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Abstract: With the reform of energy structures, the high proportion of volatile new energy access
makes the existing unit commitment (UC) theory unable to satisfy the development demands of day-
ahead market decision-making in the new power system. Therefore, this paper proposes an intelligent
algorithm for solving UC, based on deep reinforcement learning (DRL) technology. Firstly, the DRL
algorithm is used to model the Markov decision process of the UC problem, and the corresponding
state space, transfer function, action space and reward function are proposed. Then, the policy
gradient (PG) algorithm is used to solve the problem. On this basis, Lambda iteration is used to
solve the output scheme of the unit in the start–stop state, and finally a DRL-based UC intelligent
solution algorithm is proposed. The applicability and effectiveness of this method are verified based
on simulation examples.

Keywords: safety restraint unit combination; Markov decision process; deep reinforcement learning

1. Introduction

The unit commitment (UC) problem is the core link and theoretical basis of day-
ahead generation scheduling and day-ahead market trading in power systems [1]. In
the day-ahead operation of the electricity market, one of the most critical processes is
to determine a unit scheduling scheme subject to various constraints [2]. Therefore, it
is of great theoretical and practical significance to study a solution method for security-
constrained unit commitment (SCUC) with high accuracy, applicability and efficiency.

The current research on SCUC is mainly divided into two categories. The first type is
a physical model-driven version of the traditional SCUC decision-making method (PMD-
SCUC). That is to say, starting from the specific practical engineering problems [3], the
corresponding mathematical model is constructed. Then, the corresponding theory or
method is used to simplify and process the model [4,5]. On this basis, the solution algorithm
for the model is studied [6]. Although this idea allows good physical interpretation, the
modeling and solving processes of this idea are very complex. In practical applications,
in order to improve the efficiency of solving, the model and solving algorithm are often
simplified appropriately, which leads to a decline in the decision-making accuracy of
the model [7]. Moreover, when specific problems and application scenarios change, the
previously constructed model and the adopted solution algorithm must be improved and
changed accordingly, and the applicability is low in the new power system, with various
theoretical problems and engineering needs constantly emerging.

In contrast, the SCUC decision-making method based on machine learning (ML) is
a more effective way of thinking [8]. Differently from the PMD decision-making method,
this method does not study the internal mechanisms of unit commitment, but directly
constructs the mapping relationships between known inputs and decision results based
on in-depth learning methods and massive historical decision data training [9]. This
method can not only greatly simplify the process and complexity of modeling, and solve
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the unit commitment problem, but also cope with various emerging theoretical problems
and challenges through its self-learning and self-evolution processes [10]. Reference [11]
proposes a two-order data-driven (DD) SCUC model, which is founded on a nonparametric
Dirichlet-process Gaussian mixture model and a variational Bayesian inference method,
to describe the uncertainties of load, PV and wind power. Reference [12] proposes a
modeling method of a generalized convex hull uncertainty set based on DD, and applies
the uncertainty set to a two-stage robust UC. Although the related algorithms of ML are
mentioned in the above studies, the traditional mathematical optimization method is
still used to solve the SCUC model. A purely DD-based SCUC decision method is first
presented in reference [13]. This method does not study the internal mechanisms of UC,
but constructs a deep learning (DL) model based on long short-term memory (LSTM),
and directly constructs a mapping model between system load and dispatching decision
results through historical data training, which provides a new solution idea for the study
of SCUC. However, the existing ML-based SCUC decision methods belong to supervised
learning, which often requires massive high-quality sample data for training [14]. In many
scenarios, however, people often cannot guarantee accumulating massive high-quality
historical decision data, which limits the applicability of such methods.

Reinforcement learning (RL) can effectively find the optimal strategy [15] in the
complex control field through trial and error. At present, RL has also been explored and
applied in the field of power systems, such as using remedial measures to maintain system
safety [16], controlling the load frequency of motors [17], controlling the transient stability
of power systems [18], ensuring optimal bidding of generators [19], etc. Its biggest feature
is that it completely jumps out of the inherent mode of supervised learning, does not
need to process a large amount of label data in advance, and has high generalization
performance [20]. In addition, DL can analyze environmental information and extract
features from it [21], avoiding the difficulty of storing Q value tables in RL in large data
application scenarios [22].

In view of this, this paper proposes a UC intelligent solution algorithm combined with
deep reinforcement learning (DRL) technology. Firstly, the DRL algorithm is introduced to
model the UC problem with the Markov decision process (MDP), and the corresponding
state space, transition function, action space and reward function are given. Then, the
policy gradient (PG) algorithm is used to solve it. On this basis, lambda iteration is used
to solve the output scheme of the unit in the start–stop state and, finally, an intelligent
algorithm for solving UC based on DRL is proposed. The applicability and effectiveness of
the proposed method are verified via simulations based on standard examples.

The main contributions of this paper are as follows.
The proposed intelligent algorithm for solving UC problems based on DRL can effec-

tively make decisions for complex small-scale UC problems. Compared with supervised
learning, the method does not need to construct a large amount of labeled sample data in
advance, avoids dependence on the sample data, and has a higher generalization perfor-
mance. Moreover, it can directly give the action decision through the strategy model, and
the solving efficiency is high.

2. DRL-Based Algorithm Architecture for Unit Commitment

In this paper, DRL is applied to the field of UC decisions [23], and an intelligent
algorithm for solving UC based on DRL is proposed. The UC problem is calculated in two
steps, and the decision block diagram is shown in Figure 1.

The first step is to decide the current unit start–stop scheme based on DRL. The second
step is to solve the economic dispatching problem based on Lambda iteration according to
the start–stop scheme of the unit at the current time. In the first step, the DRL algorithm
is used to establish the MDP model of the UC problem. Based on the characteristics of
the UC problem, the state space, action space, transfer function and reward function are
given, the PG algorithm is used to solve the problem, and the optimal unit action mode at
the current time is obtained. In the second step, Lambda iteration is adopted to solve the
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economic dispatching problem according to the unit start–stop mode obtained in the first
step, and the specific output value of the unit at that moment is obtained. Therefore, the
system operation cost at the current moment is obtained accordingly.
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3. Solution of Unit Startup and Shutdown Scheme Based on DRL
3.1. Mathematical Model of Unit Commitment

(1) Objective function

The optimization objective of the SCUC problem is to minimize the total operation
cost of the system on the premise of ensuring the safe and stable operation of the power
system [24]. The cost consists of the start-up cost and operation cost of the thermal power-
generating unit. The objective function is as follows:

FG,cos t(UG,ST
βTPt , PG,AP

βTPt ) = min
T

∑
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NTP
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βTP=1

[
UG,ST
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(
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)
FG,SU,cos t + UG,ST

βTPt FG,RU,cos t
(

PG,AP
βTPt

)]
(1)

The specific expressions of start-up cost and operation cost are as follows:

FG,SU,cos t = αSU
βTP ,1 + αSU
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τG

βTPt
/ξ

βTP
) (2)
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βTPt ) =aRU

βTP ,1 + aRU
βTP ,2PG,AP

βTPt + aRU
βTP ,3(PG,AP

βTPt )
2

(3)

where UG,ST
βTPt indicates the startup and shutdown status of the thermal power unit, βTP,

at time t; PG,AP
βTPt is the active power output of the thermal power unit, βTP, at time t; NTP

indicates the total number of thermal power units participating in dispatching; T indicates
the dispatching period; αSU

βTP ,1 represents the startup cost of the thermal power unit, βTP;

αSU
βTP ,2 represents the startup cost of the thermal power unit, βTP, under cold conditions;

τG
βTPt indicates the continuous shutdown time of thermal power unit, βTP, at time t; ζβTP

is the time constant of the cooling rate of the thermal power-generating unit, βTP; aRU
βTP ,1,

aRU
βTP ,2, and aRU

βTP ,3 are the operating cost parameters of the thermal power-generating unit,

βTP.

(2) Constraints

The constraint conditions include the system constraints required in the normal opera-
tion of the power system and the inherent physical constraints of the generating units [25].
The former include power flow security constraints and power balance constraints, while
the latter include unit active power output constraints, ramp constraints, minimum start–
stop time constraints, maximum start–stop time constraints and spinning reserve capacity
constraints. The specific description is as follows:
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(a) Power balance constraint

Since electric energy cannot be stored on a large scale, it is required that in addition to
meeting the unit’s own power consumption and line loss, the supply and demand sides
should maintain a balance in real time [26]. As long as there is a power imbalance, the
frequency or voltage of the system will fluctuate. When the fluctuation exceeds the maxi-
mum range allowed by the power grid, there will be serious accidents such as equipment
damage and even power grid disconnection [27]. Therefore, it is required to keep real-time
balance between the total power generation and the total load demand of all units in the
system, and its mathematical expression is as follows:

NTP

∑
βTP=1

PG,AP
βTPt +PWt = PL,AP

t (4)

where PL,AP
t represents the total load of the system at time t; PWt represents the output

power of the wind turbine generator system at time t.

(b) Unit operation constraints

Due to the limitations of the physical characteristics of the unit itself, when the unit
works normally, its output can only be limited to a certain range, and its mathematical
expression is as follows:

PG,AP
βTPmin ≤ PG,AP

βTPt ≤ PG,AP
βTPmax (5)

where PG,AP
βTPmax and PG,AP

βTPmin represent the upper and lower limits of thermal power unit
output, respectively.

(c) Unit climbing constraint

Climbing constraint refers to the constraint restriction on the increase and decrease in
output of the unit [28]. However, when the output value of the unit needs to be adjusted
due to factors such as load change [29], it cannot be adjusted to the required output value
immediately due to the limitations of the physical characteristics of the unit itself. Its
mathematical expression is as follows:

∆PG,UP
βTP UG,ST

βTPt + PG,AP
βTPmin(U

G,ST
βTPt −UG,ST

βTP(t−1)) ≥ PG,AP
βTPt − PG,AP

βTP(t−1) (6)

∆PG,DOWN
βTP UG,ST

βTP(t−1) + PG,AP
βTPmin(U

G,ST
βTP(t−1) −UG,ST

βTPt ) ≥ PG,AP
βTP(t−1) − PG,AP

βTPt (7)

where ∆PG,UP
βTP and ∆PG,DOWN

βTP respectively represent the climbing up and climbing down
constraints of the thermal power-generating unit.

(d) Minimum start–stop time constraint

When the unit is in the shutdown state, there is a minimum continuous downtime
constraint before it changes to being in the startup state. Similarly, there is a minimum
continuous boot time constraint.{

(AG,UP
βTP(t−1) − TG,UP

βTP )(UG,ST
βTP(t−1) −UG,ST

βTPt ) ≥ 0

(AG,DOWN
βTP(t−1) − TG,DOWN

βTP )(UG,ST
βTPt −UG,ST

βTP(t−1)) ≥ 0
(8)

where AG,UP
βTP(t−1) and AG,DOWN

βTP(t−1) respectively represent the continuous startup and shut-

down time of the thermal power unit, βTP; TG,UP
βTP and TG,DOWN

βTP respectively represent the

minimum continuous startup and shutdown time of the thermal power unit, βTP.

(e) Maximum start–stop time constraint
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The maximum start–stop time constraint means that in the actual operation of the unit,
its frequent start–stop adjustment will produce mechanical losses, thereby shortening the
normal working time of the thermal power unit, and thus affecting the normal operation
of the power system [30]. Based on this, it is necessary to limit the maximum number of
startups and shutdowns of thermal power units in the dispatching cycle. The mathematical
expression is as follows:

T

∑
t=1

∣∣∣UG,ST
βTPt −UG,ST

βTP(t−1)

∣∣∣ ≤ χβTP (9)

where χβTP refers to the maximum allowable times of startup and shutdown of the thermal
power-generating unit, βTP, in the dispatching period.

(f) Maximum start–stop time constraint

NTP

∑
βTP=1

PG,AP
βTPt = PL,AP

t (10)

3.2. MDP Modeling for Unit Commitment

MDP is composed of the state space, reward function, action space, and transition
function. The objective of the UC problem studied in this paper is to maximize the reward
by minimizing the total running cost of the system [31].

(1) State space

In this MDP, it is hoped that the model can provide the start–stop state of the unit at
each moment according to the given input data. Therefore, the input data at each moment
constitute the state space. Specifically, the state space includes the start–stop time and load
demand data of the N generating units. Its mathematical expression is as follows:

S = {Ut, PL} (11)

where Ut = [u1,t, u2,t, . . . uN,t], in which ui,t 6= 0, represents the set of the unit start–stop
time; PL represents the load demand data. Since the objective of the UC problem is to solve
the unit scheduling plan with the lowest total cost according to the given load demand
under the condition of meeting various constraints, this variable has a very important
impact on this problem [32].

(2) Action space

In RL, the action space is required to be complete, efficient, and legal. (a) Completeness
refers to ensuring that the action space contains all actions that can complete the target
task. In this problem, the goal is to find the start–stop states of the units, so the action
space should contain the start–stop states of all units. (b) In terms of high efficiency, in the
decision variables of this optimization problem, both discrete variables and continuous
variables are involved, so it is difficult to solve them [33]. Based on this, the unit start–stop
scheme and the unit output scheme are solved step by step in this paper. After the UC
solution algorithm based on DRL is used to obtain the unit start–stop scheme, Lambda
iteration is used to solve the unit output scheme. (c) Legitimacy means that the actions in
the action space are required to meet various constraints.

At any time, the possible action of each unit is to start or to stop. Therefore, the action
space is the combination of all unit start or stop actions, and the size of the action space is
2N . Represent it as a binary array; that is,

At = [a1,t, a2,t, . . . aN,t] (12)

When the action of the unit is to start, ai,t = 1. When the action of the unit is to stop,
ai,t = 0. However, this action must comply with the minimum startup–shutdown time
constraints of the unit.
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(3) Transfer function

When the model decides the unit startup and shutdown scheme according to the
observed state information and obtains the reward value, the transition function will
change from state st to state st+1 according to the unit startup and shutdown action, at,
under the condition of satisfying various constraints. The related state information in
this paper is the continuous startup/shutdown time, ui,t, of the unit. For the unit, i, the
conversion function of its continuous startup/shutdown time is as follows:

ui,t+1 =


ui,t + 1, if ai,t = 1 and ui,t > 0
ui,t − 1, if ai,t = 0 and ui,t < 0
1, if ai,t = 1 and ui,t < 0
−1, if ai,t = 0 and ui,t > 0

(13)

(4) Reward function

The goal of RL is to maximize the reward obtained using the model on the path when
solving the problem. In the problem studied in this paper, the goal is to minimize the
total operating cost of the system. Therefore, the mathematical expression of its cost is as
follows:

rt = −(Ft + λt) (14)

in which

Ft =
N

∑
i=1

(aPi
2 + bPi + c) + Fi

up (15)

where Ft is the operation cost of the system at time t; Fi
up is the start-up cost of the unit i;

Pi is the active power output value of the unit i; λt is the penalty value for violating the
operation constraint at time t.

In the MDP of UC, at each time t, the model observes the state information, st, in the
power system, that is, the start/stop time and load demand data of N units at the current
time. Then, the model chooses the optimal action, at, according to the state information, that
is, the unit start–stop plan decided at the current time. Finally, according to the start–stop
scheme, Lambda iteration is used to solve economic scheduling, and the actual output
power of the unit at the current time is obtained. Based on this power, the operating cost
of the system at the current moment is calculated, which is part of the reward function.
After receiving the reward value, r, which evaluates the quality of the current unit startup
and shutdown scheme, at, the model transfers to the next new state, st+1, and the transfer
process is determined using formula (15). The specific solution process is shown in Figure 2.
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As shown in Figure 2, the experience pool mechanism is introduced in the solution
process, which mainly includes two processes of sample collection and sampling. The
collected unit startup and shutdown status, load data, unit output scheme and reward
value are put into the experience pool in order of time. When the experience pool is full,
the sample data earlier in time are overwritten. When sampling, a batch of data will be
randomly sampled uniformly from the experience pool for learning and updating.

The specific interaction process of MDP is as follows.
Define G(t) as the reward value of the whole iterative process of the system, and

multiply the reward value of the future moment by the discount to represent the importance
of the future reward value [34,35]. Its mathematical expression is as follows:

G(t) = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞

∑
k=0

γkrt+k+1 (16)

where γ ∈ [0, 1] is the discount factor, which is used to control the relative weight of the
immediate and future rewards. The larger the value is, the more important the reward
value at the future time is; rt is the sum of the operating cost of the system at time t and the
penalty for violating the constraints, and its expression is shown in formula (16).

In order to minimize the total operating cost of the system, the model needs to
constantly update the existing unit startup and shutdown strategy, π, in the continuous
interaction with the system environment, and finally obtains the optimal unit startup and
shutdown strategy, π∗. To evaluate the degree of the current unit commitment scheme, at,
given by the model under the current time step state information, the expectation function
is usually used to quantify the objective function.

(5) Policy gradient algorithm

The strategy-based PG algorithm has good convergence. Therefore, this paper uses this
algorithm to solve the MDP model. The core idea of the PG algorithm is to parameterize the
strategy for solving the unit start–stop scheme. The purpose of selecting the unit start–stop
scheme with the minimum operating cost by controlling the weight of these parameters is
to find the optimal commitment scheme by learning the gradient information of the strategy
parameters. The specific unit startup and shutdown scheme strategy can be described as a
function-containing parameter, θ:

πθ(st, at) = P(at|st, θ) ≈ π(st, at) (17)

If the parameterized neural network is used to represent the unit startup and shutdown
strategy, πθ , the objective function can be expressed as an adjusting parameter, θ, to
maximize the expected reward value, and its mathematical expression is as follows:

J1(θ) = Vπθ
(s1) = Eπθ

(G1) = E(r1 + γr2 + γ2r3 + . . . . . . |πθ) (18)

The objective function is maximized. That is, a set of parameter vectors, θ, is searched
such that the objective function is maximized. In general, for the maximization problem, a
gradient ascent algorithm is used to find the maximum value:

θ∗ = θ + α∇θ J1(θ) (19)

Assume a MDP with only one step, and use the gradient ascent algorithm for it. πθ(st, at)
represents a function on the parameter, θ, and the mapping is P(at|st, θ) . The reward value of
the unit start–stop scheme, at, obtained in the state, st, is rt = r(st, at). Then, the reward value
obtained by selecting the unit start–stop scheme, at, is πθ(st, at)r(st, at), and the weighted
reward in the state, st, is ∑a∈A πθ(st, at)r(st, at), which is derived as follows:

J1(θ) = Eπθ
[r(st, at)] = ∑s∈S d(s)∑at∈A πθ(st, at)r(st, at) (20)
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The gradient is as follows:

∇θ J1(θ) = ∇θ∑s∈S d(s)∑at∈A πθ(st, at)r(st, at) = ∑s∈S d(s)∑at∈A∇θπθ(st, at)r(st, at) (21)

where d(s) represents the distribution of states in the strategy.
Assuming that the gradient ∇θπθ(s, a) is known, the score function is defined as

∇θ log πθ(st, at) by applying the likelihood ratio, and the relationship between them is as
follows:

∇θπθ(st, at) = πθ(st, at)
∇θπθ(st, at)

πθ(st, at)
= πθ(st, at)∇θ log πθ(st, at) (22)

Therefore, formula (21) can be written as follows:

∇θ J1(θ) = ∑s∈S d(s)∑at∈A πθ(st, at)∇θ log πθ(st, at)r(st, at) (23)

The policy gradient is restored to the desired form as follows:

∇θ J1(θ) = Eπθ
[∇θ log πθ(st, at)r(st, at)] (24)

By selecting the optimal unit start–stop scheme, at, to minimize the operation cost of
the system, the following results are obtained:

∇θ J1(θ) = Eπθ
[∇θ log πθ(st, at)Rπθ (st, at)] (25)

The pseudocode of DRL for UC problems is summarized in Appendix B. Algorithm A1.

4. Solution of Unit Output Scheme Based on Lambda Iteration

Before the transition into the new state, the unit start–stop scheme, at, obtained using
the solution is taken as the start–stop action of the unit in 24 h in the economic dispatching
problem. According to the action, Lambda iteration is used to solve the problem, and the
actual output power, P, of the unit in the startup state is given.

The Lambda iterative method is a classical algorithm in the field of economic dispatch.
Its main principle is to make the cost incremental rate of all units equal and equal to the
unknown parameter, λ. By calculating the difference between the total output value of the
unit and the load demand to adjust λ, the active power output plan of all coal-fired units is
finally obtained. The solution process is shown in Figure 3.

It is assumed that there is a system with three generating units, and it is hoped
that the optimal economic operation point can be found. One way to carry this out is to
characterize the incremental cost characteristics of each unit by plotting the incremental
cost characteristics of the three units on the same graph, as shown in Figure 4.

In order to determine the optimal operating point for these three units, which min-
imizes the total cost while meeting the specified load demand, a solution can be found
using a straight edge and a cost incremental rate characteristic chart of this unit. That is,
a cost incremental rate value (λ) is given first, and the active output value of each of the
three units is found according to this value.

In general, the λ given for the first time is often inaccurate. If we assume a value of λ
that causes the total power output to be too low, we must increase the value of λ, which
results in a new output power value. After obtaining these two sets of solutions, we can
use the interpolation method shown in Figure 5 to further approach the expected value of
the actual total output power.

By constantly tracking the corresponding relationship between λ and the output
power, the optimal economic operation point can be quickly solved. In addition, the total
output power of all units corresponding to different values of λ can be clearly seen through
the table.
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In this paper, according to flow chart of the block diagram shown in Figure 3, the
personal computer (PC) is used for programming. By establishing a complete set of
logical rules, it is possible to achieve the same purpose by using a cost incremental rate
characteristic diagram and ruler.

In general, data tables can be stored in the PC and interpolated between the stored
values to find the exact active output of the unit corresponding to λ.
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In addition, the relationship between the unit output and λ can be expressed in the
form of an analytical function, which (or its coefficients) can be stored in PC, and then the
output power of each unit can be determined using the function. In this paper, the second
method is adopted.

The algorithm is an iterative algorithm. Therefore, a stopping rule must be established.
Generally speaking, there are two common stopping rules for this iterative calculation.
The first method is shown in Figure 3, which is to find the best economic operating point
within the allowable error range. The second method is to set the maximum number of
iterations, ε, and stop the calculation when the number of iterations exceeds ε. In this paper,
the second method is adopted, and the maximum number of iterations is set to 50. For
UC, a special type of optimization problem, the Lambda iterative method has a very fast
convergence rate.

5. Example Simulation and Analysis
5.1. Explanation of Calculation Examples

In order to verify the correctness and effectiveness of the proposed method, a system
with 10 thermal power units is simulated in this paper. The relevant parameters of 10
thermal power units are shown in Appendix A Table A1. The load data of 24 h in a day
used for unit combination decision are shown in Table 1.

Table 1. Twenty-four-hour load data.

Time Load Demand/MW Time Load Demand/MW

1 449.717 13 508.613
2 405.164 14 469.191
3 382.190 15 461.64
4 364.110 16 444.960
5 363.736 17 454.509
6 357.007 18 502.122
7 366.625 19 543.379
8 396.158 20 564.789
9 474.458 21 551.297
10 519.556 22 527.678
11 514.560 23 477.109
12 523.566 24 444.144
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5.2. Procedural Simulation

The optimizer used for the PG network is the Adam optimizer, which uses a stochastic
optimization method to give adaptive learning rates for different parameters based on the
estimation of the gradient, so that it can achieve efficient computation and a low memory
footprint in the optimization process. In order to choose a better learning rate parameter,
lr = 0.01, lr = 0.02 and lr = 0.05 are tested, respectively. In addition, to ensure the rapid
convergence and decision-making of the model, the number of training cycles of Epoch
needs to be determined in the training process.

To obtain a better training effect, the convergence of the model and the fitting degree
of the unit output scheme are compared in the following three cases of lr = 0.01, lr = 0.02
and lr = 0.05. The convergence process of the model with different parameters is shown in
Figure 6.
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It can be seen from Figure 6 that the models can converge rapidly under different
parameters, which shows that the proposed UC intelligent solution algorithm based on
DRL can adapt to the decision of the optimal UC scheme in a dynamic environment. When
lr is 0.01, the model obtains the maximum reward value. The reason is that when the
learning rate of the neural network is small, the step size in each iterative update process is
shorter, so it is more accurate to guide the optimal solution. In addition, under different
learning rates, when Epoch is equal to 1–10, the reward value of Epoch for each training
cycle is small and fluctuates. With the increase in the number of iterations, the reward
value of each iteration step increases, and finally tends to be stable when the number of
training cycles of Epoch is about 30. The reason is that in the initial exploration stage of the
model, the model conducts trial and error exploration according to the environment state.
There is no experience to follow, and the reward value obtained is low and varied. With
the continuous deepening of training, the parameters in the strategy model are constantly
optimized, the strategy becomes more and more stable, and finally no longer changes.
Therefore, the learning rate, lr, is set to 0.01 in this paper.

To illustrate the advantages of setting lr to 0.01, the unit decision-making scheme of
25 training cycles under lr = 0.01, the unit decision-making scheme of 50 training cycles
under lr = 0.02 and the unit decision-making scheme of 200 training cycles under lr = 0.05
are given below, as shown in Tables 2–4, respectively.
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Table 2. Crew decision scheme with 25 training cycles at lr = 0.01.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

1 0 54.406 58.293 0 0 0 85 61.819 61.353 60.895
2 0 47.971 51.398 0 79.949 97.232 74.944 0 0 53.691
3 34.061 36.331 38.927 0 60.550 73.639 56.758 41.279 0 40.662
4 32.441 34.603 37.075 0 57.669 70.135 54.057 39.315 0 38.727
5 32.420 34.581 37.051 0 57.632 70.090 54.023 39.290 0 38.702
6 31.815 33.935 36.360 0 56.557 68.782 53.014 38.556 0 37.980
7 32.666 34.843 37.333 0 58.070 70.622 54.433 39.588 0 38.996
8 35.313 37.666 40.357 0 62.775 76.344 58.843 42.796 0 42.156
9 42.288 45.106 48.329 0 75.175 91.425 70.468 51.251 0 50.484

10 46.309 49.395 52.924 0 82.323 100.11 77.170 56.124 0 55.285
11 45.857 48.914 52.408 0 81.520 99.143 76.418 55.577 0 54.746
12 46.657 49.767 53.322 0 82.943 100.87 77.751 56.547 0 55.702
13 45.324 48.345 51.798 0 80.572 97.990 75.529 54.931 0 54.109
14 41.816 44.603 47.789 0 74.336 90.405 69.682 50.679 0 49.921
15 41.139 43.881 47.016 0 73.132 88.941 68.554 49.858 0 49.113
16 39.652 42.294 45.316 0 70.488 85.726 66.075 48.055 0 47.337
17 40.503 43.202 46.289 0 72.002 87.566 67.494 49.087 0 48.353
18 44.749 47.732 51.142 0 79.551 96.748 74.571 54.235 0 53.424
19 48.422 51.649 55.339 0 86.079 104.68 80.691 58.686 0 57.808
20 50.329 53.684 57.519 0 89.471 108.81 83.871 60.998 0 60.086
21 49.129 52.404 56.148 0 87.338 106.21 81.871 59.543 0 58.653
22 47.027 50.161 53.744 0 83.599 101.67 78.366 56.995 0 56.143
23 42.513 45.347 48.586 0 75.576 91.913 70.844 51.524 0 50.754
24 39.580 42.218 45.234 0 70.361 85.570 65.955 47.968 0 47.251

Table 3. Crew decision scheme with 50 training cycles at lr = 0.02.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

1 64.835 0 45.853 0 54.227 71.032 75.693 58.345 0 47.322
2 42.692 0 50.518 0 57.841 76.693 63.357 51.071 0 43.625
3 39.085 0 34.517 0 53.654 52.954 67.542 66.882 0 57.365
4 31.196 0 46.358 0 46.743 51.771 64.286 63.614 0 42.573
5 48.391 0 42.148 0 47.714 61.981 72.514 45.564 0 45.986
6 41.1 0 45.768 0 64.641 57.438 64.641 50.511 0 42.839
7 40.787 0 45.069 0 75.902 67.915 52.215 54.754 0 52.082
8 48.221 0 50.902 0 90.719 96.389 74.406 66.875 0 52.357
9 42.81 0 53.225 0 101.508 104.799 81.017 58.484 0 63.049

10 47.474 0 53.835 0 92.223 101.207 86.755 61.527 0 61.649
11 47.364 0 49.314 0 89.872 106.609 84.292 81.093 0 57.136
12 45.25 0 51.557 0 103.204 96.833 81.943 69.071 0 53.19
13 42.815 0 51.177 0 77.725 93.537 82.636 63.424 0 65.853
14 34.839 0 53.855 0 87.608 96.152 74.673 61.549 0 55.05
15 32.753 0 53.448 0 71.425 65.296 83.925 53.673 0 65.923
16 51.27 0 47.406 0 78.962 91.947 81.646 56.649 0 55.872
17 42.027 0 53.847 0 93.99 109.708 79.341 60.361 0 58.848
18 46.027 0 60.52 0 114.113 108.032 81.157 61.128 0 69.489
19 38.94 0 44.508 0 121.932 125.142 92.183 62.03 0 55.255
20 53.739 0 45.254 0 111.1 114.682 76.534 65.985 0 58.789
21 58.953 0 45.042 0 117.249 94.742 71.256 62.847 0 67.111
22 49.431 0 46.164 0 92.059 95.437 75.931 60.239 0 62.417
23 44.862 0 45.104 0 82.05 87.89 71.197 60.111 0 61.65
24 36.142 0 45.853 0 54.227 81.032 75.693 58.345 0 47.322



Sustainability 2023, 15, 11084 13 of 19

Table 4. Crew decision scheme with 200 training cycles at lr = 0.05.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

1 52.714 0 0 62.016 93.710 113.96 0 63.888 63.407 0
2 47.483 0 0 55.862 84.410 102.65 0 57.547 57.114 0
3 44.799 0 0 52.705 79.639 96.855 0 54.295 53.885 0
4 42.685 0 0 50.217 75.881 92.284 0 51.732 51.342 0
5 42.631 0 0 50.154 75.784 92.167 0 51.666 51.277 0
6 41.845 0 0 49.229 74.387 90.467 0 50.713 50.331 0
7 42.983 0 0 50.568 76.411 92.929 0 52.093 51.701 0
8 46.439 0 0 54.634 82.555 100.40 0 56.282 55.858 0
9 55.614 0 0 65.428 98.866 120.23 0 67.404 66.896 0

10 57.756 0 0 67.948 102.67 124.86 0 70 69.472 0
11 57.756 0 0 67.948 102.67 124.86 0 70 69.472 0
12 57.756 0 0 67.948 102.67 124.86 0 70 69.472 0
13 57.756 0 0 67.948 102.67 124.86 0 70 69.472 0
14 54.991 0 0 64.695 97.758 118.89 0 66.648 66.146 0
15 54.123 0 0 63.674 96.216 117.01 0 65.597 65.103 0
16 52.158 0 0 61.363 92.722 112.76 0 63.215 62.739 0
17 53.283 0 0 62.686 94.722 115.19 0 64.578 64.092 0
18 57.756 0 0 67.948 102.67 124.86 0 70 69.472 0
19 57.756 0 0 67.948 102.67 124.86 0 70 69.472 0
20 57.756 0 0 67.948 102.67 124.86 0 70 69.472 0
21 57.756 0 0 67.948 102.67 124.86 0 70 69.472 0
22 57.756 0 0 67.948 102.67 124.86 0 70 69.472 0
23 55.926 0 0 65.795 99.420 120.91 0 67.782 67.271 0
24 52.063 0 0 61.251 92.554 112.56 0 63.085 62.624 0

In order to visually show the difference between the three cases, the sum of their
output at each time is compared with the load demand curve, and the results are shown in
Figure 7.
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As shown in Figure 7, when lr is set to 0.01, the unit output scheme obtained after
25 cycles of iterative training can completely fit the load demand curve except that there
is a certain difference between the unit output and the load demand at the first moment.
When lr is set to 0.02, the unit output curve obtained after 50 cycles of iterative training has
a certain power gap with the load demand at the first moment and during the two peak
periods of 9–13 and 19–22, the maximum of which is 38.344 MW. When lr is set to 0.05,
the unit output curve obtained after 200 cycles of iterative training has a large power gap
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with the load demand during the two peak periods of 9–14 and 19–23, with a maximum of
72.06 MW. The reason for this is that when lr is set to 0.02 and 0.05, after 50 and 200 training
iterations, the unit output scheme meeting the current load demand is still not solved.
While when lr is set to 0.01, the unit output scheme meeting the constraint conditions can
be quickly solved after 25 iterative training cycles.

After a large number of simulation tests, it is found that when the relevant hyperpa-
rameters in the DRL algorithm are set according to the data shown in Table 5, the model
can converge quickly and the effect is good.

Table 5. DRL algorithm super parameter.

Learning Rate 0.01
Reward Decay Rate 0.95

Memory size 500
Batch size 24

Epochs 30
Optimization Solution Method Adam

5.3. Comparative Analysis

In this paper, the advantages of this method over the traditional method are illustrated
by comparing the unit output scheme, decision-making time and cost or reward value of
Method 1, Method 2 and Method 3.

Method 1: Based on the physical model-driven UC decision-making method.
Method 2: The data-driven UC decision-making method of reference [7].
Method 3: An intelligent decision-making method for UC based on DRL, namely the

method in this paper.
The unit output schemes obtained using the three methods are shown in Figures 8–10,

respectively.
It can be seen from Figures 8–10 that in Method 1, under the current load demand,

most of the output is borne by Unit 1, accounting for about 85% of the load demand, and
the rest is borne by the combination of Unit 2, Unit 4, Unit 5, Unit 6 and Unit 7. Similarly,
in Method 2, under the current load demand, most of the output is borne by Unit 1, but
most of the output converts into Unit 2 during the 15–19 peak periods, and the rest is borne
by the combination of Unit 3, Unit 5, Unit 6, Unit 9 and Unit 10. In contrast, in Method 3,
most of the load is not borne by one unit, but by all the unit combinations except Unit 5,
Unit 7, and the Unit 10. In order to analyze the reasons, the decision time and the system
operation cost or reward value of the three methods are given below.
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The difference between the unit output schemes of three methods is also reflected in
Table 6, in which the reward value obtained via Method 3 is more than CNY 76,000 higher
than the system cost of Method 1 and more than CNY 67,000 higher than the system cost
of Method 2. The reasons are as follows. On the one hand, compared with the decision
result of Method 1 and Method 2, the decision result of Method 3 obviously does not reach
the global optimum, so the system operation cost contained in the reward value is higher
than that of Method 1 and Method 2. On the other hand, the reward value in Method 3
consists of the system operation cost and the penalty obtained by violating the constraints.
Because the unit output scheme at a certain time in the decision result of this method does
not meet the load balance constraint, it also includes part of the penalty amount. For the
above reasons, the reward value obtained via Method 3 is higher than the system operating
cost of other methods.
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Table 6. Decision time and system operation cost/reward value of three methods.

Method Training Time/s Decision Time/s Cost Or Reward Value/CNY

Method 1 - 3938.16 228,200
Method 2 97.54 0.31 236,910
Method 3 2.13 0.43 304,339

In terms of decision-making efficiency, the decision-making time of Method 1 is
3938.16 s. Method 2 requires a large amount of historical data to train the model, so the
training time takes 97.54 s, but the decision time only takes 0.31 s. In Method 3, although
the model needs to interact with the environment in the training stage, constantly explore
trial and error, and gradually find the action strategy with the maximum reward value in
the limited action space, it only takes 2.13 s. After the training, it takes only 0.43 s to obtain
the UC decision scheme according to this strategy. The total time of Method 3 decreases by
3935.6 s and 95.29 s compared to Methods 1 and 2. To sum up, although the UC intelligent
solution algorithm based on DRL does not reach the final optimal combination state, it
improves solution efficiency to a certain extent compared to that of the UC decision method
based on the physical model driven in terms of training time and decision time.

In order to obtain a better combination state under Method 3, the iteration times are
increased to 300 and 500 to see the change of the decision results. The output schemes of
the units in the two cases are shown in Figures 11 and 12.
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It can be seen from Figures 11 and 12 that when the number of iterations is 300, there is
a power shortage during part of the peak hours from 9 to 24. When the number of iterations
is set to 500, the system unit output can meet the load demand at any time in the scheduling
period, and there is no power shortage. Therefore, the DRL-based intelligent UC algorithm
proposed in this paper is correct and effective in the decision-making of small-scale UC
problems.

6. Conclusions

In this paper, DRL is applied to the field of UC, and an intelligent algorithm for solving
UC based on DRL is proposed. In order to facilitate the solution, the UC problem is divided
into two steps for calculation. The first one is to decide the start and stop state of the unit in
each period. The second one is to solve the corresponding output of the unit according to
the start and stop state. In the first step, the DRL algorithm is used to construct the MDP
model of UC problem. Based on the characteristics of the UC problem, the state space,
action space, transition function and reward function are given. The PG algorithm is used
to solve the problem, and the model makes decisions according to the strategy mapped
from the state to the action. In the second step, Lambda iteration is used to solve the output
of the unit according to the current startup and shutdown status of the unit. The following
conclusions can be drawn from the simulation example:

(1) The intelligent solving algorithm of UC based on DRL proposed in this paper can
effectively decide complex small-scale UC problems, and has high applicability.

(2) Compared to supervised learning, the method does not require the construction of a
large number of labeled sample data in advance, avoids the dependence on sample
data, and has higher generalization performance.

(3) Compared to the traditional method, this method can directly give the action decision
through the strategy model of the model, and the solving efficiency is higher.
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G.H., B.Z. and M.O.; validation, G.H. and B.Z.; formal analysis, T.M. and M.O.; investigation, B.Z.
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Appendix A

Table A1. Characteristic parameters of 10 thermal power units.

Unit
Number

Maximum
Unit

Output
(MW)

Minimum
Unit

Output
(MW)

a
(USD/h)

b
(USD/MWh)

c
($/MWh2)

Minimum
Startup

Time (h)

Maximum
Downtime

(h)

Hot Start
Cost

(USD)

Cold
Start Cost

(USD)

Cold
Start

Time (h)

Initial
State (h)

1 455 30 800 16.19 0.00048 3 3 4500 9000 3 1
2 455 30 750 17.26 0.00031 2 2 5000 10,000 2 1
3 130 20 700 16.60 0.002 3 3 550 1100 3 −1
4 130 20 680 16.50 0.00211 3 3 560 1120 3 −1
5 162 25 450 19.70 0.00398 3 3 900 1800 3 −1
6 150 20 370 22.26 0.00712 2 2 170 340 2 −1
7 85 25 480 27.24 0.0079 3 3 260 520 3 −1
8 70 10 660 25.92 0.00413 1 1 30 60 0 −1
9 70 10 665 27.27 0.00222 1 1 30 60 0 −1
10 70 10 670 27.79 0.00173 1 1 30 60 0 −1
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Appendix B

The pseudocode of DRL for UC problems (Algorithm A1).

Algorithm A1 DRL for UC Problems

Initialize parameters of UC problems
Input historical load data set of Nd days
Initialize day d = 1
Initialize learning counter m = 0
Initialize random parameters θ
Initialize target network parameters θ∗ = θ
Initialize n-step buffer D as a queue with a maximum length of n

1: for episode according to (11) do
2: Input historical load data of day d
3: Obtain initial state S1 of day d
4: for t = 1, · · ·, T do
5: Obtain feasible action set At of state St.
6: With select a random action ai,t from At;
7: otherwise select ai,t = maxP(at |st , θ) .
8: Obtain the schedule of units on next period t + 1 based on action ai,t .
9: Solve a single period Ft according to (15) and calculate reward rt+1 according to (14) and (16).
10: Calculate ui,t+1 according to (13) and then formulate the next state St+1.
11: Calculate At+1.
12: if At+1 = ∅ then
13: donet = 1
14: else donet = 0
15: Store (St, ai,t , rt+1, St+1, At+1, donet) in D
16: if length(D) = n or donet = 1 then

17: R =

{
0, donet = 1

maxP(at |st , θ), donet = 0
18: for i = t, t−1, · · ·, t−length(D), do
19: according to (16)
20: Perform a gradient descent step on (R− P(at |st , θ))2

21: m=m+1
22: If ∇θ J1(θ) > 0 according to (25) then
23: Update θ∗ = θθ∗ = θ
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