3.980 × 10−1 3.979 × 10−1 3.979 × 10−1 2.229 × 10−5 1.21 × 10−12

SCA 4.262 × 10−1 4.010 × 10−1 3.979 × 10−1 6.015 × 10−3 1.21 × 10−12

HS 3.997 × 10−1 3.981 × 10−1 3.979 × 10−1 4.448 × 10−4 1.21 × 10−12

BWO 4.087 × 10−1 4.011 × 10−1 3.979 × 10−1 2.804 × 10−3 1.21 × 10−12

GTO 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 0.00 × 100 NAN
HGTO-BWO 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 0.00 × 100 NAN

F18

TSA 3.0 × 101 6.600 × 100 3.0 × 100 9.335 × 100 5.21 × 10−12

GWO 3.0 × 100 3.0 × 100 3.0 × 100 3.081 × 10−5 5.21 × 10−12

WOA 3.0 × 100 3.0 × 100 3.0 × 100 6.025 × 10−5 5.21 × 10−12

SCA 3.0 × 100 3.0 × 100 3.0 × 100 1.173 × 10−4 5.21 × 10−12

HS 3.006 × 100 3.001 × 100 3.0 × 100 1.271 × 10−3 5.21 × 10−12

BWO 6.659 × 100 3.914 × 100 3.009 × 100 9.835 × 10−1 5.21 × 10−12

GTO 3.0 × 100 3.0 × 100 3.0 × 100 9.257 × 10−16 3.146 × 10−02

HGTO-BWO 3.0 × 100 3.0 × 100 3.0 × 100 1.414 × 10−15 NAN

F19

TSA −3.862 × 100 −3.863 × 100 −3.86 × 100 1.091 × 10−4 7.57 × 10−12

GWO −3.855 × 100 −3.862 × 100 −3.86 × 100 2.427 × 10−3 7.57 × 10−12

WOA −3.834 × 100 −3.855 × 100 −3.86 × 100 7.989 × 10−3 7.57 × 10−12

SCA −3.843 × 100 −3.854 × 100 −3.862 × 100 3.439 × 10−3 7.57 × 10−12

HS −3.863 × 100 −3.863 × 100 −3.86 × 100 2.946 × 10−5 7.57 × 10−12

BWO −3.852 × 100 −3.858 × 100 −3.862 × 100 3.045 × 10−3 7.57 × 10−12

GTO −3.863 × 100 −3.863 × 100 −3.86 × 100 2.612 × 10−15 1.000
HGTO-BWO −3.863 × 100 −3.863 × 100 −3.86 × 100 2.612 × 10−15 NAN

F20

TSA −2.840 × 100 −3.248 × 100 −3.321 × 100 1.106 × 10−1 2.646 × 10−7

GWO −3.103 × 100 −3.262 × 100 −3.322 × 100 7.766 × 10−2 2.646 × 10−7

WOA −3.055 × 100 −3.248 × 100 −3.322 × 100 9.266 × 10−2 6.828 × 10−7

SCA −1.454 × 100 −2.918 × 100 −3.220 × 100 3.302 × 10−1 2.319 × 10−11

HS −3.203 × 100 −3.302 × 100 −3.322 × 100 4.509 × 10−2 6.360 × 10−6

BWO −3.169 × 100 −3.267 × 100 −3.317 × 100 4.963 × 10−2 2.667 × 10−6

GTO −3.203 × 100 −3.298 × 100 −3.322 × 100 4.837 × 10−2 8.819 × 10−1

HGTO-BWO −3.203 × 100 −3.298 × 100 −3.322 × 100 4.837 × 10−2 NAN
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Table 2. Cont.

Function No Algorithm Worst Mean Best std p-Value

F21

TSA −2.603 × 100 −7.082 × 100 −1.012 × 101 3.387 × 100 1.406 × 10−11

GWO −2.682 × 100 −9.564 × 100 −1.015 × 101 1.828 × 100 1.406 × 10−11

WOA −2.585 × 100 −8.285 × 100 −1.015 × 101 2.950 × 100 1.406 × 10−11

SCA −4.973 × 10−1 −2.264 × 100 −5.364 × 100 1.829 × 100 1.406 × 10−11

HS −2.629 × 100 −5.921 × 100 −1.015 × 101 3.755 × 100 1.406 × 10−11

BWO −1.013 × 101 −1.015 × 101 −1.015 × 101 4.298 × 10−3 1.406 × 10−11

GTO −1.015 × 101 −1.015 × 101 −1.015 × 101 5.827 × 10−15 3.882 × 10−3

HGTO-BWO −1.015 × 101 −1.015 × 101 −1.015 × 101 6.506 × 10−15 NAN

F22

TSA −1.826 × 100 −7.195 × 100 −1.034 × 101 3.555 × 100 6.387 × 10−12

GWO −5.088 × 100 −1.022 × 101 −1.04 × 101 9.702 × 10−1 6.387 × 10−12

WOA −1.836 × 100 −8.237 × 100 −1.04 × 101 3.179 × 100 6.387 × 10−12

SCA −9.062 × 10−1 −4.124 × 100 −7.417 × 100 1.629 × 100 6.387 × 10−12

HS −2.75 × 100 −5.982 × 100 −1.04 × 101 3.471 × 100 6.387 × 10−12

BWO −1.039 × 101 −1.04 × 101 −1.04 × 101 4.324 × 10−3 6.387 × 10−12

GTO −1.04 × 101 −1.04 × 101 −1.04 × 101 8.080 × 10−16 1.000
HGTO-BWO −1.04 × 101 −1.04 × 101 −1.04 × 101 8.080 × 10−16 NAN

F23

TSA −1.671 × 100 −5.757 × 100 −1.041 × 101 3.745 × 100 7.574 × 10−12

GWO −2.422 × 100 −1.026 × 101 −1.054 × 101 1.481 × 100 7.574 × 10−12

WOA −1.672 × 100 −8.079 × 100 −1.054 × 101 3.345 × 100 7.574 × 10−12

SCA −9.436 × 10−1 −3.886 × 100 −5.962 × 100 1.374 × 100 7.574 × 10−12

HS −2.518 × 101 −6.977 × 100 −1.054 × 101 3.631 × 100 7.574 × 10−12

BWO −1.052 × 101 −1.053 × 101 −1.054 × 101 3.777 × 10−3 7.574 × 10−12

GTO −1.054 × 101 −1.054 × 101 −1.054 × 101 1.189 × 10−15 3.648 × 10−1

HGTO-BWO −1.054 × 101 −1.054 × 101 −1.054 × 101 2.356 × 10−15 NAN

5.2. CEC-C06 2019 Benchmark Functions

To verify the efficiency and validation of the suggested HGTO-BWO, it was tested and
assessed with the modern functions of CEC-C06 2019 [72,73]. The CEC-C06 2019 benchmark
function comprises 10 functions, where CEC01 to CEC03 have variable dimensions, while
CEC04 to CEC10 have constant dimensions. The statistical analysis during the solving of
CEC01 to CEC10 via the proposed HGTO-BWO and others was conducted, and the fetched
results are tabulated in Table 3. The bold values given in Table 3 refer to the best results
obtained through the proposed approach.

Table 3. Statistical analysis of CEC-C06 2019 benchmark functions solved via the proposed hybrid
approach and others.

Function No Algorithm Worst Mean Best Std p-Value

CEC01

TSA 3.841 × 109 2.210 × 108 7.038 × 104 7.170 × 108 3.020 × 10−11

GWO 4.821 × 109 3.646 × 108 4.506 × 104 9.087 × 108 3.020 × 10−11

WOA 1.447 × 1011 2.554 × 1010 3.498 × 106 4.112 × 1010 3.020 × 10−11

SCA 3.788 × 1010 8.327 × 109 2.425 × 107 8.725 × 109 3.020 × 10−11

HS 9.231 × 1010 2.119 × 1010 3.137 × 109 1.969 × 1010 3.020 × 10−11

BWO 8.286 × 104 6.219 × 104 4.906 × 104 8.071 × 103 3.020 × 10−11

GTO 3.981 × 104 3.769 × 104 3.549 × 104 9.246 × 102 3.387 × 10−2

HGTO-BWO 3.889 × 104 3.704 × 104 3.224 × 104 1.215 × 103 NAN
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Table 3. Cont.

Function No Algorithm Worst Mean Best Std p-Value

CEC02

TSA 1.956 × 101 1.840 × 101 1.735 × 101 7.225 × 10−1 1.061 × 10−11

GWO 1.734 × 101 1.734 × 101 1.734 × 101 2.575 × 10−4 1.061 × 10−11

WOA 1.747 × 101 1.735 × 101 1.734 × 101 2.329 × 10−2 1.061 × 10−11

SCA 1.772 × 101 1.749 × 101 1.737 × 101 8.718 × 10−2 1.061 × 10−11

HS 1.147 × 102 5.717 × 101 2.004 × 101 2.245 × 101 1.061 × 10−11

BWO 1.780 × 101 1.755 × 101 1.744 × 101 8.285 × 10−2 1.061 × 10−11

GTO 1.734 × 101 1.734 × 101 1.734 × 101 6.032 × 10−13 1.506 × 10−1

HGTO-BWO 1.734 × 101 1.734 × 101 1.734 × 101 1.108 × 10−14 NAN

CEC03

TSA 1.271 × 101 1.27 × 101 1.27 × 101 1.298 × 10−3 1.720 × 10−12

GWO 1.27 × 101 1.27 × 101 1.27 × 101 1.158 × 10−5 1.720 × 10−12

WOA 1.27 × 101 1.27 × 101 1.27 × 101 2.173 × 10−6 1.720 × 10−12

SCA 1.27 × 101 1.27 × 101 1.27 × 101 1.158 × 10−4 1.720 × 10−12

HS 1.27 × 101 1.27 × 101 1.27 × 101 6.272 × 10−7 1.720 × 10−12

BWO 1.27 × 101 1.27 × 101 1.27 × 101 1.160 × 10−4 1.720 × 10−12

GTO 1.27 × 101 1.27 × 101 1.27 × 101 3.688 × 10−15 1.000
HGTO-BWO 1.27 × 101 1.27 × 101 1.27 × 101 3.917 × 10−15 NAN

CEC04

TSA 9.665 × 103 4.501 × 103 1.712 × 102 2.214 × 103 3.020 × 10−11

GWO 4.212 × 103 2.409 × 102 2.141 × 101 7.933 × 102 4.204 × 10−1

WOA 6.893 × 102 3.777 × 102 1.490 × 102 1.541 × 102 3.020 × 10−11

SCA 4.111 × 103 1.666 × 103 7.541 × 102 8.432 × 102 3.020 × 10−11

HS 1.427 × 102 7.831 × 101 4.261 × 101 2.816 × 101 4.218 × 10−4

BWO 1.211 × 104 7.614 × 103 2.383 × 103 2.226 × 103 3.020 × 10−11

GTO 4.388 × 102 1.015 × 102 3.383 × 101 7.859 × 101 5.264 × 10−4

HGTO-BWO 1.264 × 102 5.574 × 101 2.189 × 101 2.474 × 101 NAN

CEC05

TSA 4.893 × 100 3.033 × 100 1.560 × 100 8.286 × 10−1 4.504 × 10−11

GWO 1.891 × 100 1.455 × 100 1.055 × 100 2.840 × 10−1 1.221 × 10−2

WOA 2.786 × 100 1.862 × 100 1.287 × 100 3.340 × 10−1 4.616 × 10−10

SCA 2.442 × 100 2.188 × 100 2.004 × 100 9.594 × 10−2 3.020 × 10−11

HS 1.495 × 100 1.278 × 100 1.099 × 100 1.014 × 10−1 2.170 × 10−1

BWO 4.149 × 100 3.617 × 100 2.867 × 100 3.177 × 10−1 3.020 × 10−11

GTO 1.871 × 100 1.249 × 100 1.032 × 100 2.017 × 10−1 4.643 × 10−1

HGTO-BWO 1.780 × 100 1.261 × 100 1.047 × 100 1.684 × 10−1 NAN

CEC06

TSA 1.184 × 101 1.106 × 101 9.047 × 100 6.621 × 10−1 3.020 × 10−11

GWO 1.210 × 101 1.095 × 101 9.122 × 100 7.040 × 10−1 3.020 × 10−11

WOA 1.141 × 101 9.831 × 100 7.546 × 100 9.329 × 10−1 4.504 × 10−11

SCA 1.218 × 101 1.101 × 101 9.583 × 100 7.444 × 10−1 3.020 × 10−11

HS 1.118 × 101 9.057 × 100 6.929 × 100 1.404 × 100 2.922 × 10−9

BWO 1.200 × 101 1.090 × 101 9.780 × 100 5.720 × 10−1 3.020 × 10−11

GTO 1.207 × 101 8.029 × 100 5.137 × 100 1.503 × 100 3.835 × 10−6

HGTO-BWO 7.922 × 100 6.194 × 100 3.711 × 100 1.058 × 100 NAN

CEC07

TSA 1.035 × 103 5.909 × 102 1.111 × 102 2.431 × 102 1.010 × 10−8

GWO 1.091 × 103 5.154 × 102 −1.534 × 101 3.448 × 102 4.639 × 10−5

WOA 1.429 × 103 6.162 × 102 1.365 × 102 3.478 × 102 2.602 × 10−8

SCA 1.140 × 103 7.929 × 102 4.640 × 102 1.563 × 102 3.020 × 10−11

HS 7.648 × 102 2.673 × 102 −2.514 × 102 2.779 × 102 5.943 × 10−2

BWO 1.183 × 103 8.537 × 102 5.020 × 102 1.761 × 102 3.020 × 10−11

GTO 1.098 × 103 3.736 × 102 −1.016 × 102 2.990 × 102 1.680 × 10−3

HGTO-BWO 4.571 × 102 1.388 × 102 −1.506 × 102 1.838 × 102 NAN
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Table 3. Cont.

Function No Algorithm Worst Mean Best Std p-Value

CEC08

TSA 7.051 × 100 6.333 × 100 5.427 × 100 4.589 × 10−1 9.063 × 10−8

GWO 6.584 × 100 4.984 × 100 3.182 × 100 8.750 × 10−1 3.711 × 10−1

WOA 7.060 × 100 5.965 × 100 4.795 × 100 5.548 × 10−1 1.493 × 10−4

SCA 6.828 × 100 6.055 × 100 4.697 × 100 4.921 × 10−1 1.337 × 10−5

HS 6.117 × 100 4.841 × 100 2.763 × 100 9.617 × 10−1 2.062 × 10−1

BWO 6.843 × 100 6.311 × 100 5.657 × 100 2.931 × 10−1 2.922 × 10−9

GTO 6.668 × 100 5.235 × 100 3.694 × 100 6.907 × 10−1 9.000 × 10−1

HGTO-BWO 6.183 × 100 5.159 × 100 3.630 × 100 7.707 × 10−1 NAN

CEC09

TSA 1.579 × 103 2.795 × 102 3.468 × 100 4.309 × 102 3.020 × 10−11

GWO 6.206 × 100 4.419 × 100 3.038 × 100 8.261 × 10−1 3.020 × 10−11

WOA 2.169 × 101 5.703 × 100 3.495 × 100 3.128 × 100 3.020 × 10−11

SCA 3.871 × 102 1.150 × 102 9.989 × 100 9.173 × 101 3.020 × 10−11

HS 5.387 × 100 3.612 × 100 2.680 × 100 6.163 × 10−1 4.077 × 10−11

BWO 1.964 × 103 1.230 × 103 6.707 × 102 3.098 × 102 3.020 × 10−11

GTO 4.680 × 100 2.803 × 100 2.413 × 100 4.563 × 10−1 1.091 × 10−5

HGTO-BWO 2.804 × 100 2.476 × 100 2.369 × 100 1.148 × 10−1 NAN

CEC10

TSA 2.065 × 101 2.047 × 101 2.022 × 101 1.108 × 10−1 3.338 × 10−11

GWO 2.065 × 101 2.050 × 101 2.031 × 101 8.815 × 10−2 3.020 × 10−11

WOA 2.052 × 101 2.028 × 101 2.007 × 101 1.117 × 10−1 2.371 × 10−10

SCA 2.064 × 101 2.049 × 101 2.028 × 101 9.279 × 10−2 3.020 × 10−11

HS 2.054 × 101 2.033 × 101 2.008 × 101 1.281 × 10−1 1.464 × 10−10

BWO 2.061 × 101 2.044 × 101 2.020 × 101 1.031 × 10−1 3.338 × 10−11

GTO 2.031 × 101 1.954 × 101 3.734 × 100 2.988 × 100 2.921 × 10−2

HGTO-BWO 2.023 × 101 1.937 × 101 7.754 × 10−13 3.658 × 100 NAN

6. Application of HGTO-BWO: Parameter Estimation of PV Cell/Module

The proposed HGTO-BWO was applied to solve a vital problem regarding the iden-
tification of the optimal parameters of the PV cell/panel equivalent circuit with the aid
of experimental data. The topic is very important as it is necessary to establish a reliable
model of a PV system that simulates reality. This helps many researchers to conduct their
work in the constructed circuit via the proposed methodology.

The parameters were computed in standard operating conditions for the PVM752 cell,
STM6-40/36 panel, and PWP-201 module. Also, the double diode models for the KC200GT
and MSX60 were constructed under various solar irradiances and temperatures. Table 4
shows the considered upper and lower limits of the design variables.

Table 4. The upper and lower limits of design variables for various PV cell/models.

Parameters
PVW 752 STM6-40/36 PWP-201 MSX60 KC200GT

Lb Ub Lb Ub Lb Ub Lb Ub Lb Ub

A1,2,3 1 2 1 60 1 50 1 2 1 2
Rs 0 0.8 0 0.36 0 2 0 2 0 2
Rsh 0 1000 0 1000 0 2000 0 500 0 500
Id1, Id2, Id3 0 1 × 10−6 0 50 × 10−6 0 50 × 10−6 0 10 × 10−6 0 10 × 10−6

Iph 0 0.5 0 2 0 2 0 8 0 16.4

6.1. Case 1: Constant Weather Conditions
6.1.1. PVW 752 Cell

The proposed HGTO-BWO was employed to determine the parameters of the DDM
and TDM for a PVM752 GaAs thin film cell at 25 ◦C and 1000 W/m2; the electric character-
istics of the PVM752 cell and the measured I-V data are presented in [74]. The convergence
curves obtained by the considered optimizers for both models are shown in Figure 5. The
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RMSE value, statistical analysis, and optimal parameters of the DDM obtained through
the proposed HGTO-BWO in comparison to the others are illustrated in Table 5. The
least obtained RMSEs for the DDM and TDM were achieved by HGTO-BWO with values
of 2.0886 × 10−4 and 1.527 × 10−4, respectively. On the other hand, the GTO approach
ranked second, achieving fitness values of 4.6815 × 10−4 for the DDM and 2.278 × 10−4

for the TDM. The HS algorithm was the worst approach; it provided fitness values of
6.6870 × 10−1 for the DDM and 3.738 for the TDM. Figure 6 shows the estimated and
measured P-V and I-V curves of the DDM and TDM. It is notable that the estimated curves
converge closely with the measured data; this means the PV cell/panel performed well
and converged with the real one. The statistical parameters including best, worst, mean,
and std are shown in Figure 7. The results shown in Table 5 verify the effectiveness of the
suggested approach in extracting the parameters with the least fitness values compared to
the other algorithms. The values given in bold indicate the best solutions obtained by the
proposed HGTO-BWO approach.
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Mean 3.3031 × 10−3 2.3763 × 10−2 3.8904 × 10−2 2.7333 × 10−2 6.1022 × 100 4.1477 × 10−2 2.2662 × 10−2 1.4662 × 10−2 

std 4.7330 × 10−3 6.2492 × 10−3 2.4866 × 10−2 1.0555 × 10−2 4.4800 × 100 1.4131 × 10−2 6.5555 × 10−3 1.1001 × 10−2 

p-value 7.9106 × 10−3 1.6060 × 10−9 2.1821 × 10−11 2.262 × 10−11 2.262 × 10−11 2.262 × 10−11 1.0147 × 10−3 NAN 

TDM 
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A2 2.0000 2.0000 1.9893 1.1864 1.9981 1.0000 1.0000 1.1530 

A3 2.0000 1.9859 1.9977 1.1541 1.9995 1.0000 1.0050 1.9992 

Rs 0.5356 0.5161 0.0000 0.0000 0.0027 0.0131 0.6605 0.7163 

Rsh 853.5804 628.6429 94.9593 14.6251 996.7450 19.8767 608.0249 720.9139 

Id1 2.471 × 10−11 0.0 × 100 2.422 × 10−10 0.0 × 100 6.784 × 10−9 0.0 × 100 3.779 × 10−12 1.708 × 10−10 

Id2 3.088 × 10−10 3.559 × 10−10 0.0 × 100 0.0 × 100 1.092 × 10−9 0.0 × 100 0.0 × 100 1.371 × 10−16 
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Table 5. Optimal parameters of PVW752 PV cell DDM and TDM models.

Alg. TSA GWO [75] WOA [76] SCA HS BWO GTO HGTO-BWO

DDM

A1 1.7120 1.3103 1.7975 2.0000 1.9999 1.0000 1.9910 1.3954
A2 2.0000 2.0000 1.7975 2.0000 1.9998 1.0000 1.8486 1.8296
Rs 0.5153 0.5188 0.0000 0.0000 0.1255 0.0000 0.5764 0.6759
Rsh 1000.000 602.772 14.589 14.559 995.383 15.763 996.861 616.390
Id1 2.173 × 10−16 0.0 × 100 0.0 × 100 0.0 × 100 3.303 × 10−10 0.0 × 100 0.0 × 100 4.698 × 10−14

Id2 3.824 × 10−10 3.803 × 10−10 0.0 × 100 0.0 × 100 7.259 × 10−9 0.0 × 100 7.798 × 10−11 2.822 × 10−11

Iph 0.1002 0.1004 0.1138 0.1139 0.5000 0.1096 0.1000 0.1001

RMSE 7.1892 × 10−4 7.6797 × 10−4 2.5400 × 10−2 2.5400 × 10−2 6.6870 × 10−1 2.5504 × 10−2 4.6815 × 10−4 2.0886 × 10−4

Worst 2.5405 × 10−2 2.5416 × 10−2 8.3219 × 10−2 8.3219 × 10−2 1.8163 × 101 8.1095 × 10−2 2.5400 × 10−2 2.5400 × 10−2

Mean 3.3031 × 10−3 2.3763 × 10−2 3.8904 × 10−2 2.7333 × 10−2 6.1022 × 100 4.1477 × 10−2 2.2662 × 10−2 1.4662 × 10−2

std 4.7330 × 10−3 6.2492 × 10−3 2.4866 × 10−2 1.0555 × 10−2 4.4800 × 100 1.4131 × 10−2 6.5555 × 10−3 1.1001 × 10−2

p-value 7.9106 × 10−3 1.6060 × 10−9 2.1821 × 10−11 2.262 × 10−11 2.262 × 10−11 2.262 × 10−11 1.0147 × 10−3 NAN

TDM

A1 1.9293 1.6268 1.9620 1.0000 1.9987 1.0000 1.6157 1.9993
A2 2.0000 2.0000 1.9893 1.1864 1.9981 1.0000 1.0000 1.1530
A3 2.0000 1.9859 1.9977 1.1541 1.9995 1.0000 1.0050 1.9992
Rs 0.5356 0.5161 0.0000 0.0000 0.0027 0.0131 0.6605 0.7163
Rsh 853.5804 628.6429 94.9593 14.6251 996.7450 19.8767 608.0249 720.9139
Id1 2.471 × 10−11 0.0 × 100 2.422 × 10−10 0.0 × 100 6.784 × 10−9 0.0 × 100 3.779 × 10−12 1.708 × 10−10

Id2 3.088 × 10−10 3.559 × 10−10 0.0 × 100 0.0 × 100 1.092 × 10−9 0.0 × 100 0.0 × 100 1.371 × 10−16

Id3 2.362 × 10−11 2.097 × 10−11 0.0 × 100 0.0 × 100 2.872 × 10−8 0.0 × 100 0.0 × 100 2.894 × 10−20

Iph 0.1004 0.1003 0.0996 0.1137 0.4999 0.1015 0.1001 0.1000

RMSE 7.510 × 10−4 7.603 × 10−4 7.171 × 10−3 2.540 × 10−2 3.738 × 100 2.642 × 10−2 2.278 × 10−4 1.527 × 10−4

Worst 1.4277 × 10−2 1.7234 × 10−2 3.1417 × 10−1 3.1109 × 10−1 9.7810 × 10−3 1.4804 × 100 3.1880 × 10−3 2.4999 × 10−3

Mean 7.7371 × 10−3 5.9997 × 10−3 5.1015 × 10−2 1.5508 × 10−1 4.4487 × 10−3 4.6697 × 10−1 2.5146 × 10−3 1.9473 × 10−3

std 2.9796 × 10−3 2.7148 × 10−3 8.9905 × 10−2 1.4850 × 10−1 1.5576 × 10−3 3.2987 × 10−1 4.5441 × 10−4 1.4158 × 10−4

p-value 3.019 × 10−11 3.019 × 10−11 3.019 × 10−11 3.019 × 10−11 3.6897 × 10−11 3.019 × 10−11 3.2555 × 10−7 NAN
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6.1.2. PV Panel

The analyzed panels in this work were the Photowatt PWP-201 and STM6-40/36.
The first one was investigated at 51 ◦C and 1000 W/m2, while the PWP-201 module was
investigated at 45 ◦C and 1000 W/m2. The measured data for both considered panels are
given in [54,77]. The fetched results for the DDMs of both panels are tabulated in Table 6.
The proposed HGTO-BWO came in the first rank with the best RMSEs of 2.42508 × 10−3

for PWP-201 and 1.8032 × 10−3 for STM6-40/36, while the GTO approach was in the
second rank with fitness values of 2.42511 × 10−3 and 1.88 × 10−3 for PWP-201 and
STM6-40/36, respectively. The computed and measured P-V and I-V curves are shown
in Figure 8. The obtained curves are completely consistent with the measured data, and
this confirms the preference of the proposed method in obtaining an approved equivalent
circuit that simulates reality. The mean ranking of the RMSE values is illustrated in
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Figure 9. It is confirmed that the proposed HGTO-BWO has the greatest rank among the
applied algorithms, while Figure 10 illustrates the bar chart of the statistical analysis of
the DDM. Moreover, the TDM optimal parameters and statistical analysis achieved by the
proposed HGTO-BWO and the others are presented in Table 7. It is observed that the best
fitness values were attained by the proposed HGTO-BWO with values of 2.2068 × 10−3

for PWP-201 and 1.7435 × 10−3 for STM6-40/36, while the worst fitness values were
obtained via BWO with 1.5132 × 10−1 and 2.4985 × 10−1 for PWP-201 and STM6-40/36,
respectively. Figure 11 depicts the measured and computed P-V and I-V curves of the TDM;
the computed data converge with the measured ones; this validates the competence of the
proposed HGTO-BWO. The mean ranking of the RMSE values and the statistical analysis
for the TDM are presented in Figures 12 and 13, respectively. The RMSE values in bold
indicate the best solutions obtained by the proposed HGTO-BWO approach.

Table 6. The calculated parameters of DDM and statistical analysis for PWP-201 and STM6-40/36 panels.

Alg. TSA GWO [75] WOA [76] SCA HS BWO GTO HGTO-BWO

PWP201

A1 50.0000 50.0000 46.5652 50.0000 49.2825 1.0000 48.6368 48.6477
A2 48.3674 46.5502 49.9999 42.6562 49.5258 50.0000 1.0000 48.6330
Rs 1.1616 1.1824 1.1658 0.9700 1.1852 1.8645 1.2013 1.2012
Rsh 880.7826 1220.8951 1999.9965 904.1055 1420.8958 109.5641 977.9933 982.7504
Id1 4.343 × 10−6 4.180 × 10−6 0.0 × 100 4.661 × 10−6 3.556 × 10−6 0.0 × 100 3.477 × 10−6 2.886 × 10−6

Id2 3.688 × 10−7 2.946 × 10−7 4.923 × 10−6 0.0 × 100 5.916 × 10−7 3.483 × 10−6 0.0 × 100 5.988 × 10−7

Iph 1.0345 1.0303 1.0275 1.0158 1.0285 0.8628 1.0305 1.0305

RMSE 3.20292 × 10−3 2.56748 × 10−3 2.63181 × 10−3 2.42124 × 10−2 2.49283 × 10−3 2.34014 × 10−1 2.42511 × 10−3 2.42508 × 10−3

Worst 1.4277 × 10−2 1.7234 × 10−2 3.1417 × 10−1 3.1109 × 10−1 9.7810 × 10−3 1.4804 × 100 3.1880 × 10−3 2.4999 × 10−3

Mean 7.7371 × 10−3 5.9997 × 10−3 5.1015 × 10−2 1.5508 × 10−1 4.4487 × 10−3 4.6697 × 10−1 2.5146 × 10−3 1.9473 × 10−3

std 2.9796 × 10−3 2.7148 × 10−3 8.9905 × 10−2 1.4850 × 10−1 1.5576 × 10−3 3.2987 × 10−1 4.5441 × 10−4 1.4158 × 10−4

p-value 3.019 × 10−11 3.019 × 10−11 3.019 × 10−11 3.019 × 10−11 3.6897 × 10−11 3.019 × 10−11 3.2555 × 10−7 NAN

STM6-40/36

A1 55.8706 54.3091 59.9590 60.0000 57.9886 54.6034 59.9962 60.0000
A2 60.0000 55.3299 59.9590 26.9562 48.3514 54.8365 45.6821 43.5068
Rs 0.0902 0.1768 0.0190 0.0000 0.2181 0.0056 0.2450 0.2818
Rsh 929.6713 768.3818 999.3155 484.4850 649.1660 87.2447 611.4645 574.3640
Id1 1.121 × 10−6 1.564 × 10−6 5.814 × 10−6 5.764 × 10−6 1.966 × 10−6 7.834 × 10−7 2.858 × 10−6 2.855 × 10−6

Id2 3.006 × 10−6 3.692 × 10−9 0.000 0.000 1.356 × 10−7 7.834 × 10−7 5.815 × 10−8 2.551 × 10−8

Iph 1.6596 1.6584 1.6613 1.6695 1.6616 1.8222 1.6635 1.6643

RMSE 3.8737 × 10−3 3.2441 × 10−3 4.3087 × 10−3 7.5372 × 10−3 2.1464 × 10−3 7.7568 × 10−2 1.8800 × 10−3 1.8032 × 10−3

Worst 1.4277 × 10−2 1.7234 × 10−2 3.1417 × 10−1 3.1109 × 10−1 9.7810 × 10−3 1.4804 × 100 3.1880 × 10−3 2.4999 × 10−3

Mean 7.7371 × 10−3 5.9997 × 10−3 5.1015 × 10−2 1.5508 × 10−1 4.4487 × 10−3 4.6697 × 10−1 2.5146 × 10−3 1.9473 × 10−3

std 2.9796 × 10−3 2.7148 × 10−3 8.9905 × 10−2 1.4850 × 10−1 1.5576 × 10−3 3.2987 × 10−1 4.5441 × 10−4 1.4158 × 10−4

p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.6897 × 10−11 3.0199 × 10−11 3.2555 × 10−7 NAN
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Table 7. TDM optimal parameters and statistical analysis for PWP-201 and STM6-40/36 panels.

Alg. TSA GWO [75] WOA [76] SCA HS BWO GTO HGTO-BWO

PWP201

A1 50.0000 47.4470 50.0000 50.0000 49.3165 42.8772 49.9856 44.4743
A2 50.0000 49.7858 49.4766 6.9151 48.5919 1.0000 1.0000 14.9639
A3 49.2038 47.8414 9.1965 4.9402 48.4106 42.0707 48.6492 47.8405
Rs 1.1754 1.1860 1.1625 1.1260 1.1985 1.7161 1.2011 1.2922
Rsh 1434.1924 1248.8693 2000.0000 116.3588 1117.9430 171.5803 984.7595 1030.1916
Id1 4.635 × 10−8 5.765 × 10−7 4.924 × 10−6 4.681 × 10−6 8.715 × 10−7 0.0 × 100 0.0 × 100 4.465 × 10−9

Id2 3.161 × 10−6 3.603 × 10−6 0.0 × 100 0.0 × 100 2.462 × 10−6 0.0 × 100 0.0 × 100 4.699 × 10−20

Id3 1.405 × 10−6 0.0 × 100 0.0 × 100 0.0 × 100 2.458 × 10−7 3.997 × 10−7 3.488 × 10−6 2.730 × 10−6

Iph 1.0297 1.0291 1.0274 1.1189 1.0299 0.9035 1.0305 1.0297

RMSE 2.6051 × 10−3 2.4976 × 10−3 2.6738 × 10−3 2.7293 × 10−2 2.4956 × 10−3 1.5132 × 10−1 2.4251 × 10−3 2.2068 × 10−3

Worst 1.3165 × 10−1 7.2474 × 10−3 7.8391 × 10−1 7.8391 × 10−1 1.8873 × 10−2 7.8391 × 10−1 2.7425 × 10−1 2.7425 × 10−1

Mean 1.0840 × 10−2 3.4417 × 10−3 2.2133 × 10−1 2.4793 × 10−1 6.1577 × 10−3 4.6665 × 10−1 9.3345 × 10−2 2.9811 × 10−2

std 2.3150 × 10−2 1.1862 × 10−3 2.2042 × 10−1 1.7304 × 10−1 3.5373 × 10−3 1.6864 × 10−1 1.3011 × 10−1 8.2878 × 10−2

p-value 6.5238 × 10−7 3.8338 × 10−6 2.4324 × 10−9 4.1950 × 10−10 1.3848 × 10−6 5.4773 × 10−11 9.2129 × 10−3 NAN

STM6-40/36

A1 60.0000 18.8859 27.4319 60.0000 58.0623 50.3727 59.8760 59.8001
A2 60.0000 55.1060 59.9990 56.4263 57.8885 49.1217 45.3316 37.5844
A3 60.0000 56.1273 59.9990 60.0000 55.5272 49.1043 59.9974 59.9783
Rs 0.0003 0.1634 0.0123 0.0000 0.0883 0.0003 0.2649 0.3455
Rsh 933.7652 1000.00 861.6239 577.2329 901.7309 54.1090 570.3259 595.6377
Id1 1.215 × 10−6 0.0 × 100 0.0 × 100 0.0 × 100 2.489 × 10−6 3.932 × 10−8 1.808 × 10−13 3.100 × 10−6

Id2 2.828 × 10−6 1.365 × 10−6 5.857 × 10−6 0.0 × 100 7.033 × 10−7 3.932 × 10−8 5.465 × 10−8 1.456 × 10−9

Id3 1.804 × 10−6 7.092 × 10−7 0.0 × 100 5.828 × 10−6 3.482 × 10−7 3.932 × 10−8 2.653 × 10−6 8.272 × 10−9

Iph 1.6619 1.6569 1.6627 1.6656 1.6599 1.6349 1.6643 1.6643

RMSE 4.8420 × 10−3 3.4043 × 10−3 4.4379 × 10−3 6.1808 × 10−3 3.3162 × 10−3 2.4985 × 10−1 1.8235 × 10−3 1.7435 × 10−3

Worst 2.9048 × 10−2 2.0280 × 10−2 1.5378 × 100 1.5378 × 100 1.3253 × 10−2 1.3756 × 100 4.5153 × 10−3 3.2509 × 10−3

Mean 9.9667 × 10−3 6.9313 × 10−3 3.2435 × 10−1 2.3526 × 10−1 5.9740 × 10−3 4.4539 × 10−1 2.5938 × 10−3 2.0732 × 10−3

std 5.2223 × 10−3 3.9683 × 10−3 5.6249 × 10−1 2.8494 × 10−1 2.9328 × 10−3 2.5235 × 10−1 6.5633 × 10−4 3.0115 × 10−4

p-value 3.0199 × 10−11 3.019 × 10−11 2.9822 × 10−11 3.0199 × 10−11 3.019 × 10−11 3.0199 × 10−11 1.8575 × 10−3 NAN
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6.2. Case 2: Variable Weather Conditions

The changes in temperature and solar radiation should be considered during the
design of the PV system as they have great influence on the system’s efficiency [78]. The
proposed HGTO-BWO constructed the DDM of MSX60 and KC200GT PV panels at various
weather situations with the aid of the data given in [79]. Table 8 displays the statistical
analysis of KC200GT in case A and B, where case A was conducted by operating the panel at
1000 W/m2 and at the different temperatures of 25 ◦C, 50 ◦C, and 75 ◦C. In case B, the panel
was operated at 25 ◦C and at the various irradiances of 1000 W/m2, 800 W/m2, 600 W/m2,
400 W/m2, and 200 W/m2. The best RMSE values of 3.5092 × 10−3 and 1.6067 × 10−3 were
obtained during operation at 25 ◦C and 50 ◦C via the proposed approach. Additionally, it
achieved the minimum fitness values of 9.1596 × 10−4, 6.3910 × 10−4, 7.7891 × 10−4, and
2.3850 × 10−4 during operation at 800 W/m2, 600 W/m2, 400 W/m2, and 200 W/m2, re-
spectively. Figure 14 illustrates the simulated and measured data of I-V and P-V curves. The
statistical parameters of the approach during the establishment of the circuit of KC200GT at
irradiances of 1000 W/m2 and a temperature of 25 ◦C are illustrated in Figure 15 while the
statistical analyses of MSX60 during various temperature and irradiances are displayed in
Table 9. The proposed approach achieved the best RMSE values for MSX60 of 1.0765 × 10−4,
1.9324× 10−4, and 2.9790 × 10−5 at 1000 W/m2 and temperatures of 25 ◦C, 50 ◦C, and
75 ◦C, respectively. Moreover, at 25 ◦C the fitness values were 1.1336 × 10−3 at 800 W/m2;
6.7775 × 10−4 at 600 W/m2; 2.4366 × 10−5 at 400 W/m2; and 5.9828 × 10−5 at 200 W/m2.
The estimated and measured curves are shown in Figure 16. Moreover, the bar chart of
the statistical analysis for MSX60 at 1000 W/m2 and 25 ◦C is given in Figure 17. The
curves confirmed the efficiency and reliability of the suggested HGTO-BWO technique in
establishing the PV panel equivalent circuit at different operating conditions.
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Table 8. Statistical analysis of KC200GT obtained via the proposed approach and others.

Alg. TSA GWO [75] WOA [76] SCA HS BWO GTO HGTO-BWO

25 ◦C −1000 W/m2

Worst 2.9928 × 10−1 3.0217 × 10−1 4.8023 × 10−1 1.9379 1.1325 × 10−1 1.4025 4.8847 × 10−2 4.4998 × 10−2

Mean 1.2413 × 10−1 1.4665 × 10−1 2.0105 × 1001 5.6411 × 10−1 1.0267 × 10−1 8.1383 × 10−1 2.0235 × 10−2 1.7427 × 10−2

Best 7.4638 × 10−2 7.4290 × 10−2 5.6054 × 10−2 2.7115 × 10−1 8.4595 × 10−2 3.3635 × 10−1 4.3534 × 10−3 3.5092 × 10−3

std 5.0151 × 10−2 6.5383 × 10−2 1.0046 × 10−1 5.5487 × 10−1 5.7736 × 10−3 3.1312 × 10−1 1.2395 × 10−2 1.0633 × 10−2

p-value 3.019 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 4.3764 × 10−1 NAN

50 ◦C −1000 W/m2

Worst 3.6628 × 10−1 4.1794 × 10−1 5.4631 × 10−1 1.8390 7.5862 × 10−2 1.2964 9.7639 × 10−3 6.5681 × 10−3

Mean 8.4434 × 10−2 1.1236 × 10−1 1.7634 × 10−1 6.2204 × 10−1 5.7186 × 10−2 7.9166 × 10−1 5.5423 × 10−3 3.5076 × 10−3

Best 3.7404 × 10−2 2.3983 × 10−2 3.6157 × 10−2 2.3277 × 10−1 4.2992 × 10−2 2.7384 × 10−1 1.7663 × 10−3 1.6067 × 10−3

std 6.0767 × 10−2 1.2209 × 10−1 1.3871 × 10−1 4.9262 × 10−1 7.9771 × 10−3 2.3545 × 10−1 1.7398 × 10−3 1.2797 × 10−3

p-value 3.019 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 7.7387 × 10−6 NAN

75 ◦C −1000 W/m2

Worst 6.2182 × 10−1 1.0621 × 10−1 7.1242 × 10−1 1.7607 6.3285 × 10−2 1.5777 2.2913 × 10−2 1.6548 × 10−2

Mean 9.0915 × 10−2 4.9024 × 10−2 1.7288 × 10−1 5.6890 × 10−1 2.5581 × 10−2 7.3398 × 10−1 8.9380 × 10−3 7.5146 × 10−3

Best 1.6338 × 10−2 9.4445 × 10−3 1.1059 × 10−2 1.0406 × 10−1 7.6656 × 10−3 2.0249 × 10−1 6.6018 × 10−3 6.6031 × 10−3

std 1.3247 × 10−1 2.1144 × 10−2 2.2991 × 10−1 3.8031 × 10−1 1.5386 × 10−2 3.1381 × 10−1 3.3844 × 10−3 1.8398 × 10−3

p-value 3.3384 × 10−11 3.3384 × 10−11 3.3384 × 10−11 3.0199 × 10−11 1.4643 × 10−10 3.0199 × 10−11 1.0315 × 10−2 NAN

25 ◦C −800 W/m2

Worst 1.4449 × 10−1 2.2284 × 10−1 7.0500 × 10−1 1.4772 1.5979 × 10−1 1.1877 3.3746 × 10−2 3.2627 × 10−2

Mean 9.0134 × 10−2 1.0398 × 10−1 1.9967 × 10−1 2.5799 × 10−1 8.4035 × 10−2 6.0816 × 10−1 1.4743 × 10−2 1.1191 × 10−2

Best 3.5152 × 10−2 4.3232 × 10−2 6.5955 × 10−2 1.4555 × 10−1 6.0633 × 10−2 2.8132 × 10−1 1.2057 × 10−3 9.1596 × 10−4

std 2.6954 × 10−2 3.9288 × 10−2 1.5380 × 10−1 2.3535 × 10−1 1.8618 × 10−2 2.6438 × 10−1 9.0202 × 10−3 7.1797 × 10−3

p-value 3.019 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 8.2357 × 10−2 NAN

25 ◦C −600 W/m2

Worst 1.0078 × 10−1 1.0134 × 10−1 1.0689 1.0695 9.9952 × 10−2 1.1223 3.4077 × 10−2 2.8480 × 10−2

Mean 6.0087 × 10−2 6.2787 × 10−2 2.0351 × 10−1 2.7402 × 10−1 6.0285 × 10−2 4.7936 × 10−1 1.1981 × 10−2 7.9571 × 10−3

Best 2.5294 × 10−2 2.9938 × 10−2 6.4945 × 10−2 6.0119 × 10−2 4.9966 × 10−2 2.5931 × 10−1 1.2080 × 10−3 6.3910 × 10−4

std 1.6177 × 10−2 1.6123 × 10−2 1.8811 × 10−1 3.6424 × 10−1 1.1376 × 10−2 1.7777 × 10−1 7.7565 × 10−3 5.7342 × 10−3

p-value 3.3384 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.0315 × 10−2 NAN

25 ◦C −400 W/m2

Worst 9.3298 × 10−2 8.1703 × 10−2 2.4730 × 10−1 7.1507 × 10−1 1.2053 × 10−1 6.0211 × 10−1 2.3817 × 10−2 2.4774 × 10−2

Mean 5.3040 × 10−2 4.5807 × 10−2 1.0975 × 10−1 9.7278 × 10−2 4.4209 × 10−2 3.1765 × 10−1 9.7556 × 10−3 7.0046 × 10−3

Best 2.3846 × 10−2 1.2940 × 10−2 2.9330 × 10−2 3.0107 × 10−2 2.1731 × 10−2 1.1111 × 10−1 1.4399 × 10−3 7.7891 × 10−4

std 1.7438 × 10−2 1.8296 × 10−2 5.9500 × 10−2 1.1921 × 10−1 1.8535 × 10−2 1.2998 × 10−1 6.7435 × 10−3 5.4953 × 10−3

p-value 3.6897 × 10−11 6.0658 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.6897 × 10−11 3.0199 × 10−11 4.5146 × 10−2 NAN

25 ◦C −200 W/m2

Worst 4.7413 × 10−2 5.4922 × 10−2 3.4134 × 10−1 3.3976 × 10−1 6.1243 × 10−2 2.5166 × 1001 6.0751 × 10−3 9.9241 × 10−3

Mean 3.3437 × 10−2 3.3552 × 10−2 1.2126 × 10−1 5.6296 × 10−2 3.4866 × 10−2 1.2785 × 10−1 3.8762 × 10−3 2.6626 × 10−3

Best 8.0880 × 10−3 7.1727 × 10−3 4.4441 × 10−2 1.3225 × 10−2 1.3280 × 10−2 5.2239 × 10−2 3.8039 × 10−4 2.3850 × 10−4

std 1.1001 × 10−2 1.3676 × 10−2 9.2663 × 10−2 5.4823 × 10−2 1.0797 × 10−2 5.6607 × 10−2 1.6824 × 10−3 2.2870 × 10−3

p-value 4.5043 × 10−11 3.6897 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.9527 × 10−03 NAN
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Figure 14. P-V and I-V curves of KC200GT: (a) constant irradiance of 1000 W/m2 and (b) constant 
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Table 9. Statistical parameters of MSX60 panel obtained via the proposed approach and others. 

Alg. TSA GWO [75]  WOA [76] SCA HS BWO GTO HGTO-BWO 

25 °C −1000 W/m2 

Worst 6.5103 × 10−2 6.0081 × 10−2 7.6505 × 10−1 7.6471 × 10−1 4.8401 × 10−2 6.2681 × 10−1 2.1971 × 10−2 1.7942 × 10−2 

Mean 4.4751 × 10−2 4.3733 × 10−2 1.3110 × 10−1 1.2951 × 10−1 3.8764 × 10−2 3.2185 × 10−1 1.0675 × 10−2 7.8333 × 10−3 

Best 2.2794 × 10−2 2.5944 × 10−2 2.4565 × 10−2 4.6448 × 10−2 3.1247 × 10−2 6.6376 × 10−2 1.8986 × 10−3 1.0765 × 10−4 
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Table 9. Statistical parameters of MSX60 panel obtained via the proposed approach and others.

Alg. TSA GWO [75] WOA [76] SCA HS BWO GTO HGTO-BWO

25 ◦C −1000 W/m2

Worst 6.5103 × 10−2 6.0081 × 10−2 7.6505 × 10−1 7.6471 × 10−1 4.8401 × 10−2 6.2681 × 10−1 2.1971 × 10−2 1.7942 × 10−2

Mean 4.4751 × 10−2 4.3733 × 10−2 1.3110 × 10−1 1.2951 × 10−1 3.8764 × 10−2 3.2185 × 10−1 1.0675 × 10−2 7.8333 × 10−3

Best 2.2794 × 10−2 2.5944 × 10−2 2.4565 × 10−2 4.6448 × 10−2 3.1247 × 10−2 6.6376 × 10−2 1.8986 × 10−3 1.0765 × 10−4

std 1.0134 × 10−2 8.8505 × 10−3 1.8165 × 10−1 1.7389 × 10−1 3.5080 × 10−3 1.5338 × 10−1 3.6012 × 10−3 3.2102 × 10−3

p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.5846 × 10−4 NAN

50 ◦C −1000 W/m2

Worst 9.4706 × 10−2 1.0820 × 10−1 2.1100 × 10−1 7.7056 × 10−1 5.1888 × 10−2 6.8428 × 10−1 6.7625 × 10−3 5.6571 × 10−3

Mean 3.7155 × 10−2 4.3804 × 10−2 9.3860 × 10−2 1.4572 × 10−1 2.8151 × 10−2 3.5886 × 10−1 5.2558 × 10−3 1.9660 × 10−3

Best 1.8231 × 10−2 7.3825 × 10−3 1.8017 × 10−2 6.7026 × 10−2 2.3209 × 10−2 1.3748 × 10−1 2.3178 × 10−3 1.9324 × 10−4

std 2.0419 × 10−2 3.0053 × 10−2 5.3859 × 10−2 1.2205 × 10−1 5.3028 × 10−3 1.5568 × 10−1 1.4676 × 10−03 1.4357 × 10−3

p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 8.4848 × 10−09 NAN

75 ◦C −1000 W/m2

Worst 1.6542 × 10−1 1.3157 × 10−1 2.5008 × 10−1 2.3490 × 10−1 3.6143 × 10−2 4.9704 × 10−1 5.2441 × 10−3 1.4355 × 10−3

Mean 3.0890 × 10−2 2.6953 × 10−2 8.4518 × 10−2 1.6671 × 10−1 1.2211 × 10−2 2.5469 × 10−1 1.0018 × 10−3 2.7448 × 10−4

Best 7.9526 × 10−3 5.4140 × 10−3 4.1026 × 10−3 3.1053 × 10−2 5.7215 × 10−3 7.9537 × 10−2 4.2011 × 10−5 2.9790 × 10−5

std 3.5408 × 10−2 3.1096 × 10−2 7.2347 × 10−2 5.0708 × 10−2 6.4175 × 10−3 1.0582 × 10−1 1.6193 × 10−3 2.6447 × 10−4

p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.6322 × 10−1 NAN

25 ◦C −800 W/m2

Worst 5.2262 × 10−2 5.8604 × 10−2 6.1242 × 10−1 6.1262 × 10−1 4.0953 × 10−2 4.4466 × 10−1 1.2853 × 10−2 1.2248 × 10−2

Mean 3.5046 × 10−2 3.1685 × 10−2 1.0641 × 10−1 7.3537 × 10−2 2.9988 × 10−2 2.2502 × 10−1 8.6485 × 10−3 6.6717 × 10−3

Best 2.0629 × 10−2 1.0734 × 10−2 2.7649 × 10−2 3.4265 × 10−2 2.4251 × 10−2 6.6000 × 10−2 1.9350 × 10−3 1.1336 × 10−3

std 7.1751 × 10−3 9.9180 × 10−3 1.0964 × 10−1 1.0260 × 10−1 3.6823 × 10−3 9.9871 × 10−2 2.4842 × 10−3 2.6766 × 10−3

p-value 3.019 × 10−11 3.6897 × 10−11 3.019 × 10−11 3.019 × 10−11 3.019 × 10−11 3.019 × 10−11 2.2658 × 10−3 NAN

25 ◦C −600 W/m2

Worst 6.8702 × 10−2 5.1465 × 10−2 4.5790 × 10−1 4.5562 × 10−1 3.9280 × 10−2 3.7030 × 10−1 1.6311 × 10−2 1.3913 × 10−2

Mean 3.3254 × 10−2 2.8439 × 10−2 9.7793 × 10−2 6.3663 × 10−2 2.2989 × 10−2 1.9982 × 10−1 8.7540 × 10−3 5.6637 × 10−3

Best 9.8529 × 10−3 1.0988 × 10−2 1.5243 × 10−2 2.4905 × 10−2 1.3734 × 10−2 6.0603 × 10−2 1.0329 × 10−3 6.7775 × 10−4

std 1.3240 × 10−2 1.0653 × 10−2 1.0243 × 10−1 7.5057 × 10−2 7.5049 × 10−3 8.0178 × 10−2 3.4223 × 10−3 3.1345 × 10−3

p-value 6.0658 × 10−11 4.0772 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.6897 × 10−11 3.0199 × 10−11 1.4067 × 10−4 NAN

25 ◦C −400 W/m2

Worst 3.8949 × 10−2 4.4247 × 10−2 3.0055 × 10−1 2.9852 × 10−1 4.8025 × 10−2 1.8624 × 10−1 8.5444 × 10−3 8.5110 × 10−3

Mean 2.7298 × 10−2 2.7571 × 10−2 8.3476 × 10−2 6.4845 × 10−2 1.9225 × 10−2 1.0319 × 10−1 5.1743 × 10−3 3.1605 × 10−3

Best 1.1747 × 10−2 5.9229 × 10−3 2.0784 × 10−2 1.2556 × 10−2 6.7426 × 10−3 4.3302 × 10−2 8.5576 × 10−5 2.4366 × 10−5

std 7.4119 × 10−3 1.0414 × 10−2 5.8035 × 10−2 7.9820 × 10−2 8.3822 × 10−3 3.8071 × 10−2 2.2684 × 10−3 1.9135 × 10−3

p-value 3.019 × 10−11 4.0772 × 10−11 3.0199 × 10−11 3.0199 × 10−11 4.5043 × 10−11 3.0199 × 10−11 1.7836 × 10−4 NAN

25 ◦C −200 W/m2

Worst 2.9797 × 10−2 2.6406 × 10−2 7.1457 × 10−2 1.4110 × 10−1 3.2667 × 10−2 1.6797 × 10−1 7.5735 × 10−3 3.2257 × 10−3

Mean 1.6498 × 10−2 1.8636 × 10−2 3.4480 × 10−2 2.7961 × 10−2 1.7397 × 10−2 5.8459 × 10−2 1.7579 × 10−3 1.0399 × 10−3

Best 9.7357 × 10−3 1.0787 × 10−3 7.8442 × 10−3 6.3339 × 10−3 5.7370 × 10−3 2.6227 × 10−2 4.6560 × 10−4 5.9828 × 10−5

std 4.3918 × 10−3 6.1085 × 10−3 1.5446 × 10−2 2.2766 × 10−2 6.4824 × 10−3 2.5259 × 10−2 1.9112 × 10−3 7.0129 × 10−4

p-value 3.019 × 10−11 1.3289 × 10−10 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 2.8378 × 10−1 NAN
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The fetched results demonstrated that the proposed HGTO-BWO is efficient in finding
the optimal parameters of various models for the PV cell/panel as it outperformed the
other regarded methodologies in all considered cases.

7. Conclusions

A new hybrid multi-population gorilla troops optimizer and beluga whale optimiza-
tion (HGTO-BWO) was proposed to assign the PV cell/panel equivalent circuit by estimat-
ing its optimal parameters. In the proposed approach, a multi-population methodology
was employed to improve the performance of the algorithm and to prevent it from falling
into the local optima. The classical and CEC-C06 2019 benchmark functions were solved
via the proposed approach to assess its performance. Two models, the double and triple
diode models (DDM and TDM), were constructed for the PV cell/panel via minimizing the
root mean square error (RMSE) between the simulated and measured currents. Various PV
cells and panels operating in stable and variable weather situations were analyzed. Also,
excessive comparison with TSA, SCA, GWO, WOA, HS, BWO, and GTO was conducted.
The proposed approach findings can be summarized as follows:

• For the PVW 752 cell, the proposed HGTO-BWO achieved the best fitness values of
1.527 × 10−4 and 2.0886 × 10−4 for the TDM and DDM, respectively.

• The proposed approach achieved the lowest RMSEs of 2.42508× 10−3 for the PWP-201
and 1.8032 × 10−3 for the STM6-40/36 DDM.

• The HGTO-BWO achieved the best fitness values of 2.2068 × 10−3 for the PWP-201
panel and 1.7435 × 10−3 for the STM6-40/36 TDM.

• For KC200GT, the minimum fitness values were 2.3850 × 10−4, 7.7891 × 10−4,
6.3910 × 10−4, and 9.1596× 10−4 during operation at 200 W/m2, 400 W/m2, 600 W/m2,
and 800 W/m2, respectively.

• For MSX60, the proposed methodology realized the best RMSE values of 1.0765 × 10−4,
1.9324 × 10−4, and 2.9790 × 10−5 at 25 ◦C, 50 ◦C, and 75 ◦C, respectively, while at
25 ◦C the fitness values were 1.1336 × 10−3 at 800 W/m2, 6.7775 × 10−4 at 600 W/m2,
2.4366 × 10−5 at 400 W/m2, and 5.9828 × 10−5 at 200 W/m2.

The results revealed that the proposed approach can be recommended as an efficient
optimizer when constructing the PV unit equivalent circuit via identifying its parameters.
The proposed method requires a great effort to implement and program, which is consid-
ered a major obstacle during implementation; in addition, a lot of time is needed. Therefore,
simplifying this method and reducing the time required will be of interest to the authors of
the future works. Moreover, the validation of the proposed methodology in estimating the
parameters of the PV array when operated under different conditions will be considered in
the next work.
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Appendix A

Table A1. The studied algorithms’ parameters.

Algorithms Parameter All Algorithms

TSA pmin = 1, pmax = 4

Pop.size = 30
Max_Iter = 500
No. Run = 30

SCA a = 2
GWO a = 2 to 0
WOA a = 2 to 0, a2 = −1 to −2, b = 1
HS HMCR = 0.8, PAR = 0.2, FW_d = 0.995
BWO Wf = [0.1 0.05]
GTO β = 3, p = 0.03, w = 0.8

References
1. Long, W.; Jiao, J.; Liang, X.; Xu, M.; Tang, M.; Cai, S. Parameters Estimation of Photovoltaic Models Using a Novel Hybrid Seagull

Optimization Algorithm. Energy 2022, 249, 123760. [CrossRef]
2. D’Adamo, I.; Mammetti, M.; Ottaviani, D.; Ozturk, I. Photovoltaic Systems and Sustainable Communities: New Social Models for

Ecological Transition. The Impact of Incentive Policies in Profitability Analyses. Renew. Energy 2023, 202, 1291–1304. [CrossRef]
3. D’Adamo, I.; Gastaldi, M.; Morone, P.; Ozturk, I. Economics and Policy Implications of Residential Photovoltaic Systems in Italy’s

Developed Market. Util. Policy 2022, 79, 101437. [CrossRef]
4. Ganesan, S.; David, P.W.; Balachandran, P.K.; Senjyu, T. Fault Identification Scheme for Solar Photovoltaic Array in Bridge and

Honeycomb Configuration. Electr. Eng. 2023. [CrossRef]
5. Ayyarao, T.S.L.V.; Kumar, P.P. Parameter Estimation of Solar PV Models with a New Proposed War Strategy Optimization

Algorithm. Int. J. Energy Res. 2022, 46, 7215–7238. [CrossRef]
6. Shaheen, M.A.M.; Hasanien, H.M.; Alkuhayli, A. A Novel Hybrid GWO-PSO Optimization Technique for Optimal Reactive

Power Dispatch Problem Solution. Ain Shams Eng. J. 2021, 12, 621–630. [CrossRef]
7. Vankadara, S.K.; Chatterjee, S.; Balachandran, P.K.; Mihet-Popa, L. Marine Predator Algorithm (MPA)-Based MPPT Technique for

Solar PV Systems under Partial Shading Conditions. Energies 2022, 15, 6172. [CrossRef]
8. Libra, M.; Mrázek, D.; Tyukhov, I.; Severová, L.; Poulek, V.; Mach, J.; Šubrt, T.; Beránek, V.; Svoboda, R.; Sedláček, J. Reduced Real
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