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Abstract: Traffic sign detection plays an important role in improving the capabilities of automated
driving systems by addressing road safety challenges in sustainable urban living. In this paper, we
present DSRA-DETR, a novel approach focused on improving multiscale detection performance. Our
approach integrates the dilated spatial pyramid pooling model (DSPP) and the multiscale feature
residual aggregation module (FRAM) to aggregate features at various scales. These modules excel at
reducing feature noise and minimizing loss of low-level features during feature map extraction. Ad-
ditionally, they enhance the model’s capability to detect objects at different scales, thereby improving
the accuracy and robustness of traffic sign detection. We evaluate the performance of our method
on two widely used datasets, the GTSDB and CCTSDB, and achieve impressive average accuracies
(APs) of 76.13% and 78.24%, respectively. Compared with other well-known algorithms, our method
shows a significant improvement in detection accuracy, demonstrating its superiority and generality.
Our proposed method shows great potential for improving the performance of traffic sign detection
for autonomous driving systems and will help in the development of safe and efficient autonomous
driving technologies.

Keywords: traffic sign detection; autonomous driving systems; pyramid pooling; DSRA-DETR

1. Introduction

In sustainable urban living, road safety faces challenges such as distracted drivers
and novice drivers’ unfamiliarity with traffic signs. To address these challenges, traffic
sign detection technology in autonomous driving systems can assist drivers in identifying
traffic signs accurately, contributing to road safety. Achieving accurate recognition of
small-sized traffic signs is crucial for autonomous vehicles to assess road conditions and
ensure safe operation. Researchers are actively working to improve the detection accuracy
of small-scale traffic sign images, aiming to enhance the performance and reliability of
autonomous driving systems.

Accurate recognition of small-scale traffic signs is essential for advancing autonomous
driving technology, providing autonomous vehicles with sufficient time to respond to
changing road conditions. Detecting and interpreting small-scale traffic signs accurately
contribute to the safety, efficiency, and reliability of autonomous vehicles, making it a key
research area within AI applications for sustainable urban living [1]. Deep learning methods,
including the R-CNN [2] series, YOLO [3] series, SSD [4] series, and visual transformer
architecture [5], have been widely used for traffic sign detection. The introduction of
DETR [6] has paved the way for transformer-based target detectors. However, the existing
methods still have limitations in terms of detection accuracy and the detection of small
traffic signs at a distance.

In this paper, we propose a novel traffic sign detection method called DSRA-DETR,
which improves upon Anchor-DETR [7] by integrating designed modules. DSRA-DETR
utilizes multiscale feature information extracted from the backbone and employs dilated
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spatial pyramid pooling (DSPP) and the feature residual aggregation module (FRAM) to
enhance the feature map’s representational power. Experimental results for the GTSDB [8]
and CCTSDB [9] datasets demonstrate that DSRA-DETR outperforms existing methods in
terms of accuracy.

Our contributions include applying Anchor-DETR to traffic sign detection, introduc-
ing the FRAM for multiscale feature aggregation, and proposing the DSPP module for
enhanced feature representation. The proposed DSRA-DETR method achieves better ac-
curacy compared to YOLOv3 [10] and Conditional DETR [6]. The remaining sections
of this paper provide an overview of the related literature, a detailed description of the
methodology, information about the datasets and evaluation metrics, experimental setup
and results, and a summary of findings and future research directions.

2. Related Work
2.1. The R-CNN Series

The R-CNN series is considered a two-stage algorithm, with R-CNN [2] being a
pioneering attempt to apply convolutional neural networks (CNNs) for target detection. It
leverages a CNN to extract region proposals in features and subsequently employs SVM
classification with bbox regression. To address the slow speed issue of R-CNN, He et al.
proposed SPPNet [11], which incorporates an SPP layer between the final convolutional
layer and the fully connected layer. Building upon the concepts in SPPNet, Girshick et al.
enhanced R-CNN and introduced Fast R-CNN [12], unifying category judgment and
position regression through a deep network implementation and thereby improving testing
and training speed. An upgraded version of Fast R-CNN is Faster R-CNN [13], which
integrates the four fundamental steps of target detection (candidate region generation,
feature extraction, classification, and location refinement) into a comprehensive deep
network framework. Instead of using the original SS (region proposals), it employs an
RPN (region proposal network). Additionally, following the introduction of ResNet [14],
He et al. combined parts of the Faster R-CNN architecture, introduced RoI Align to replace
RoI pooling, and proposed Mask R-CNN [15], which yielded superior performance and
greater scalability. Some scholars [16,17] use this series of methods for traffic sign detection.

2.2. The YOLO and SSD Series

The YOLO series is considered a standard one-stage algorithm. YOLOv1 [3], which
is the first paper in this series, introduced the core idea of using the entire image as the
network input and directly regressing the location and category of bounding boxes in the
output layer. However, it falls short in terms of localization accuracy compared to Faster
R-CNN and struggles with detecting small objects. YOLOv2 [18], an advancement over the
v1 version, addresses these limitations in three key aspects: improved prediction accuracy,
faster processing speed, and enhanced object recognition, all while maintaining its efficient
processing speed. YOLOv3 [10] further enhances the architecture and training techniques
introduced in v2 to improve accuracy without compromising inference time. In addition,
refs. [19,20] have made notable contributions in further enhancing the YOLO algorithm.
Liu et al. introduced the SSD [4] algorithm, which is based on multiscale detection. It
achieves a processing speed comparable to that of YOLO and a detection accuracy compa-
rable to that of Faster R-CNN. However, its performance in detecting small targets is still
not entirely satisfactory. Both [21–23] have made improvements to the SSD algorithm from
different angles. It is worth mentioning that RetinaNet [24] proposes focal loss to address
the issue of severe imbalance between positive and negative sample ratios in one-stage
target detection. Moreover, scholars have introduced the CornerNet [25] algorithm, which
utilizes diagonal keypoints to tackle the bounding box(bbox) problem. Building upon this,
CenterNet [26], employs central keypoints to further address the bbox problem. Some
scholars [27–29] use this series of methods for traffic sign detection.
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2.3. The Image Registration Series

In traffic sign detection, feature descriptors in image alignment can be used to extract
features in traffic sign images and match them with corresponding features in other images.
Among these, it is worth mentioning the FNRG [30] method proposed by Xiao et al.,
which starts with a novel consistency seed search strategy. This strategy exploits the
first neighbor relationship of feature points between two images to achieve consistency
matching without any parameters or thresholds. It is an eye-catching image-matching
method. Additionally, the LGF algorithm consists of two components: an effective two-
view approximate deterministic sampling algorithm and a simple and effective model
selection framework. The LGF [31] algorithm is able to obtain a coarse minimum subset of
samples using the local neighbor-keeping relationships corresponding to the inputs. It then
refines these subsets using a global residual optimization strategy. In this way, the same
traffic signs appearing in different images can be detected. Some scholars [32,33] use this
series of methods for traffic sign detection.

2.4. The DETR Series

More recently, the detection transformer (DETR) [34] became the first architecture to
apply the transformer [35] architecture to target detection, marking a significant advance-
ment in the vision field. While it demonstrates impressive performance on the COCO [36]
dataset, its convergence speed is relatively slow due to the computational demands of
the transformer architecture [5]. To tackle this issue, Deformable-DETR [37] proposes
a deformable attention mechanism and Conditional DETR [6] introduces a conditional
cross-attention mechanism, both of which make important contributions in reducing the
convergence time of DETR. Many scholars, including [38–40], have made significant con-
tributions to enhancing DETR by introducing improvements from various perspectives
and degrees based on the aforementioned work. Anchor-DETR [7], on the other hand,
is a deformable-based object detection framework that incorporates anchor points and
row–column decouple attention into DETR. Anchor-DETR is known for its fast convergence
and competitive performance compared to other detectors.

3. Method

DSRA-DETR is an advanced traffic sign detection architecture that builds upon the
foundation of Anchor-DETR. In order to overcome the challenges posed by small-scale
traffic sign detection, DSRA-DETR introduces a series of innovative components. One
such component is the dilated spatial pyramid pooling module, which plays a crucial
role in this architecture. By leveraging dilated convolutions, this module effectively filters
out extraneous and irrelevant information from the low-level features. This filtering
process ensures that only the most relevant and discriminative features are retained for
further analysis and processing. Additionally, DSRA-DETR incorporates a feature residual
aggregation module, which serves as a vital component for aggregating and enhancing the
representation of low-level feature information. This module intelligently combines and
refines the extracted features, enabling the model to capture more detailed and context-
aware representations of traffic signs. By integrating this module into the architecture,
DSRA-DETR significantly improves the accuracy and robustness of traffic sign detection,
particularly in scenarios where small-scale signs are prevalent.

Figure 1 provides a visual overview of the DSRA-DETR architecture, showcasing its
various components and their interactions. The backbone network forms the foundation of
the architecture, being responsible for extracting initial feature representations from the
input data. The dilated spatial pyramid pooling model operates on these features, capturing
multiscale information and selectively incorporating contextual details. The feature residual
aggregation module then refines the features, enhancing their discriminative power and
contributing to the overall performance of the model. After being processed by this module,
the feature is then fed into the encoder layer and decoder layer of the transformer.



Sustainability 2023, 15, 10862 4 of 15

Sustainability 2023, 15, x FOR PEER REVIEW 4 of 16 
 

residual aggregation module then refines the features, enhancing their discriminative 

power and contributing to the overall performance of the model. After being processed 

by this module, the feature is then fed into the encoder layer and decoder layer of the 

transformer. 

 

Figure 1. Dilated spatial residual Anchor-DETR. 

3.1. Backbone 

The backbone plays a crucial role in the target detection task by aiding the model in 

extracting features from the input image. These features are then utilized in the latter part 

of the model. As a result, having a strong backbone is essential for our traffic sign detection 

task. We use ResNet50 as the backbone network for all models, which are pre-trained on 

ImageNet. Figure 2 illustrates the structure of the backbone we are using. 

ResNet50 consists of four layers: layer1, layer2, layer3, and layer4. Each layer follows 

the same internal structure but has different downsampling rates: 4×, 8×, 16×, and 32×, 

respectively. The lower layers contain detailed location feature information, making them 

suitable for detecting small targets. On the other hand, the higher layers capture abstract 

semantic features, making them more suitable for detecting larger targets. In our method, 

we leverage the multilayer features extracted from all four layers for further processing 

and analysis. 

Figure 1. Dilated spatial residual Anchor-DETR.

3.1. Backbone

The backbone plays a crucial role in the target detection task by aiding the model in
extracting features from the input image. These features are then utilized in the latter part
of the model. As a result, having a strong backbone is essential for our traffic sign detection
task. We use ResNet50 as the backbone network for all models, which are pre-trained on
ImageNet. Figure 2 illustrates the structure of the backbone we are using.

ResNet50 consists of four layers: layer1, layer2, layer3, and layer4. Each layer follows
the same internal structure but has different downsampling rates: 4×, 8×, 16×, and 32×,
respectively. The lower layers contain detailed location feature information, making them
suitable for detecting small targets. On the other hand, the higher layers capture abstract
semantic features, making them more suitable for detecting larger targets. In our method,
we leverage the multilayer features extracted from all four layers for further processing
and analysis.

3.2. Dilated Spatial Pyramid Pooling Model

The DSPP module is an essential element of our proposed model, which draws inspi-
ration from the design principles of the DeepLabv2 [41] architecture. However, we made
several improvements to make it more suitable for our specific needs. The module com-
prises four convolutional layers: three 3 × 3 dilated convolutional layers with expansion
rates of [1,3,6] and one 1 × 1 convolutional layer. The use of dilated convolutional layers
instead of regular convolutional layers reduces the computational cost of the module while
maintaining its effectiveness.

To apply the DSPP module to the input features, we first convolve the input with three
different expansion rates in parallel. The expansion rate refers to the number of output
channels per input channel. Then, we concatenate the resulting feature maps before passing
them through the final 1 × 1 convolutional layer, which downscales the feature maps to
a desired number of output channels. The DSPP module allows our model to capture
features at multiple scales, allowing for more accurate detection of traffic signs of varying
sizes and scales. The module’s structure is depicted in Figure 3.
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The input feature map, Fin, has a shape of Fin ∈ RB×C×H×W , where B represents
batches, C represents channels, and H and W represent the height and width, respectively.
The mathematical expression for Fin after passing through a dilated convolution block
with a dilation rate of i is as follows:

Fi = ReLU(BN(Conv3×3(Fin))) (1)

In this expression, ReLU refers to the ReLU activation function, BN represents batch
normalization, and Conv3×3 denotes a 3 × 3 dilated convolution operation. The overall
expression for this module can be expressed as follows:

Fout = ReLU(BN(Conv1×1(concat(F1, F3, F6)))) (2)

Here, Fout represents the resulting output feature map. It is obtained by concatenating
feature maps F1, F3, and F6, and then applying a 1 × 1 convolution, followed by batch
normalization and ReLU activation.

Through the utilization of the DSPP module, we are able to apply targeted noise
reduction to the feature information extracted from the backbone. This noise reduction
process selectively preserves the relevant traffic sign features while removing unwanted
“feature noise” from the feature map. Consequently, the original feature map from the
backbone can more effectively carry out the task of traffic sign detection following the
integration of the DSPP module. In our ablation experiments, we visually demonstrated
the impact of this process by visualizing the feature maps, providing a clearer and more
illustrative understanding of this point.

3.3. Feature Residual Aggregation Module

The feature residual aggregation module (FRAM) is a crucial component in our pro-
posed model architecture. It addresses the challenge of feature resolution discrepancies
encountered in object detection tasks. The FRAM effectively preserves and leverages lower-
level features, resulting in significant improvements in the model’s detection performance,
especially for small-scale traffic signs. Its primary objective is to ensure that the model
retains essential information from lower-level features while extracting them hierarchically.
This is achieved through a feature residual aggregation process that considers features from
different scale layers that have undergone the DSPP module.

Inside the FRAM, the process starts with an absolute value subtraction of the feature
matrix at each level. This step calculates the differences between the feature layers from
different levels, allowing the module to discern disparities in content and characteris-
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tics. The differences obtained from the layer-wise calculations are then convolved with
the original high-level features. This convolution operation integrates the dissimilarities
between the layers with the existing high-level features, resulting in a comprehensive rep-
resentation of the combined information. By fusing the residuals of the low-level features,
richer information on small target features is aggregated in the feature maps used in the
subsequent detection part. This is crucial for the improvement in small-target detection
performance. To ensure successful fusion, the convolved results from different layers are
concatenated. This concatenation step consolidates the information obtained from each
layer and prepares it for subsequent processing. The concatenated features undergo a
downsampling operation, reducing the number of output channels to the desired level.

By utilizing the FRAM, our model demonstrates notable improvements in detection
capabilities, particularly in recognizing small-scale traffic signs. The module preserves
and effectively leverages essential information from lower-level features, enabling the
model to capture and utilize intricate details associated with traffic signs more efficiently.
Handling feature resolution discrepancies and preserving critical information from lower-
level features enhances the model’s accuracy and robustness. This enhancement enables
the model to detect traffic signs of varying sizes and scales with greater precision and
reliability. Please refer to Figure 4 for the structure diagram.
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In this module, C2, C3, C4, and C5 represent the feature maps of different layers
after passing through the DSPP module. Their shapes are as follows: C2 ∈ RB×C× H

4 ×
W
4 ,

C3 ∈ RB×C× H
8 ×

W
8 , C4 ∈ RB×C× H

16×
W
16 , C5 ∈ RB×C× H

32×
W
32 . The calculation formula for the

residuals module can be expressed as

Fr = Abs(Ds(Fh)− Fl) (3)

Here, Fr represents the output of a residual module. Fh denotes the high-level feature
input received by the module, Fl denotes the low-level feature input received by the
module, Ds represents the downsampling operation, and Abs represents the absolute value
operation. Therefore, the overall calculation formula for this module can be expressed as

Fout = ReLU(BN(Conv1×1(concat(C5, R5,4,3,2)))) (4)

In the formula, R5,4,3,2 represents the residuals obtained by aggregating the respective
layer features.
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3.4. Losses

The loss function has a significant impact on target detection. Its purpose is to assess
the disparity or error between the predicted outcomes of the model and the real labels. By
quantifying the difference between the predicted value and the true label, the loss function
offers feedback signals to guide the model’s optimization and learning during training.
To accurately detect objects in an image, we utilize a combination of classification and
bounding box regression tasks. The classification task involves predicting the labels of the
objects present in the image, while the bounding box regression task aims to accurately
locate the objects in the image. To supervise these tasks, we use appropriate loss functions.
Specifically, for the classification task, we use the cross-entropy loss function, which is
given by

Lclass = −ylog(p)− (1− y)log(1− p) (5)

Here, y denotes the true label of the sample and p denotes the predicted probability
of the model. For the bounding box loss, we use a linear combination of L1 loss and
Generalized Intersection over Union (GIoU) Loss:

Lbox(X, Y) = λiouLiou(X, Y) + λL1(X, Y) (6)

where Liou(X, Y) denotes the GIoU loss function, λL1(X, Y) represents the L1 distance loss
function, and λiou and λL1 are hyperparameters. The L1 loss function is defined as

L1(X, Y) =| X−Y | (7)

Furthermore, the GIoU loss function is given by

Liou = 1−
(
| X ∩Y |
| X ∪Y | −

| C \ (X ∪Y) |
| C |

)
(8)

Here, X and Y denote the true and predicted bounding boxes, respectively, and C
represents the minimum bounding box containing X and Y. The symbols |.| and \ indicate
the area and set differences, respectively. Finally, our overall loss function is expressed as

Loss =
N

∑
i=1

[Lclass + Lbox(X, Y)] (9)

where N is the number of samples in the batch. This loss function combines the classification
and bounding box losses, encouraging the model to make accurate predictions for both
tasks simultaneously. By minimizing this loss function during training, the model learns to
accurately classify and locate objects in images.

4. Dataset
4.1. Datasets

This study utilizes two well-established datasets, namely the German Traffic Sign
Detection Dataset (GTSDB) and the Chinese Traffic Sign Dataset (CCTSDB), to facilitate the
evaluation of traffic sign detection algorithms. The GTSDB consists of a total of 827 images,
each with a resolution of 800 × 1360 pixels, encompassing four distinct types of traf-
fic signs: “prohibitory”, “mandatory”, “danger”, and “other”. The size of the traffic
signs in this dataset varies from 16 to 126 pixels. On the other hand, the CCTSDB com-
prises 17,856 images, with resolutions of 760 × 1280 and 768 × 1024 pixels, and includes
three types of traffic signs: “prohibitory”, “warning”, and “mandatory”. These datasets
provide a comprehensive collection of traffic sign images captured in Germany and China,
offering diverse variations in weather conditions and road scenarios. To provide visual ex-
emplification, Figure 5 showcases selected examples extracted from these datasets, offering
a glimpse into the diversity of traffic sign images utilized in this study.
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4.2. Evaluation Criteria

In this paper, the performance of the algorithm model will be evaluated using three
metrics, AP, AP50, and AP75, from the COCO dataset, where AP50 is the average precision
obtained when the detector threshold is greater than 50, and AP75 is the average precision
obtained when the detector threshold exceeds 75. The calculation of AP in the COCO
dataset is based on the precision–recall curve. First, for each category, the predictions
are ranked according to their confidence level, and then the true positives (TP) and false
positives (FP) are calculated for each prediction. Then, precision and recall are calculated
based on TP and FP, and a precision–recall curve is plotted. Finally, the area under curve
(AUC) is calculated, which is the AP value of the category. The final AP value of the model
is obtained by averaging the AP values of all categories.
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5. Experiments
5.1. Experimental Details

The experiments detailed in this paper were conducted using the PyTorch deep learn-
ing framework on a 64-bit Linux system, utilizing an NVIDIA GeForce RTX3090 (made by
NVIDIA in Santa Clara, CA, USA) graphics card with 24 GB of video memory. During the
training phase, the datasets were divided into training, test, and validation sets in an 8:1:1
ratio. The images were resized to 800 × 800 pixels.

The learning rate is a critical parameter that significantly influences the convergence
speed of the model. If set too large, it may lead to loss oscillation, while setting it too
small may cause the model to converge to a local optimum. After careful consideration, we
set the learning rate and weight decay rate to 0.0001 and trained the model for a total of
100 epochs. Comparing the SGD optimizer to the AdamW optimizer, we found that the
latter yielded better model convergence. Therefore, we opted to use the AdamW optimizer.
The batch size was set to 4, and we utilized 300 query positions.

Data enhancement techniques play a pivotal role in enhancing a model’s robustness
and preventing overfitting. Hence, we employed various techniques, such as scaling,
rotation, and random cropping, during the training process to mitigate overfitting.

5.2. Ablation Study

To assess the efficacy of each component in DSRA-DETR, we conducted ablation
experiments on the GTSDB and CCTSDB datasets, evaluating the overall structure of our
design as well as the ASPP and FAM modules using AP, AP50, and AP75 as performance
metrics. We used Anchor-DETR as a baseline and incrementally improved it with our DSPP
and FRAMs, subsequently evaluating its performance on both datasets. The results are
shown in Tables 1 and 2.

Table 1. Ablation study for DSRA-DETR.

Settings
GTSDB CCTSDB

AP AP50 AP75 AP AP50 AP75

Baseline 73.61 95.16 90.35 76.92 96.52 94.83

Baseline + (C2.3.4.5) 74.12 96.03 90.87 77.21 97.14 95.24

Baseline + (C2.3.4.5) + DSPP 74.98 96.53 91.12 77.54 97.25 95.95

Baseline + (C2.3.4.5) + DSPP + FRAM 76.13 98.12 92.03 78.24 98.33 97.23

Table 2. Ablation study on DSRA-DETR model regarding multiscale target detection.

Settings
GTSDB CCTSDB

APs APm APl APs APm APl

Baseline 55.82 75.93 85.94 60.23 82.53 93.23

Baseline + (C2.3.4.5) 55.93 76.24 86.01 61.24 82.76 93.55

Baseline + (C2.3.4.5) + DSPP 56.52 76.22 85.93 61.96 82.65 93.41

Baseline + (C2.3.4.5) + DSPP + FRAM 57.12 76.19 86.42 63.04 83.12 94.37

The baseline model achieved an AP score of 73.61% on the GTSDB dataset and 76.92%
on the CCTSDB dataset. With the incorporation of the multiscale features, the model’s
performance was enhanced, resulting in a respective increase of 0.51% and 0.29% in AP
scores for the two datasets. Moreover, when we further integrated the DSPP and FRAMs,
the model achieved even better results, with improvements of 0.86% and 1.15% in AP
scores for the GTSDB dataset, and 0.33% and 0.70% for the CCTSDB dataset, respectively.
These results suggest that the proposed DSRA-DETR model can effectively improve the
detection performance of traffic signs for both datasets.
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Table 2 lists the average accuracy for small targets as APs, medium targets as APm, and
large targets as APl. By analyzing the table, we can observe that the model improved the
detection performance for all three sizes of targets for both datasets to varying degrees when
trained with multilayer features. Specifically, we can see that the detection performance of
the model for small targets (AP) was improved to some extent when multilayer features
were added. Notably, when DSPP and FRAMs were used for differential aggregation of
multiple features, we observed that the AP metrics of the model improved from 55.82% to
57.12% and from 60.23% to 63.04% for the GTSDB and CCTSDB datasets, respectively. This
implies that using features extracted from multiple layers and combining the proposed
module allow the complex details of the target to be captured and the useless information
to be filtered out from the low-level features. The detection performance of the model for
small targets was further improved.

In Figure 6, we compare the detection performance of our proposed DSRA-DETR
model with the baseline model for the two datasets, CCTSDB and GTSDB. To demonstrate
the effectiveness of our model in detecting small targets or multiple small targets, we
specifically selected two examples from each dataset for comparative experiments. The
results show that our DSRA-DETR model outperforms the baseline model in detecting
small targets, which can be attributed to the integration of our proposed FRAM and DSPP
modules. Furthermore, to provide further comparative illustration, we present a visual of
the feature maps of these examples.
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Figure 7 presents visualizations of the feature maps for the two selected exemplary
instances, illustrating the effects of the DSPP and FRAMs on enhancing the representation
of traffic signs. The feature maps exhibited noticeable improvements with the application
of the DSPP module. This module effectively eliminates extraneous information while
emphasizing essential aspects such as the spatial location and edge characteristics of the
traffic signs. As a result, the feature maps become more focused and discriminative.

Additionally, the FRAM plays a crucial role in augmenting the feature maps’ capacity
to represent small-scale targets. This enhancement is particularly significant as it enables
the model to concentrate more effectively on extracting and leveraging relevant information
from small-scale traffic signs during its operational phase. With the incorporation of the
FRAM, the model exhibits an improved ability to discern subtle details and capture the
distinctive features associated with smaller traffic signs. These visualizations provide
compelling evidence of the efficacy of the proposed DSRA-DETR model. The DSPP and
FRAMs effectively refine the feature maps, enhancing their representational power and
facilitating accurate detection and localization of traffic signs. The combination of these



Sustainability 2023, 15, 10862 12 of 15

modules contributes to the overall performance improvements observed in terms of average
precision (AP) scores for both the GTSDB and CCTSDB datasets.
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5.3. Comparison with Previous Methods

In our study, we evaluated the performance of our DSRA-DETR algorithm in compari-
son to several popular algorithms used for traffic sign detection and general target detection
tasks. The algorithms we compared included YOLOv3, Deformable DETR, CornerNet,
and Conditional DETR, all of which use the training and evaluation APIs provided by the
COCO dataset. We present the results of our experiments in Table 3.

Table 3. Comparison with previous methods.

Method
GTSDB CCTSDB

AP AP50 AP75 AP AP50 AP75

Deformable DETR 73.89 97.15 91.21 75.99 97.18 96.89

CornerNet 56.75 73.84 67.54 57.69 73.52 67.31

YOLOv3 61.28 74.36 76.73 61.92 74.99 73.15

Conditional DETR 73.46 96.85 91.34 77.13 97.21 96.72

DSRA-DETR (Ours) 76.13 98.12 92.03 78.24 98.33 97.23

Compared to Deformable DETR and Conditional DETR, our algorithm achieved a sig-
nificant improvement in AP for the GTSDB of 2.24% and 2.67%, respectively. Similarly, the
APs for the CCTSDB also showed notable enhancements of 2.25% and 1.11%, respectively.
These improvements can be attributed to the incorporation of two essential modules, DSPP
and FRAM. The DSPP module refines the original feature map by eliminating redundant
features and creating a more suitable feature map for the traffic sign detection task. On
the other hand, the FRAM aggregates rich location information from lower-level features,
leading to better small-target detection performance for higher-level features.

Compared to YOLOv3 and CornerNet, our algorithm demonstrated remarkable im-
provements in AP for the GTSDB of 14.85% and 19.38%, respectively. For the CCTSDB, the
APs were enhanced by 16.32% and 20.55%, respectively. These substantial performance
gains can be attributed to the attention mechanism based on the transformer architecture.
This novel visual processing method calculates the pixel point’s association with other
pixel points, offering a different approach from traditional CNN architecture. Moreover,
the introduction of the DSPP and FRAMs plays a crucial role in further enhancing the
algorithm’s overall performance.

The precision–recall curve in Figure 8 clearly shows that our proposed method out-
performs all other compared methods, as it has the largest area enclosed by the coordinate
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axes. This indicates that our method achieves the best results after training. It is noteworthy
that all three methods based on the transformer architecture surpass the performance of
the two CNN-based methods, providing further confirmation of the effectiveness of the
transformer architecture.
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The loss–epoch curves depicted in Figure 8 demonstrate that our proposed method
exhibits superior convergence speed compared to other methods. This can be attributed to
Deformable-DETR, Conditional-DETR, and Anchor-DETR, which accelerate convergence.
However, it is important to acknowledge that transformer-based algorithms typically
require more time to complete an epoch than CNN-based algorithms.

6. Conclusions and Discussion

In this paper, we introduce DSRA-DETR, a novel method for multiscale traffic sign
detection. Our method incorporates an efficient feature fusion module to enhance Anchor-
DETR. Unlike traditional CNN-based detectors, we leverage the transformer architecture,
which has shown great potential in various computer vision tasks. We investigated dif-
ferent feature fusion methods and pyramidal feature map generation and found that
integrating multilevel feature maps maximizes their effectiveness in traffic sign detection.
Additionally, we integrated the DSPP module to enhance feature information and im-
proved localization capability at each level. Moreover, the FRAM was employed for feature
aggregation, enabling our model to capture valuable underlying feature information and
further enhance performance.

Extensive experiments on the GTSDB and CCTSDB datasets demonstrate that DSRA-
DETR outperforms several advanced target detection methods in terms of accuracy. How-
ever, it is important to acknowledge that the transformer-based model requires significant
memory and computational power, making it challenging to deploy in real self-driving
vehicle systems for sustainable urban life. In future research, we propose focusing on
lightweighting and real-time optimization, aiming to reduce model size and computational
requirements without compromising accuracy. This would be beneficial for improving the
algorithm and its applicability in sustainable urban living.

In conclusion, our proposed DSRA-DETR method offers a promising solution for
multiscale traffic sign detection, showcasing its effectiveness and surpassing existing
methods in accuracy. In future research, we aim to explore a lightweight and real-time
traffic sign detection algorithm suitable for deployment in autonomous vehicle systems
to enhance road safety. Furthermore, we aim to promote the application of artificial
intelligence in sustainable urban living, contributing to a safer and more efficient traffic
management system.
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