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Abstract: Persistent organic pollutants (POPs) usually originate from human activities and have been
released into the environment for several decades. They are highly resistant to natural decomposition
and can accumulate in an organism’s tissues and in all environmental components. Due to their
unique characteristics, they have an ability to bio-magnify and bio-accumulate in animals, through
the food chain and via inhalation, severely endangering the health of people. As reported, the
exposure of humans to POPs causes various health problems such as cancers, diabetes, birth defects,
endocrine disruption, cardiovascular diseases and dysfunctional immune and reproductive systems.
The residents of South Korea are likely to face a high risk of diseases because of the existence of
POPs in the environment. For instance, South Korea’s atmosphere has been reported as a hotspot for
POP pollution. Besides, South Koreans’ high amount of seafood consumption is considered another
source of POPs. Therefore, this article reviews the status of POP contamination in food and the health
impact of POPs in South Korea. Based on the findings, the most-reported diseases were obesity and
diabetes, which positively correlated to age, food habits, body index, and level of exposure to POPs.
In addition, cancer and metabolic diseases are at an alarming level. Therefore, the public health
impacts of POPs need continuous assessment in South Korea over the next decade.

Keywords: persistent organic pollutants; human health; diseases; South Korea

1. Introduction

Persistent organic pollutants (POPs) encompass a group of chemical compounds de-
fined by the Stockholm Convention in 2001, as characterized by four key attributes [1].
These substances exhibit persistence, meaning they resist degradation in the environ-
ment [2]. Additionally, they are bioaccumulative, meaning that they build up in living
organisms over time. POPs are also known to possess toxicity and mobility. Primarily
originating from human activities, these pollutants have been continuously emitted into
the environment for several decades. Notably, they have been found to contain numerous
carcinogens as well as compounds that disrupt the endocrine system [3].

The environment contains three distinct categories of POPs: (1) pesticides, specifically
organochlorine pesticides (OCPs) such as dichlorodiphenyltrichloroethane (DDT) and its
byproducts; (2) industrial and technical chemicals comprising polychlorinated biphenyls
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(PCBs), perfluorooctanesulfonate (PFOS) and polybrominated diphenyl ethers (PBDEs);
(3) by-products resulting from industrial processes, such as polyaromatic hydrocarbons
(PAHs), polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins
(PCDDs) [4]. Another study has classified the various types of POPs into four groups: those
subjected to the elimination of production and usage, those with restricted production
and usage, unintentionally produced substances, and chemicals currently under investi-
gation. Chemically, POPs can be categorized as brominated, chlorinated, or fluorinated
compounds [5].

POPs exhibit remarkable resilience to natural degradation within the environment,
persisting in aquatic environments, soils, food chains, and ultimately, within the human
body for prolonged periods, even after production has ceased. Possessing lipophilic charac-
teristics, these pollutants can accumulate in various environmental elements and organisms’
tissues, and can also be transported through the atmosphere across substantial distances [6].
These attributes enable them to undergo biomagnification and bioaccumulation within
animals, posing significant threats to both human health and the integrity of natural
ecosystems [7].

These contaminants interrupt the food chain, thus threatening the survival of all
humans and wildlife on Earth in the long term. Populations worldwide, including humans
and animals, face potential prolonged exposure to POPs. These pollutants can accumulate
within the fatty tissues of living organisms, leading to their increased concentration as they
progress through the food chain [4]. Scientific evidence confirms the detrimental impact
of POPs on human health. Exposure to these contaminants can give rise to a wide range
of health issues, including endocrine disruption, cardiovascular diseases, cancer, diabetes,
birth defects and impairments in immune and reproductive systems’ functionalities [4,7–9].

A recently published review on the distribution pattern of POPs in South Korea’s
atmosphere reports a trend of increasing chemical concentrations such as POPs. They
found the major pollutants to be PAHs, PCBs, brominated flame retardants (BFRs) and
PBDEs, the combination of which had significantly polluted the atmosphere of South Korea.
Based on their findings, South Korea is considered a hotspot for POP pollution, while
the level of TBBPA is lower than expected [10]. BFRs, in the manner of other POPs, can
accumulate in food chains and have even been found in human milk [11]. As most of the
review papers only focus on the environmental aspects of POP pollution, there is a need to
evaluate the health impact of POPs on human health. To date, there is no comprehensive
review regarding the effect of different types of POPs on human health in South Korea.
Therefore, we reviewed the potential POP contamination in food and how it can affect the
health of South Koreans by referring to relevant published studies over the last decade. The
impacts of different types of POPs, including OCPs, PCBs, PFAS, PBDEs and HBCDs on the
health of infants, adults and elderly people have been investigated. Based on our findings,
the dominant diseases can be classified as endocrine disruption, cancer and cardiovascular
and metabolic problems.

1.1. POPs in Food

Overall, the primary factor that determines the presence of environmental pollutants
in food, irrespective of whether they are organically or conventionally produced, is the
proximity of anthropogenic pollution sources [12]. Due to their lipophilic nature and ability
to bioaccumulate within the food chain, POPs have the potential to accumulate in the
adipose tissues of humans, thereby causing detrimental effects on human health [13].

Upon release into the atmosphere, POPs settle onto vegetation, soil and sediments.
They subsequently bioaccumulate in aquatic fish and farm animals through the ingestion
of contaminated feed, plants and sediment. As marine and freshwater organisms exhibit
higher concentrations of POPs compared to their surrounding aquatic environment, they
serve as valuable bioindicators. For the majority of individuals not occupationally exposed
to POPs, the primary route of exposure (>90% of POP intake) stems from the consumption
of animal products and seafood. Additionally, exposure can occur through the consumption
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of fruits and vegetables treated with pesticides, which serve as an additional source of
exposure [4,14]. Figure 1 presents some of the reported POPs in foods in previous studies.
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Figure 1. The reported POPs in food (adopted from [4]).

1.2. POPs in the Human Body

The protection of human health is the ultimate objective of the Stockholm Convention,
with humans being the final link in the exposure chain [15]. To monitor the presence of
POPs in humans, both invasive and non-invasive techniques are employed for biological
monitoring. These techniques involve the analysis of breast milk, blood/serum, hair,
saliva, semen, fingernails and urine. These biological samples provide insights into the
accumulation of POPs in the body resulting from exposure and the potential transfer of
POPs through the placenta and breast milk from mother to child, as well as the excretion
of POPs and their metabolites through various bodily fluids. Research indicates that the
primary route of exposure for the bioaccumulation of POPs in human fluids is through
the intake of contaminated food. A secondary route of exposure includes inhalation of
pollutants from e-waste sites and contaminated farms [14].

The high toxicity of POPs is attributed to their property of bioaccumulation. This
ability to accumulate in living organisms for extended periods is facilitated by the high-fat
solubility of hydrophobic POPs. This characteristic enables them to readily accumulate and
persist in fatty tissues [7]. The primary routes through which POPs undergo bioaccumula-
tion are outlined and presented in Table 1.

Table 1. The main routes of bioaccumulation of POPs.

Routes Transfer Pathway Main Origin

POPs

Oral
Ingestion Water, Vegetable, Fruits, Meat, Milk, Other foods

Contact Contact, Water, Air, Food, Other foods

Inhalation
Ingestion Air, Aerosol, Water vapors

Contact Air, Aerosol, Water

Dermal
Ingestion Air, Water

Contact Air, Water, Food items
Source: Modified from [7].

1.3. Health Effects of POPs

Despite the low level of POPs in humans, various health problems have been asso-
ciated with this type of pollution. This is due to their metabolic and carcinogenic effects,
which lead to human chronic diseases through the mechanism of DNA methylation dereg-
ulation [4]. In the current context of environmental pollution, virtually everyone carries
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traces of POPs in their bodies. Interestingly, even fetuses and embryos have been found to
harbor POPs. These pollutants are detected in individuals across all age groups, with higher
levels observed in older populations. Exposure to these contaminants poses significant
health risks, including cardiovascular diseases, obesity, hormone disruption, reproductive
and neurological disorders, cancer, endocrine disturbances, diabetes and learning disabili-
ties [7]. Moreover, health problems such as dizziness, diarrhea, rashes, skin irritation and
headaches can be the result of POP exposure. Thus, POPs have demonstrated the ability
to induce a range of detrimental effects on human health, including compromising the
immune system and rendering the body susceptible to microbial infections [3].

Upon entering the human body, POPs persist throughout an individual’s lifetime.
Even small quantities of these substances can contribute to the development of diseases.
For instance, certain chlorinated hydrocarbon pesticides such as aldrin and dieldrin have
been associated with numerous cases of severe acute poisonings. They can result in
gastrointestinal disorders and kidney and nervous system damage, and have the potential
to impact immune response systems. Additionally, the combination of aldrin and dieldrin
may elevate the risks of liver and biliary cancer [6]. Therefore, if these chemicals surpass
their acceptable thresholds, POPs can have harmful effects on the human body. Some of
the possible diseases caused by POPs in the human body are presented in Table 2.

Table 2. Health Problems and their links to POPs.

Health Impact POPs Type References

Cancers PCDE, PCN, PBDE, PCBs, PAHs, OCPs, PCBs, DDT, Endrin,
PFOS and PFOA, Dioxins/furans [4,7,16–19]

Reproductive problems HBCD, PBDE, PAHs, OCPs, Chlordecone, DDT,
Hexachlorobenzene (HCB), PCBs [7,16,18,20]

Endocrine disruption HBCD, PCBs, Dioxins/furans, OCPs
Alpha and beta hexachloro cyclohexane [7,16,20,21]

Diabetes, Glucose intolerance, Insulin
resilience PBDE, PCBs, OCPs, OCPs, Dioxins/furans [7,16,22]

Obesity
PBDE
PCBs
OCPs

[7]

Cardiovascular problems PBDE, PCBs, OCPs, Dioxins/furans [7,16]

Kidney damage Toxaphene, Mirex, Aldrin, Alpha and beta hexachloro
cyclohexane, Dieldrin [4,23–25]

Neurological disorders PCBs, OCPs, DDT, Aldrin, OCPs, Chlordane [4,7,9,17,18,23]

Liver injury
PCBs, Aldrin, Chlordecone
Perfluorooctane sulfonate, HCB, Pentachlorobenzene (PCBz),
Toxaphene, Alpha and beta hexachloro cyclohexane, Chlordane

[16,17,26,27]

High blood pressure Dioxins/furans, OCPs [7,17]

Gastrointestinal distress Aldrin, Chlordane [27]

Respiratory diseases, Oxidative stress,
DNA damage, Mutagenicity and
carcinogenicity

PAHs [7,16]

Immune system, Immunological toxicity Polychlorinated Dibenzo-p-dioxins (PCDDs),
Pentachlorobenzene (PCBz) [26]

Behavioral effects, Disturbances in
mental development, Language delay,
Cognitive dysfunction among children

PAHs, Dioxins/furans, HBCD [7,16,17]
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Based on Table 2, OCP is considered one of the most problematic types of POPs, one
which causes several different diseases. A recent study investigated the OCP levels for
12 years in the people of Seoul in South Korea. The level of OCPs showed a decreasing
trend; it was higher in females than in males due to metabolism, dietary habits and body
mass, while it showed an increasing level with increased age and higher BMI [28].

2. The Availability of POPs in South Korean Food

In response to the globalization and diversification of the food industry, as well as the
increasing consumer focus on health, South Korea has implemented food safety policies
that are evidence-based. The Total Diet Study (TDS) serves as a common tool for risk
assessment, allowing the evaluation of exposure to hazardous elements. International
organizations such as the World Health Organization (WHO), the Food and Agriculture
Organization (FAO), and the European Food Safety Authority have made efforts to stan-
dardize TDS methodologies. In South Korea, periodic TDSs have been conducted to assess
dietary intakes of various substances, including pesticides, heavy metals, persistent organic
pollutants, mycotoxins and processing contaminants [29]. Notably, 74% of mothers in
South Korea receive postpartum care services for one month following delivery, during
which they either stay in the hospital or at home [30]. These care services include dietary
restrictions that limit the consumption of high-fat foods and fast foods, which often contain
elevated levels of per- and poly-fluoroalkyl substances (PFAS) [31].

The extensive pollution of short carbon-chain perfluorocarboxylic acids (PFCAs) in
the environment can result in their presence in food products. Among meats, vegetables
and fruits, PFHxA was the most commonly detected PFAS [32]. Furthermore, among the
16 PFAS analyzed in the dietary samples from South Korea, PFPeA, and PFHxA were found
to be the most commonly detected compounds [33]. Another study compared different
pathways of POP exposure in South Korea. PBDEs were ingested via dietary intake and by
other pathways. When considering various routes of exposure, it was found that dietary
intake played the most significant role in the overall exposure to PBDEs among South
Korean adults, accounting for approximately 71% of the total intake.

One study conducted a risk assessment of dioxins in 257 food items in South Ko-
rea. They reported that although the levels of POPs in the air have been considerably
reduced, their levels in human serum have not reduced, indicating that humans may also
be unintentionally subjected to these compounds, primarily through food ingestion [34].

In another study conducted in South Korea, the concentrations of PFAAs were mea-
sured in 397 food samples. The findings indicated that long-chain perfluorocarboxylic acids
(PFCAs) and Perfluorooctane sulfonate (PFOS) were the predominant PFAAs detected in
fish, shellfish and processed foods. On the other hand, perfluorooctanoic acid (PFOA) and
short-chain PFCAs were more prevalent in dairy products and beverages. Fish consump-
tion emerged as a significant contributor to PFOS exposure, while dairy foods played a
major role in PFOA exposure. Notably, tap water intake emerged as a primary source of
PFOA exposure when it served as the main source of drinking water [32].

Another study in South Korea analyzed a total of 521 food samples which were
sampled and analyzed for their 1,2,5,6,9,10-hexabromocyclododecane HBCD content. The
highest amount of HBCD was found in fish and shellfish, and this was attributed to natural
exposure to polluted marine environments [35]. A study was conducted to evaluate the
dietary exposure and risk associated with PCBs for the general population in South Korea,
focusing on 28 different food items. The findings indicated that the overall dietary exposure
to PCBs through food intake among the South Korean population remained below the
recommended tolerable daily intake (TDI) levels [36].

Milk serves as an important medium for monitoring the contamination of persistent
organic pollutants (POPs). In a South Korean study, the concentrations of POPs in raw
bovine milk were determined. The results revealed that the residual levels of PBDEs, HCB,
PCDD/Fs and DL-PCBs in raw bovine milk fell within acceptable safety limits [37].
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Seafood consumption represents a significant pathway for exposure to legacy per-
sistent organic pollutants (POPs), including PCDD/Fs, PCBs and OCPs, as well as PAHs
and mercury, among South Korean populations [38,39]. Despite the increasing demand for
polybrominated diphenyl ethers (PBDEs) in parallel with the rapid growth of the electronics
market in South Korea, there are no specific regulations in place for PBDEs. The concentra-
tions of PBDEs in commonly consumed seafood were analyzed. The results revealed that
the contribution of seafood consumption to PBDE intake in South Korea was the highest
among the reported estimated daily intakes (EDIs) of several other countries. For South
Korean adults, both seafood consumption and dust ingestion played an equal role in total
PBDE intake, whereas dust ingestion was the primary contributor for toddlers [40]. An-
other study conducted on South Korean seafood found no statistically significant difference
in PCB levels between raw samples and various cooking methods. However, there was a
noticeable increase in PCB concentrations after cooking raw seafood [41]. Additionally, it
was observed that individuals in South Korea who consumed more vegetables, potatoes,
fish/shellfish, or popcorn tended to have higher concentrations of various perfluorinated
compounds (PFCs) in their serum [42].

On the other hand, exposure to POPs during early-life stages can disrupt the de-
velopment of the immune and respiratory systems, potentially leading to a diminished
ability to combat infections and an elevated susceptibility to allergic manifestations in
later life. Existing epidemiological findings indicate that early-life exposure to POPs can
have negative impacts on the development of immune and respiratory systems. Moreover,
prenatal exposure to POPs poses health risks, not only to expectant mothers, but also to
newborns [43]. Table 3 represents the effect of POPs during prenatal and post-natal periods
in South Korean people.

Table 3. The available POPs in samples during the prenatal and post-natal periods in South Korea.

Reference Author Name/Year POPs Type Sample (n) Tissue or Part of the
Body Main Findings

[44] Jeong et al. (2018)
(PBDEs),
(OCPs),
(PCBs)

108 Placenta tissues

The accumulation of POPs in
the placenta is associated with
body mass index, maternal age,
and parity.

[45] Kim et al. (2015)

PCNs, Pb, T-Hg,
PBDEs, MeHg, Cd,

PCDD/Fs, PBDD/Fs,
PCBs

20 pregnant mothers

Cord blood,
Placenta, Maternal
blood,
Maternal urine

PCNs and PBDD/Fs were
detected in the cord
serum samples.

[46] Choi et al. (2018)

Polychlorinated
biphenyls (PCBs)
Organochlorine

pesticides (OCPs)

118 pregnant females
and 117 newborn

infants

Maternal blood
Cord blood

The concentrations of p,p′-DDE
among two-thirds of the
pregnant women and newborn
infants exceeded the
biological equivalent.

[47] Choi et al. (2014) PBDEs

198 maternal blood
samples and
118 matching

umbilical samples

The blood sera of
pregnant women and
their matching
newborn infants

It indicates the importance of
maternal transfer due to the
strong positive correlations
between maternal and cord
blood serum.

[48] Shin et al. (2014) PBDEs
29 maternal serum

and 25 umbilical cord
serum

Tissues of
mother-neonate pairs

Tetra-BDEs were detected more
often relative to other congeners
in maternal serum.

[49] Kim et al. (2015)
(PCBs),

(PBDEs),
(OCPs)

104 newborn infants
Cord serum of
newborns;
TSH in bloodspot

Maternal exposure is associated
with neonatal thyroid
hormones. Supports
thyroid-disrupting potential of
POPs among infants.
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3. The Availability of POPS in Mother Milk and Baby Food

Breastfeeding stands as the benchmark for nourishing newborns, yet breast milk is a
biological fluid that may harbor environmental contaminants. These pollutants have the
potential to impact the immune system and, in turn, the functioning of different bodily
organs [50].

Breast milk consumption constitutes more than 90% of the daily intake of substances
following birth. Research conducted in South Korea identified ingestion of house dust and
breast milk, inhalation of indoor air, and dermal contact with house dust as the primary
pathways and sources of POPs for infants below six months of age. Considering the
exposure scenario for children over one year old, the contribution of dietary intake in terms
of exposure significantly decreased, from 90% to 30% [51].

In South Korea, measurements were taken to evaluate the levels of PBDEs in synthetic
musks, via both fetal and maternal exposure. These measurements aimed to assess the
prenatal and postnatal exposures experienced by infants. Comparing the obtained data
from other countries and previous data from South Korea, South Korean breast milk showed
relatively higher concentrations of PBDEs. Furthermore, these PBDE concentrations were
found to gradually increase over time [52].

It was documented that, over 12 years, the average level of perfluorooctanoic acid
(PFOA) in South Korean breast milk rose by approximately threefold (278%). The consump-
tion of fish appears to be a prominent dietary factor associated with the concentration of
perfluorooctane sulfonate (PFOS). Out of the 14 per- and poly-fluoroalkyl substances (PFAS)
analyzed, twelve were detectable in breast milk samples [53]. However, a study conducted
in South Korea did not establish any significant connections between phthalate metabolites
in breast milk and population characteristics such as age, parity, or pre-pregnancy BMI [54].
Table 4 presents the availability of different types of POPs in tested mothers’ bodies in
South Korea.

Table 4. POPs concentration in the bodies of mothers in South Korea.

Reference Author
Name/Year

Sample
(n)

BMI
(kg/m2) Detected POPs Concentration

(ng/g fat) Main Findings

[55] Kim et al.
(2013) 50 19.9

p,p
-DDE, p,p
-DDT, β-HCH,
heptachlor
epoxide,
trans-nonachlor and
HCB

p,p′-DDE were 75.5–1115.3.
Chlordanes (84.9),
heptachlors (40.1),
HCB (42.9),
PCBs (38.3)

EDIs of infants on DDTs,
chlordane, and HCB heptachlors
were lower than ADI proposed
by WHO.
OCPs were correlated with the
residential period of the mothers,
but not with
dietary behaviors.

[56] Kang et al.
(2016) 264 21.4

Seventeen PFAS,
including ten (PFCAs),
four PFOS, and three
per-fluoroalkyl
sulfonamides

PFOA:0.072,
PFOS: 050,
PFPeA: 0.058,
PFHxA: 0.047,
PFHpA: 0.028 (ng/mL)

Daily exposure estimates and
associated risks of PFOS and
PFOA due to breast milk
consumption are negligible.

[57] Lee et al.
(2018) 293 21.5 16 PFAS

PFAS (ΣPFAS) ranged from
31.7 to 1004
(median: 188) ng/L.
PFUnDA 23.7 ± 16.3 ng/L,
PFNA 19.4 ± 21.8 ng/L,
PFOS: (57.3 ng/L), PFOA
(55.6 ng/L)

The accumulation of POPs in the
placenta is associated with body
mass index, maternal age,
and parity.
The EDIs of PFOS and PFOA are
below the tolerable daily intakes
for infants due to the consumption
of breast milk.

[54] Kim et al.
(2015) 62 21

MEP,
MiBP,
MnBP,
MEHP

MEP: 0.37,
MiBP: 1.10,
MnBP: 1.70,
MEHP: 2.08
(µg/L)

Maternal consumption of
whipped cream or purified water
is associated with the
concentrations of MiBP and MnBP
in breast milk.
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Table 4. Cont.

Reference Author
Name/Year

Sample
(n)

BMI
(kg/m2) Detected POPs Concentration

(ng/g fat) Main Findings

[58] Kim et al.
(2015) 82 20.5

19 PCB congeners,
19 PBDE congeners, and
19 OCPs

leptin 17.9,
adiponectin 16.5 (µg/L)

No relationship was found
between adiponectin and POP
concentrations.

[59] Kim et al.
(2018) 41 21.3

19 PCB congeners,
19 PBDE congeners, and
19 OCP

ΣPCB = 14.4,
ΣPBDE = 1.5,
ΣHCH = 19.5,
ΣDDT = 104.2,
ΣCHD = 8.9
(ng/g lw)

A negative association was found
between breast milk DEHP level
and MDI score.

[60] Lee et al.
(2015) 87 22.2 (SMCs),

(BUVSs)

Tonalide = 15.8,
Galaxolide = 299,
UV-328 = 64.3 (ng/g lw)

The compounds of two synthetic
masks (galaxolide and tonalide)
and UV-328 were detected at a
level > 50%.

[53] Kim et al.
(2023) 207 23.5 Σ14 PFAS

PFOS: 0.05,
PFOA: 0.10,
* PFDA: 0.031,
** PFHxS: 0.007,
*** PFNA: 0.033 (ng/mL)

PFOS concentrations in breast
milk were significantly influenced
by fish consumption.

* Perfluorodecanoic acid. ** Perfluorohexanesulfonic acid. *** perfluorononanoic acid.

Besides breastmilk, baby food also contains POPs, as reported by South Korean re-
search. For instance, one research effort examined the residue levels of PBDEs in homemade
baby food. The concentrations of total PBDEs were higher than those found in commercial
formulae from the United States. They concluded that baby food is a significant exposure
pathway of PBDEs for over-24-month-old infants [61].

It has been reported that as infants grew older, there was an observed increase in the
contribution of DDTs to the overall concentrations of organochlorine compounds (OCs).
The contribution rose from 30% in 6-month-old infants to 67% in 15-month-old infants.
Conversely, the concentrations of PCBs, HCHs, and CHLs showed a gradual decline as
infants aged, indicating that addressing the risk associated with DDTs should be given the
highest priority amongst reduction efforts [62].

Another research effort aimed to identify the dietary patterns associated with blood
levels of persistent organic pollutants (POPs) in South Korean children. The analysis
revealed that the dietary pattern related to polychlorinated biphenyls (PCBs) exhibited
strong associations with the consumption levels of cheese, nuts, salted seafood and seeds.
Similar results were observed for the overall intake of PCBs. The dioxin-like PCB pattern,
on the other hand, was characterized by higher consumption of yogurt, beverages and
fruit, along with a lower intake of grains, seaweed and processed meat. Moreover, the
dietary pattern associated with total organochlorine pesticides (OCPs) showed positive
factor-loading values for beverages and shrimp, while seaweeds and processed meat had
negative factor-loading values [63].

4. Type of Associated Diseases with POPs in South Korea

A variety of types of diseases have been reported to be caused by POPs. The associated
diseases are classified into two categories, (1) endocrine disruption and cancers, and (2) car-
diovascular and metabolic diseases [4]. In addition, another classification includes additive
and synergistic effects, reproductive problems, endocrine disruption and cardiovascular
problems [7]. The reported diseases in South Korea that have been associated with POPs
are classified and explained in the following discussion. Figure 2 demonstrates the reported
diseases in South Korea that have been linked with POPs.
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4.1. Endocrine Disruption and Cancers
4.1.1. Diabetes

The estimated prevalence of diabetes in South Korea is 12.4%, which corresponds
to approximately 4.01 million individuals. Type 2 diabetes comprises over 95% of the
diabetes cases in the country [64]. In South Korea, there is a growing interest in POPs due
to their potential as endocrine disruptors and their suggested association with diabetes as a
possible risk factor [65].

The rapid growth of agriculture and industry in Asia over the last five decades
has resulted in elevated levels of potentially harmful chemicals, such as POPs and non-
persistent pesticides. Among the countries in the region, China accounts for more than
half of the pesticides used. However, when considering use per hectare of agricultural
land, South Korea surpasses others by utilizing over 50 kg of formulated products per
hectare [66]. In South Korea, a wide range of pesticides containing multiple chemical
ingredients have been extensively employed, raising concerns about the potential impact
of pesticide exposure on the development of diabetes [67].

The association between POPs and diabetes may be influenced by confounding factors.
One potentially confounding factor is the storage of POPs in adipose tissue, which could
affect the observed association in cross-sectional studies [68]. However, a study indicating
that weight loss results in elevated serum concentrations of POPs, while weight gain can
lower them, suggests that adipose tissue acts as a reservoir for POPs, thereby reducing
their circulating levels. Furthermore, it has been proposed that the diabetic state itself
could alter the metabolism of POPs, leading to variations in their distribution or concen-
tration [69]. A recent study showed that there is an association between dioxin and the
risk of type 2 diabetes mellitus (T2DM) and thyroid cancer in South Korean elderly people.
The sample study was made up of 48% men and 52% women, with a median age of 54.06
and a BMI median of 24.28 kg/m2. According to the findings, women show a positive
association between dioxin and the risk of T2DM but men do not [70]. Table 5 shows the
studies related to POPs and diabetes in South Korea.



Sustainability 2023, 15, 10851 10 of 19

Table 5. Association of POPs with Diabetes in South Korea.

Reference Author
Name/Year POPs Type Sample (n) Exposure Tissue Remarks

[71] Park et al. (2019) Pesticide exposure 2559 Blood

Several factors such as age,
educational level, sex, BMI,
smoking status and monthly
income were associated
with diabetes.

[65] Park et al. (2016)
51 POPs including

19 OCPs and
32 PCBs

214 children,
7–9 years of age Serum

POP exposure might affect
insulin secretory function
among children.
It may lead to an increased
risk of developing diabetes.

[72] Lim et al. (2015) PCBs
98 South Koreans

(49 men and
49 women)

POP exposure might
contribute to type 2 diabetes.
There is a negative
association between PCBs
and adiponectin.

[73] Son et al. (2010)
Low-dose

organochlorine
(OC) pesticides

40 diabetic patients
and 40 normal

controls

Low-dose exposure to OC
pesticides was associated
with prevalent type 2
diabetes in South Koreans.

[74] Ha et al. (2018)
13 POPs and

organochlorine
pesticide

50 metabolically
unhealthy normal
weight (MUHNW)
and metabolically

healthy normal
weight (MHNW)

Serum

Most POPs were present in
higher serum concentrations
among the MUHNW than
among the MHNW.

4.1.2. Cancer

Two group studies have reported a link between POP exposure and cancers in South
Korea. In a prospective study conducted in South Korea, the researchers examined the links
between serum concentrations of POPs and the risk of prostate cancer. The study included
110 individuals diagnosed with prostate cancer and a comparison group of 256 participants
without prostate cancer. Measurements were taken for serum concentrations of 32 poly-
chlorinated biphenyl (PCB) congeners and 19 organochlorine pesticides (OCPs). To assess
the associations between POPs and prostate cancer risk, hazard ratios (HRs) and 95%
confidence intervals (95% CIs) were estimated using a weighted Cox regression model. The
dose–response curves demonstrated that the cumulative sum of PCBs (∑PCBs) was linked
to an increased risk of prostate cancer. These findings suggest a potential role of POPs in
the development of prostate cancer [75].

In another group, a study conducted in South Korea investigated the impact of ex-
posure to POPs on lung cancer. Pre-diagnostic serum concentrations of POPs were found
to be associated with an increased risk of lung cancer. The study included 118 individu-
als diagnosed with lung cancer and a control group of 252 participants. Notably, serum
concentrations of chlordane and PCBs were linked to a risk of lung cancer in the general
population, even several decades after their production and use had been banned. The
findings suggest that even low-level environmental exposure to POPs raises the risk of
lung cancer, with consistent associations observed between lung cancer risk and chlordane
and PCBs across all models. These significant findings were reinforced by comprehen-
sive adjustments for various potential confounding factors, including smoking, alcohol
consumption, obesity and exposure to other POPs [76].
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4.1.3. Thyroid

The thyroid hormone has a critical role in biological processes in the body such as
metabolism and growth. Lack of thyroid hormone affecting fetal development can be
caused by pollution of POPs in placenta or breastmilk. Small changes in this hormone
cause neurological and cardiovascular problems if they happen in the early stages of preg-
nancy [77]. In addition, potential endocrine disruptions associated with POPs, especially
those of thyroid status associated with PCBs, have been repeatedly reported. A study
in South Korea found that PCBs, PBDEs and OCPs cause potential endocrine disruption,
especially of the thyroid hormone. They studied the blood samples of one hundred-five
pregnant women, and found that several PCBs, such as PCB28, 52, and 118, have negative
associations with T3 or T4. In addition, there were a significant associations between
BDE47 and total PBDEs with T3 or T4. Concerning OCPs, the presence of DDTs and HCB
generally showed associations with decreased levels of thyroid hormones T3 or T4. It is
important to note that the thyroid hormone levels of all subjects fell within the reference
range. Nonetheless, the exposure to specific targeted POPs raised concerns about the
potential disruption of thyroid hormone balance among pregnant women, even at the
current level of exposure [78].

Another study in South Korea found an association between thyroid hormones,
thyroxine-binding globulin and peripheral deiodinase activity with POPs. They eval-
uated the modulating effects of sex, menopausal status and age on 1250 participants. TBG
and deiodinase activity may mediate the thyroid-disrupting effects of POPs. BDE-47 and β-
HCH were related to thyroid autoantibodies. The study found that the thyroid-disrupting
influences of POPs may differ by sex-hormonal status, age and sex, and may be mediated
by TBG and GD [79].

4.1.4. Fibroids

A study conducted in South Korea revealed associations between various newly
introduced consumer chemicals such as APs (DEHTP, DPrHpP and DINCH) and OPEs
(TDCIPP and TBOEP) and the occurrence of uterine fibroids among women of reproductive
age. The study involved 32 cases and a matched control group (n = 79) comprising
premenopausal adult women in South Korea. The results indicated that urinary levels of
BDCIPP, BBOEP and BBOEHEP were linked to an increased risk of fibroids. Metabolites of
DPrHpP, DEHTP and DINCH demonstrated higher odds of uterine fibroids. Among the
phthalates, metabolites of BBzP and DEHP were associated with fibroids. Factor analysis
revealed a significant association between a factor predominantly loaded with DPrHpP
and DEHP and uterine fibroids, supporting the findings observed in the single chemical
regression model. In addition, they found that several metabolites of APs and OPEs are
associated with an elevated risk of uterine fibroids among premenopausal women [80].

4.2. Cardiovascular and Metabolic Diseases
4.2.1. Obesity

The accumulation of POPs has been linked to obesity [7]. This association arises
from the potential obesogenic properties of POPs, which can impact the development
and functioning of adipose tissue, thereby contributing to obesity [81]. Existing literature
indicates that there are significant interactions between fat mass and POPs in predicting
overall mortality. Among individuals with low POP concentrations, no obesity paradox
was observed, as mortality rates increased with higher fat mass. However, in alignment
with the obesity paradox, these patterns completely disappeared in individuals with high
POP concentrations [82]. The recent studies on the link between POPs and obesity in South
Korea are listed in Table 6.
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Table 6. Association of POPs with obesity in South Korea.

Reference Author
Name/Year POPs Type Sample

(n)
Exposure

Tissue
POPs

Concentration Findings

[83] Moon et al.
(2012)

PCBs, OCPs,
PBDEs 53 Adipose tissues

PCBs: 270 ± 140,
DDTs: 250 ± 210,
CHLs: 18 ± 14,
HCHs: 12 ± 11,
HCB: 8.6 ± 4.7
(ng/g lipid wt)

There were no significant
correlations between
concentrations of PCBs,
PBDEs, BMI and OCPs,
except for HCHs.

[84] Kim et al.
(2012) PBDEs 21

Umbilical cord
blood, maternal

blood, and
breast milk

10.7 ± 5.1,
7.7 ± 4.2,
3.0 ± 1.8

BDE-47 was observed in all
samples.

[13] Park et al.
(2016)

32 PCBs,
19 OCPs 214 Serum

PCB: 31.24,
OCP: 93.68
(ng/g lipid)

Significant positive
correlations were found
between concentrations of
PCB congeners and OCPs.
Age is a determinant factor.

[85] Kim et al.
(2012) 27 PBDEs 720 Blood

Σ27PBDEs = 6.04,
Σ3–7PBDEs = 4.97
(ng/g lipid)

BDE-153, BDE-47 and
BDE-99 were the highest in
serum samples.

[86] Jeong et al.
(2013)

22 PBDEs,
18 OCPs 72 Meconium

PCBs = 26.8 pg/g,
OCPs = 66.7 pg/g,
PBDEs = 2.32 pg/g

Maternal age and gestational
age are determinant factors
affecting POP levels
in meconium.

According to the following studies in South Korea, adipose tissue can cause addi-
tional accumulation of POPs. In a particular study, the presence of Methanobacteriales
was identified in 32.5% (27 out of 83) of women. Among these women, both BMI and
waist circumference were notably higher compared to those without Methanobacteriales.
Additionally, there were positive associations between Methanobacteriales levels in feces
and both BMI and waist circumference [87]. Moreover, significant correlations were ob-
served between fecal Methanobacteriales levels and serum concentrations of various OCPs,
such as cis-nonachlor, oxychlordane and trans-nonachlor. Moreover, when considering
two individuals exposed to equivalent levels of environmental POPs, the one with higher
adipose tissue may have an advantage due to the storage of POPs in adipose tissue, which
helps alleviate the burden on other vital organs. Consequently, adipose tissue can serve a
protective function against the detrimental effects of POPs. However, two scenarios can
increase the release of POPs from adipose tissue into the bloodstream, thereby raising
the risk of their reaching critical organs: (i) weight loss and (ii) insulin resistance. On the
contrary, weight gain diminishes this likelihood. Consequently, avoiding the adverse health
consequences of POPs may often contradict conventional assumptions about obesity and
changes in body weight [88].

4.2.2. DNA Methylation and Hypomethylation

Exposure to POPs during pregnancy is associated with a disruption in the thyroid
hormone balance. Therefore, the POP concentrations in DNA methylation of thyroid
hormone-related genes in the placenta and maternal serum of 106 South Korean mothers
have been investigated. Based on the findings, seven compounds, including four OCPs,
one PBDE and two PCBs were detected in >75% of maternal serum samples. In addition,
there was a positive association between POPs in maternal serum and DNA methylation
changes of key thyroid-regulating genes in the placenta [89].

To investigate the potential association between low-dose exposure to POPs and
global DNA hypomethylation in South Koreans, a study was conducted. Among the
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study’s subjects, CDH1 methylation was observed in 78.3% of individuals. Interestingly,
serum concentrations of OCP or PCB compounds were found to be higher in subjects
with CDH1 methylation compared to those without methylation [90]. An additional cross-
sectional study was carried out utilizing data from 444 South Korean individuals. Serum
measurements were taken for sixteen distinct POPs, comprising six OCPs and ten PCBs.
With the exception of PCB101, p,p′-DDE and PCBs displayed positive associations with
the LINE-1 assay in women. On the other hand, p,p′-DDE, PCB153 and PCB180 exhibited
positive associations with the LINE-1 assay in men [91].

In another study, an inverse association was reported between global DNA methyla-
tion levels and blood concentrations of POPs, which are xenobiotics that accumulate in
adipose tissue. The study aimed to estimate the extent of global DNA hypomethylation
among 86 healthy South Korean individuals. Measurements were taken for various POPs,
including OC pesticides, PCBs and PBDEs. The findings revealed that several POPs were
linked to global DNA hypomethylation for men, while global DNA hypermethylation was
observed for women [92].

4.2.3. Stroke Risk

A study has reported an association of POPs with stroke risk in South Korea. A total of
526 sub-cohort members and 111 stroke incidence cases were identified. Upon accounting
for potential confounding variables, participants in the highest tertile of serum concen-
tration of p,p′-DDE displayed an elevated risk of stroke compared to those in the lowest
tertile. A similar association was estimated for PCB118, PCB156 and PCB138. Concerning
TEQ, individuals in the highest tertile had a threefold-increased likelihood of experiencing
a stroke compared to those in the lowest tertile. PCBs exhibited a positive association with
ischemic stroke, while no significant association was found with hemorrhagic stroke [93].

4.2.4. Metabolic Health

POP exposure has been linked with problems in metabolic health in previous stud-
ies [4]. Three studies in South Korea have reported problems in metabolic health as the
outcome of POP exposure. One study considered concentrations of marker PCBs and their
link with metabolic health among 214 children aged 7–9. They evaluated the changes in
metabolic components after a 1-year follow-up among 158 children. The study’s findings
indicated a significant association between concentrations of PCBs and increased changes
in diastolic blood pressure (BP) and triglyceride levels over a 1-year follow-up period.
Among the metabolic components assessed, the change in diastolic BP exhibited a notable
association with specific PCBs, whereas no association was observed with organochlorine
pesticides. The researchers concluded that even low-dose exposures to PCBs among chil-
dren could have a detrimental impact on metabolic health, particularly concerning diastolic
BP [94].

In another study examining metabolic diseases such as obesity and diabetes mellitus
(DM) and their connection with PAHs and volatile organic compounds (VOCs), spot
urine and blood samples were collected from 3787 adult individuals. The study revealed
significant associations between exposure to various PAHs and VOCs and increased risks of
obesity and DM. Specifically, the benzene metabolites t,t-MA and PAH metabolite 2-OHFlu
were found to be linked to an elevated risk of DM. Furthermore, urinary biomarkers for
PAHs and VOCs demonstrated positive associations with BMI in the adult population of
South Korea [95].

Additionally, another study conducted in South Korea indicated that the concentra-
tions of most PCBs and certain OCPs, including hexachlorobenzene, heptachlor epoxide,
β-hexachlorocyclohexane and oxychlordane were predictive of the risk for metabolic syn-
drome (MetS) and its associated components. The study followed 64 patients newly
diagnosed with MetS over 4 years and included 182 control participants. Their findings
demonstrated that prolonged exposure to a combination of PCBs and OCPs could increase
the risk of developing MetS, even within the low-dose range of POPs [96].
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5. Other Reported Diseases

Apart from the above-mentioned categories, POPs have been reported to be associated
in South Korea with anemia and erythrocytosis, as well as problems in liver function. One
study found that per-fluoroalkyl and poly-fluoroalkyl substances (PFAS) are associated
with anemia and erythrocytosis and cause toxicity in the hematologic system. In their study
involving 1295 men and 1644 women, the researchers made an intriguing observation
regarding the effects of per- and poly-fluoroalkyl on the hematologic system. They found
that PFAS exhibited specific effects on red blood cells (RBCs) in both sexes, leading to
clinical manifestations such as anemia or erythrocytosis in the general population. These
findings suggest that PFAS are associated with alterations in RBC metabolism, independent
of bone marrow function, and can impact clinical status even at environmentally relevant
levels of exposure [97].

Another research effort examined 1404 South Korean adults and linked problems
in liver function with PFOA, PFOS, PFHxS, PFDA and PFNA. Among all participants,
all five PFAS were detected. Elevated levels of serum PFOA, PFOS, PFHxS, PFDA and
PFNA were found to be associated with increased concentrations of liver enzymes in the
bloodstream. The nature of these associations varied depending on factors such as sex and
obesity. When considering the combined exposure to multiple PFAS, a positive relationship
was observed with liver enzyme levels [98]. Recently, it was found that PAH and VOC
increased non-alcoholic fatty liver disease (NAFLD) among South Korean adolescents. A
total of 798 adolescent participants were tested, 381 male and 417 female, and the results
showed that 73 (9.1%) of the participants had been diagnosed with NAFLD [99].

6. Conclusion and Future Perspectives

This review highlighted for the first time the status of POP contamination in food in
South Korea and the health impact of POPs in South Korea. It should be noted that the
authors have encountered several limitations in finalizing this review, such as finding the
related studies which connect POP pollution and health impacts among only South Korean
people, selection of a suitable classification of diseases based on the existing literature
and difficulty in searching for keywords due to wide range of journals in the field of
environmental pollution and health (environment, health and medical journals). In sum,
as this was not a systematic review, by searching in Scopus, Web of Science, and Google
Scholar, 99 studies out of 311 have been selected focusing on the keywords (POPs pollution,
South Korea, diseases, and health impacts). According to the findings, the following
conclusions can be drawn:

• Even though OCPs, PCBs and PFAS are banned in South Korea, there has been a slight
increase in environmental POPs levels over time due to urbanization and moderniza-
tion in the last decade. The studies show that there are considerable amounts of POPs
in the human mothers’ milk that is transferred to South Korean infants.

• The concentrations of PBDEs in seafood commonly consumed by South Koreans
were analyzed. This analysis revealed that the contribution of seafood consump-
tion to PBDE intake was the highest among the reported estimated daily intake in
neighboring countries.

• There is a positive association between age, sex and BMI, and POP exposure and
diabetes. Increased age and BMI increase the risk of diabetes among South Korean
people. The most-reported diseases in South Korea are disruptions in the endocrine
system, diabetes, obesity, cancer and thyroid illnesses. In addition, some of the other
diseases, such as DNA methylation and hypomethylation, anemia, and problems in
liver functions, have been reported, albeit rarely.

Although research on emerging POPs such as PBDEs and HBCDs in various envi-
ronmental samples remains limited, the absence of established environmental quality
guidelines for POPs in order to safeguard coastal ecosystems is a concern shared by both
China and South Korea.
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In addition, there is limited research in Asian countries such as China, Japan and
Korea regarding the association between PBDE exposure and female reproductive functions
affected by the thyroid system. Therefore, it is crucial to investigate the levels of PBDEs in
various environmental sources, individuals and food samples to determine the exposure
pathways of these POPs in South Koreans.
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