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Abstract: Many decision-making tasks, including the sustainability-oriented ones and those related
to the management of risks or emergencies, must gather, integrate, and analyze an important amount
of information of various kinds and origins. Hence, how should information be best organized and
shared by agents – people or software – for all and only the pieces of information looked for by these
agents to be maximize their retrieval, reuse, organization and analysis by these agents? To that end,
various logic-based knowledge representation (KR) and sharing (KS) techniques, and hence KR bases,
have been used. However, most KS researchers focus on what this article defines as “restricted KR
and KS”, where information providers and consumers can or have to discuss for solving information
ambiguities and other problems. The first part of this article highlights the usefulness of “general KR
and KS” and, for supporting them, provides a panorama of complementary techniques, and hence,
indirectly, best practices or kinds of tools to use for general KS purposes. These techniques collectively
answer research questions about how to support Web users in the collaborative building of KR bases.
The second part uses the risk/emergency management domain to illustrate the ways different types
of information can be represented to support general KS.

Keywords: ontology sharing; knowledge sharing; knowledge representation; risk management

1. Introduction

Many tasks first require retrieving, comparing, aggregating and organizing an impor-
tant amount of information of many different kinds in order to make good and timely
decisions. This is the case of sustainability-oriented decisions, if only because they have
to balance economical, societal and environmental issues. This is also the case of many
tasks for the management of risks or emergencies. E.g., both Search&Rescue and preemp-
tively reducing disaster risks require access and use of many kinds of information or other
resources, such as particular kinds of persons, detection devices, communication tools,
maps, search methods and search software. These tasks also depend on many parameters
such as the nature of the emergency, the weather, the terrain and the availability of the
needed resources.

Ideally, to support such tasks and hence the findability, gathering, interoperability,
reusability, integration and analysis of information potentially useful to those tasks or to the
design of tools for those tasks, that information should be published, related and organized
on the Web in places and in ways that allow people and software agents to (i) retrieve and
compare information with respect to non-predefined sets of criteria, and (ii) complement
information while keeping them as organized and hence as retrievable.

As explained below, one requirement for such an ideal and scalable organization – and
thus a primary very general best practice for information dissemination and collaboration
between people, organizations or software – is to represent and organize information either
directly within knowledge representation bases (KR bases) or in ways that can be automatically
imported into KR bases (e.g. in documents and databases that have been designed to allow
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such an importation). These KR bases can be either privately developed or, preferably,
collaboratively developed.

In this article, these KR bases are simply called KBs and, before going further, need
to be more introduced now. Such KBs do not store texts or other data; they store KRs (or
simply, “knowledge”), i.e. logic-based representations of semantic relations between pieces
of information – semantic relations being relations that can be represented in a logic-based
way. The boxes and figures in Sections 2.1 and 3 include many examples. In this article,
the notions referred to by the words “knowledge” (KRs) and “data” are mutually exclusive.
“Data” refers to information not explicitly organized – or poorly organized – by semantic
relations, e.g. as in databases or XML documents: they are mainly organized by predefined
structural relations (i.e. partOf ones) and few semantic relations of very few predefined types
(mostly typeOf relations and sometimes subtype relations). In KBs, unlike in relational
databases, all the types (i.e. relation types and concept types) and their definitions are user-
provided (not predefined by the database designer); most of the knowledge in many KBs are
expressed via such definitions; large KBs such as CYC [1,2], Freebase [3] and DBpedia [4]
have hundreds of thousands of subtype relations. Document-based technologies and
database systems generally only handle data, although deductive databases may be seen
as steps towards KBs. A KB is composed of an ontology and, generally, a base of facts.
An ontology is (i) a formal terminology, i.e. a set of terms (alias, object identifiers) used
in the representations stored in the KB, along with (ii) representations of term definitions,
and thereby direct or indirect semantic relations between these terms. Databases and
natural-language-based documents cannot automatically be converted into KBs that are
well-organized via generalization and implication relations, if only because these documents and
bases most often lack the necessary information to derive such relations (these relations
are rarely made explicit by document authors and even human readers often cannot infer
such relations with certainty). These relations – and thus, manually or semi-automatically
built KBs – are necessary for the support of (i) semantic-based searches, via queries or
navigation, and (ii) any scalable way of integrating or organizing information. This explains
why architectures or methodologies for building ontologies or systems exploiting them
have already often been discussed regarding disaster risk reduction or management. For
example, in February 2022, the digital library of the ISCRAM conferences (“Information
Systems for Crisis Response and Management” conferences) included 64 articles with main
fields mentioning ontologies, and 46 of these articles recorded “ontology” as a keyword.

Several small top-level ontologies related to disaster risk reduction or management, e.g.
the agent-oriented ontology of [5] for better indexing and retrieving “disaster management
plans” in document repositories for such plans, SEMA4A [6] which supports alerting people
about imminent disasters, empathi [7] which is more general and integrates some other
ontologies, and POLARISCO [8] which is a suite of ontologies formalizing and relating
the terminologies and methods of various emergency response organizations (e.g. fire
departments, police, and healthcare services). However, as of 2022, it seems there are no
public large content ontology related to disaster risk reduction or management, let alone KBs
where people or organizations could relate or aggregate information. As an example, even
though [9] (which is also about disaster related terminologies) mentions past “massive
efforts e.g. in European projects such as DISASTER (cordis.europa.eu/project/id/2850
69 (accessed on 7 August 2022)), SecInCoRe (cni.etit.tu-dortmund.de/research/projects/
secincore (accessed on 7 August 2022)), EPI (www.episecc.eu (accessed on 7 August 2022)),
or CRISP (cordis.europa.eu/project/id/607941/reporting/fr (accessed on 7 August 2022))”,
the results of those projects were not KBs but reports about then planned works as well as
advocated architectures or small models (top-level ontologies). There currently exist some
large projects, such as the Norwegian INSITU (Sharing Incident and Threat Information for
Common Situational Understanding) project (2019–2022) [10], which focus on harmonizing
terminologies or on tools for the collaborative synthesis of information in classic media
(databases, textual documents, maps, . . .), not via KBs. The use of classic media make the
harmonization of terminologies useful for supporting lexical searches (i.e. those proposed
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by current Web search engines and document editors; these are not semantic search tools).
However, such an harmonization is a complex task which requires committees (hence an
hierarchy-based decision-making organization) and it is useful only when its guidelines
are followed (something that is not easy to do). Via KBs, harmonizing terminologies is not
necessary since relations of equivalence or generalization between terms within KBs or
across KBs can be added in a decentralized and incremental way by each provider of terms
or knowledge. Tools that exploit these particular relations can allow users and knowledge
providers to choose the terms they wish, without this decreasing knowledge retrievability.

This article distinguishes two meanings for “knowledge sharing” (KS). The one here
called “restricted KS” is closer to data(base) sharing: it is about (i) easing the exchange of struc-
tured information (KRs or structured data) between particular agents (persons, businesses
or applications) that can discuss with each other to solve ambiguities or other problems,
and (ii) the complete or efficient exploitation of the information by these particular agents,
for particular applications. The other meaning, here called “general KS”, is about people
relating or representing information within or between KBs in ways that maximize the
retrievability and exploitation of the information by any person and application. Examples
of early landmark works related to general KS were Ontolingua (server, ontologies and
vision) [11] and the still on-going above-cited CYC project. These two meanings are unfor-
tunately very rarely distinguished, even indirectly, e.g. by the World Wide Web Consortium
(W3C). With respect to KS, the W3C has a “Semantic Web vision” [12] of a “Web of Linked
data” [13]. As the use of the word “data” may suggest, and as explained in Section 2, the
techniques and vision proposed for these Linked Data are mainly focused on restricted
KS. Indeed, the W3C had to focus on the basics and convince industries of the interests
of KBs over databases. However, after 1997 – the beginning of the popularization of the
W3C visions and languages – KS was mainly learned about and operationalized via the
W3C documents and languages, and thus almost all research works in KS were implicitly
in restricted KS. Among research articles related to risk or emergency management and
that advocate using KBs, most rely on the W3C techniques or approach – e.g. the articles
of [14] (about ontology-supported rule-based reasoning), of [15] (about ontology-supported
access to particular databases) and of [16] (about a small ontology mainly including 38
concept types and 21 subtype relations, about some crisis management procedures). Pre-
vious studies into risk/emergency management have not addressed general KS in these
domains and are insufficient to address the distributed and large number of potentially
useful sources of information for such a management. This insufficiency is also one reason
for the above-cited lack of large publicly accessible content ontologies or KBs related to
disaster management.

When applied to programming – or, more generally, knowledge modeling and ex-
ploiting processes or techniques as well as rules or constraints (or data structures for them) –
restricted KS means representing them (i) in a KB directly usable by a KR-based software for
a particular application, or (ii) in a KB from which a particular program can be manually
or semi-automatically generated (this is model-based design/programming). With general
KS, these process-related resources are represented and organized into an ontology where
general logical specifications are incrementally (and cooperatively) specialized by more
and more precise or restricted specifications, according to selected paradigms (e.g. logical,
purely functional and state-based) and their associated primitives from particular logics
and languages. Since these primitives can be defined or declared in an ontology, this one
can store and organize representations that are directly translatable in particular formal
languages such as programming languages. Thus, if software components are stored in the
lower levels of such an ontology, this one may also be used as a scalable library of software
components in various languages. Via the systematic use of specialization relations and the
explicit representation of any implementation choices, general KS allows the representation
of specifications that are language dependent or application dependent while still maximiz-
ing knowledge reuse and thus allowing knowledge users (not just knowledge providers) to
make such choices.
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Knowledge representation and sharing (KR&S) – or, a fortiori, general KS – and the
exploitation of its results has various advantages for risk/emergency management. Before
an emergency occurs, i.e. in the anticipation phase, KR&S helps finding, organizing and
analyzing resources (e.g. information for/on risk/emergency management techniques),
designing tools (e.g. KB-based or not software and disaster area exploration robots) and
testing them (e.g. via simulations). During an emergency, KR&S helps finding and co-
ordinating resources (e.g. information and people). After an emergency, KR&S helps in
organizing and analyzing data collected during the emergency (e.g. data collected by
the robots) and exploits it for validating or refining hypothesis, techniques, simulation
data and tools, thus for generating new knowledge. All these “KR&S helps or supports
for risk/emergency management” derive from the knowledge integration and inferences
they permit, compared to data-based technologies. Thus, in that respect, the helps and
supports provided by KR&S technologies (such as those of data-based technologies) are
not dependent on the context, e.g., earthquakes, fires, floods, volcanic eruptions, etc. What
changes depending on the context or domain is the knowledge that is represented, searched,
retrieved and exploited, as well as particular features required for that, such as particular
kinds of KR construct, logic or expressiveness, e.g. for spatial, temporal or probabilistic
KR. The provided KR&S helps are better with general KS – hence with the techniques
provided in this article – than with restricted KS since general KS (i) supports a better
integration of knowledge by more people, hence more knowledge sources, and (ii) supports
each knowledge provider, consumer or application in selecting, extending or creating the
above-cited particular features they require. Finally, regarding the context independence of
the panorama of techniques provided in this article, it should also be noted that these tech-
niques were developed by the first author due to some clear insufficiencies of existing KR&S
technologies for general KS, in any domain. The next paragraph lists these insufficiencies.

Representing rules or filling data acquiring forms for a particular application – or
building a tool to support this – is different to representing knowledge for general KS
purposes – or building a tool to support this, e.g. for allowing experts or companies in
a particular domain to represent (in a shared KB) the products, services or knowledge
they can provide, or for allowing researchers, lecturers and engineers to represent and
integrate their knowledge in this shared KB for pedagogical or cooperation purposes.
When representing knowledge for general KS purpose, some technological gaps in existing
KR&S technologies often become apparent. First, starting from the most immediately
apparent: reusing an existing large shared lexical ontology is necessary since otherwise
every knowledge contributor would have (i) to define each term (word sense) and its
generalizations, and (ii) relate each of them to each other term of each other contributor; in
other words, they would each have to spend months or years creating and relating their own
large shared lexical ontologies. Second, extending the used KR language appears useful
because it is almost never expressive or concise enough to allow entering all the particular
required knowledge for the particular domain to represent. Third, for representing such an
amount of complex knowledge, textual KR languages are much easier to use than graphical
interfaces, in the same way that, for medium-to-large programs, textual programming
languages are easier to use than graphical ones. Fourth, the used KR languages allows
many ways to represent equivalent knowledge but the associated inference engines are not
able to find the results equivalent. Fifth, separately-built KBs – hence poorly related KBs
that are often inconsistent and implicitly redundant with each other – are not exploitable
for general KS: they do not contain enough information for an inference engine to integrate
them reliably (analogously, a person cannot integrate texts written in a language he does
not understand). Thus, general KS requires shared KBs with a KB editing protocols that
(i) ensures that enough information is provided to reach and maintain a particular minimal
organization in each shared KB, and (ii) does not restrict the knowledge the users want to
enter in a KB as long as it is within the scope of this KB. Sixth, in addition to this inner-KB
KS protocol, there is a need for inter-KB KS protocols since no single individual shared
KB can host and efficiently manage all knowledge in all domains, or have a KB editing
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protocol that satisfy all knowledge contributors. Although identifying these problems is not
too difficult when representing knowledge for general KS purpose, research avenues for
solving them were original and ambitious: the work of developing and implementing all
the underlying techniques, tools and general ontologies is difficult and very long. Section 2
introduces complementary techniques for supporting general KS – and hence the ideal
described in the second paragraph of this introduction – via four subsections, one for each
of the following four complementary topics of such a support: KR language instruments,
KR content instruments (reusable ontologies; this is the topics on which most general
KS related research focus), inner-KB content organization, inter-KB content organization.
While doing so, Section 2 also gives (i) various rationale for the above-cited insufficiencies
of classic techniques, and (ii) the constraints (or most important features to support) that
explain why the provided solutions are proposed as answers to these insufficiencies. The
originality of Section 2 is in the panorama or synthesis itself, rather than in the depth of
the description of the introduced or cited techniques, since the first author has previously
published on several of these techniques but separately, not together. However, in Section 2
some new elements are also introduced. Furthermore, the panorama shows that it is
only together that these complementary techniques support general KS by collectively
answering the following research question: how to allow Web users to collaboratively build
KBs where pieces of information (i) are not implicitly “partially redundant or inconsistent”,
neither internally nor with each other, (ii) are complete w.r.t. particular criteria and subjects
selected by the KB creators, (iii) do not restrict the knowledge that people can provide
nor force them to agree on beliefs or terminology, (iv) do not lead knowledge providers to
duplicate information in various KBs, and (v) do not require people to search information
in several KBs nor aggregate information from several KBs?

Via several examples, Section 3, the second part of this article, shows how various kinds
of information useful for risk/emergency management can be represented or categorized
for the purpose of general KS. Section 3.1 illustrates how organizing and representing a
small terminology, and why performing such tasks is important. Section 3.2 provides a
general model for organizing and representing Search&Rescue information; the logic-based
representation of procedures and other description objects is illustrated and is original for
such tasks. Section 3.3 shows KRs for an automatic systematic exploration of a disaster
area, e.g. by a rover (in this article, “rover” refers to an autonomous small vehicle such as
those used for planetary surface exploration); the illustrated originality in Section 3.3 is
the representation of procedures. Section 3.4 represents information about ways to design
rovers that are adapted to a terrain; the illustrated originality is in showing how all the
important information from three different research articles are synthesized, related and
organized. The contents of all these KRs (models, procedures, techniques, . . . ) and their
use for designing the intended rovers are themselves validated by the designed prototype
rover and its capabilities [17].

2. Four Complementary Avenues for Supporting General Knowledge Sharing
2.1. Tools to Import/Export Any Kind of Knowledge, Even in User Specified Formal Languages

Knowledge representations (KRs) are logic statements. From a graph-oriented view-
point, KRs are concept nodes (i.e. concept type instances, quantified or not) connected
or connectable by relation nodes (or, more shortly, “relations”: existentially quantified
instances of relation types). KRs are expressed in formal languages: KR languages (KRLs).
In this article, a KB is a set of objects that are either types (objects that can have instances) or
non-type objects. Statements (KRs) are non-type objects. Types are either concept types or
relation types. In this article, a “term” is an object identifier that does not solely come from
the used KRL, i.e. that is not solely predefined. A term is defined or declared in an ontology.
A KB is only an ontology if it has no base of facts, hence if all its statements are definitions.
Box 1, Box 2 and Section 3 give KR examples. Box 3 illustrates simple semantic queries
on KRs.
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Box 1. Some equivalent formal representations of a very simple statement (in the names of the given
KRLs, “/” separates the used “logic/abstract model(s)” part from the used “concrete syntax model”
part, and means that the first one is linearized with the second one).

Box 1.  Some equivalent formal representations of a very simple statement (in the names of the 
given KRLs, “/” separates the used “logic/abstract model(s)” part from the used “concrete syntax 
model” part, and means that the first one is linearized with the second one).

English: By definition, a flying_bird_with_2_wings is a bird that flies and has two wings.

PL (Predicate logic; here, more precisely, “First-order_logic / Modern_variant_of_the_Peano-Russel_notation”):
   Flying_bird_with_2_wings (b) := Bird(b)  f Flight(f)  ∧ ∃ ∧ agent(f,b) ∧ 
                                   w1,w2 Wing(w1)  Wing(w2)  ∃ ∧ ∧ part(b,w1)  ∧ part(b,w2)  w1∧ !=w2

       Notes: an “agent” relation links a process to its “do-er” hence, in natural language grammars, to its “subject”;
                   in the KRs of Section 2, italics are used for relation types and only for these terms;
                   fully understanding these representations is here not required: they are only intended as examples.

First-order_logic / Prefixed-KIF  (note: KIF represents concept types as unary relation types):”):
   (defrelation Flying_bird_with_2_wings (?b) := (exists ((?f Flight) (?w1 Wing) (?w2 Wing))

                          (and (Bird ?b) (agent ?f ?b) (part ?b ?w1) (part ?b ?w2) (/= ?w1 ?w2))))

FE (Formalized-English; here, more precisely, “First-order_logic / FE_notation”):
   any Flying_bird_with_2_wings is a Bird that is agent of a Flight and has for part 2 Wing. 

FL (here, more precisely, “First-order_logic / FL_notation”):
   Flying_bird_with_2_wings  =  ^(Bird  agent of: a Flight,  part: 2 Wing).

RDF+OWL2 / Turtle  (a language advocated by the W3C and commonly used for Linked Data):
   :Flying_bird_with_2_wings  owl:intersectionOf

      (:Bird  [a owl:Restriction; owl:onProperty :agent;     owl:someValuesFrom :Flight] 

              [a owl:Restriction; owl:onProperty :wingPart;  owl:qualifiedCardinality 2]).

UML (here, more precisely, “UML_model / UML_concise_notation”):

Legend for this graphic notation:

- each arrow “->” represents a supertype (sublassOf) link 

- for other links, the arrow “→” is used with an associated 
   link type and also a destination cardinality when this 
   cardinality is different from 0..*, i.e. 0–N 

- in the used concise notation, boxes around classes (types) 
   and associations (links) are not drawn.
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Box 2. Some equivalent formal representations of a more complex statement, one that cannot be
represented in first-order logic (and, a fortiori, in RDF+OWL2; for the representation with the Turtle
notation, the IKLmE logic and structural model is used).
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Box 3. Some equivalent formal representations of two semantic queries on a KB.
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When it comes to KR languages (KRLs), the W3C first proposes a few ontologies for
“KRL models”, i.e. logic and structural models, e.g. RDF for representing very simple logic
formulas (existentially quantified conjunctive formulas), OWL2 for the use of the SROIQ
description logic and RIF for representing rules of more expressive classic logics. The W3C
also proposes some notations, i.e. concrete syntax models, for the previous KRL models, e.g. the
notations named RDF/XML, RDF/Turtle and RIF/XML. Box 1 illustrates RDF/Turtle and
the meaning of “/” in these names. There exists other standards for other KR logic models,
e.g. the model of KIF (the ANSI “Knowledge Interchange Format”) and Common-Logic
(CL, the ISO/IEC model for first-order logic), with various notations for them, e.g. Prefixed-
KIF, Infix-KIF and XCL (“XML for CL”). However, as described by the next two paragraphs,
the current standard or common KRLs have at least two problems for general KS, e.g. for
risk/emergency management.

The first drawback of these KRLs is their expressiveness restrictions. Although these
restrictions ensure that what is represented via these KRLs has some interesting properties
(e.g. efficiency properties), these restrictions prevent the representation of some useful
information: some KRs cannot be formally written. Then, these KRs cannot be shared,
and this also often leads to the writing of KRs in ad hoc, imprecise or biased ways, hence
in incorrect or far less exploitable ways. Conversely, for general KS, enabling people to
write expressive KRs has often no downside since, when needed and whichever their
expressiveness, KRs can be translated into less expressive ones. This can often be com-
pleted automatically, to fit the need of a particular application, by discarding the kind of
information that this application cannot handle or does not require. Since such choices
are application dependent, the knowledge users should make them, not the knowledge
providers. KRs designed for particular applications are often unfit (too biased or restricted,
...) for other applications. As mentioned in other words within the introduction, in general
KS, knowledge providers do not make application-dependent choices – or only as addi-
tional specializations, hence without restricting the possibilities of knowledge users. Since
current or future risk/emergency management cannot be reduced to a list of particular
applications, it is limited by expressiveness restrictions.

A second important drawback of these KRLs is that they are not “high-level”, meaning
that they are not supporting or leading to “normalized and easy to read or write” repre-
sentations of many important notions such as numerical quantifiers, meta-statements, and
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interpretations of relations from collections. Hence, even when similar pieces of information
are represented, if different KRLs or different knowledge providers are involved, the results
are generally so different that matching them to each other is difficult to do automatically,
and hence so is searching or aggregating them. Using ontology design patterns – such as
those of [18] – is difficult and only very partially addresses these issues; thus, it is rarely
performed. In addition, for different domains or applications, it is often useful to use
different notions and different ways to represent information. Viewing – and, a fortiori,
writing – KRs via current KR editors is even more restricting in terms of what can be
displayed and expressed. E.g., graphics take a lot of space and thus do not allow people to
simultaneously see and hence visually compare many KRs (this is a problematic for KR
understanding and browsing).

A first answer to these problems was (i) FL [19], a KRL that has a very expressive,
concise and configurable textual notation, and (ii) FE [20], an English-looking version of
FL which can more easily be read by people with only a small training in KR. Like FL, FE
can use an ontology even for logic-related terms such as quantifiers and hence can be a
notation for any logic, unlike the other logic-based controlled languages, e.g. “Attempto
Controlled English” and “Common Logic Controlled English”. Box 1 and Box 2 illustrate
the expressiveness and high-levelness of FL and FE compared to some classic KRLs. The
English statement in Box 2 could have been represented in KIF (since it has a second-
order logic notation interpreted into a first-order logic model) but in a less readable and
normalizing way.

A more general and complementary answer is the design of an ontology of (i) model
components for logics, and (ii) notation components for these models. KRLO (KRL ontol-
ogy) [21] is a core for such an ontology: it supports the definition of KRL languages (and
actually most formal languages). Furthermore, it is stored in a cooperatively-built shared
KB (details in Section 2.3), that allow Web users to extend KRLO and store the definitions
of new KRLs. A library of software components exploiting such an ontology is currently
being created. Via these components or modules, KB systems will be able to import/export
from/to/between any such specified KR languages, and thus also perform particular kinds
of KR translations (in addition, since the rules for such translations are also specified in the
ontology, tool users will not only be able to select the rules that they want to be applied but
also complement these rules). [22] criticized KIF, and other would-be KRL interoperability
standards, for necessarily packaging only a particular set of logic primitives and hence not
actually supporting interoperability if the primitives of any logic cannot be defined with
respect to each other with that KRL. The use of KRLO and translation-procedures-based
on it is a solution to this problem and can be seen as a way to have the interoperability
advantage of standards without their expressiveness and notational restrictions. [21] also
shows how common notations such as Turtle or JSON-LD can be used for representing
meta-statements and many kinds of quantifiers, albeit in a yet non-standard way. Box 2
illustrates this with Turtle and IKLmE, a model that is part of KRLO and that represents
the concept and relation types of IKL [23], a first-order logic model that is an extension
or variant of CL and KIF for interoperability purposes. Some other research projects had
or have some similarities with the KRLO project but do not share the goal of supporting
one shared ontology for any number of KRLs. Furthermore, KRLO is cooperatively ex-
tendable by Web users, as detailed in subsequent subsections, for general KS purposes
as well as general translation purposes between KRLs. No other project related to KRL
ontologies had the same goal as the KRLO project. The LATIN (Logic Atlas and Integrator)
Project (2009–2012) [24] represented translation relations between many particular logics.
Ontohub [25] is (i) a repository that included some KRL model representations and some
translation relations between them, and (ii) an inference engine able to integrate ontologies
based on different logics. ODM 1.1 [26] is an ontology that relates some elements of some
KRL models, mainly RDF, OWL, CL and Topic Maps.
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2.2. General Purpose Ontologies Merging Top Level Ontologies and Lexical Ones

Foundational ontologies or, more generally, top-level ontologies define types that support
and guide the checking, organization and representation of the ontologies they are included
in. Two examples of well-known general foundational ontologies are DOLCE [27] and
BFO [28]. The previously cited POLARISCO [8] relies on BFO for better formalizing and
relating the terminologies and methods of various emergency response organizations.

Strictly speaking, lexical ontologies – e.g. ConceptNet 5.5 [29] – organize and partially
define various meanings of words from natural languages and relate these words to these
meanings. However, in this article, the expression “lexical ontologies” also refers to
“large mappings between general KBs”, e.g. the lexical ontology of UMBEL (now retired
but included into KBpedia [30]) which had more than 35,000 types and 65,000 formal
mappings between categories from (for example) OpenCyc, YAGO, DBpedia, GeoNames
and schema.org.

Both kinds of ontologies – top-level ones and lexical ones – are domain-independent,
thus usable in risk/emergency management. The more a KB reuse types from such ontolo-
gies, the easier it is for people to create, update or organize this KB and the more any of its
content can be retrieved using these types. Similarly, the more types two KBs share and are
based on (hence, especially types from such ontologies), the easier the content from these
two KBs can be aligned or fully integrated. Below, the word “merge” is used for referring
to any of these two processes. Since such ontologies are sets of definitions, as opposed
to assertions of facts or beliefs, inconsistencies between these ontologies are telltales of
conceptual mistakes, such as over-restrictions or misinterpretations. Thus, for the parts
these ontologies are not redundant with one another, such ontologies complement each
other and, possibly after some making some corrections, can be merged without this leading
to inconsistencies.

The Multi-Source Ontology (MSO) [31] is a step towards such a merged ontology. The
MSO already merges several top-level ontologies as well as a lexical ontology derived from
WordNet [32]. It will be complemented with other top-level ontologies, typically those from
other merges included in large general ontologies such as YAGO and DBpedia. However,
unlike for other merges, the ones in the MSO follow the general KS supporting methods
described in the next subsection. Here are examples of what this entails.

• The MSO is in a cooperatively-built shared KB where it can be improved and comple-
mented by Web users.

• Modifications in such a KB are, whenever needed, “additive”, as opposed to “destruc-
tive”, since (i) a modification can be made by adding a relation that states how a newly
entered KR corrects another KR, (ii) KRs are represented as viewpoints, preferences or be-
liefs from particular knowledge providers, and (iii) particular relations must be entered
between opposing beliefs for them to be later automatically managed according to
the wishes of each user. The next sub-section explains how. The other KS approaches
are essentially based on helping the creation, handling, retrieval and aggregation of
(possibly competing) ontology modules – e.g. see [33] – and versions (for KBs, hence for
ontology modules too) – e.g. see [34]. Modules and versions are relation sets which
may be “partially redundant and inconsistent” with each other, i.e., which may be
competing. Thus, when creating a KB, such sets often require choices by ontology
designers or users for selecting one or another. Using different modules or versions
lead to different KBs, thus increasing the list that some knowledge users have to
choose from and sometimes integrate. With the approach used in the MSO, additions
do not require choices between relations and particular modules or versions can still
be extracted using semantic queries.

• In accordance with the previous point, when an ontology is merged into the MSO, its
content does not need to – and is not – destructively modified to fix conflicts with other
ontologies. Thus, no arbitrary choice has to be made and this eases the integration of
later versions of these integrated ontologies.
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• The MSO has a top-level organized by subtype partitions, and thus has advantages
similar to those of a decision tree for knowledge inference and retrieval purposes. This
organization is kept when new KRs are added into the above-cited kind of “additive
but consistent” shared KBs.

In addition to a lexical ontology and top-level ontologies, the MSO includes KRLO and
hence types interesting for categorizing or representing software or procedures. Section 3.2
shows how this last point is useful for risk/emergency management too.

2.3. KB Servers That Support Non-Restricting KB Sharing by Web Users

A user of a shared KB may want to complement it with a statement that contradict
another knowledge provider’s statement already in this KB. However, for general KS
purpose, a KB should not include two statements that are logically inconsistent with one
another, since classic logics – and therefore most inference engines – cannot handle KBs
that are logically inconsistent (in other words, most KB management systems are not
based on a paraconsistent logical system or a similar approach). Similarly, for general
KS purpose, avoiding inconsistencies in a shared KB cannot be achieved by having a
person or a committee decide to accept or not each new statement that is submitted to the
KB. Indeed, this process is too slow to be scalable and it is important for general KS to
preserve the possibilities for knowledge end-users to make selections themselves according
to their particular needs. Similarly, general KS cannot use solutions based on selecting only
consensual KRs or only KRs from a largest consistent subset of the KB. Using a software
to dispatch the submitted statements into different KBs (depending on various criteria)
for each resulting KB to be internally consistent, e.g. as in the Co4 protocol for building
consensual KBs [35], is also not a scalable solution: with such a method, the number
of required KBs can grow exponentially and these KBs may be mostly redundant with
one another.

Solutions start by associating each term (alias, identifier within the KB) and statement to its
source (its author or, if unknown, the source document). This is already a standard practice
when it comes to terms (alias, object identifiers), e.g., the systematic use of URLs (with
or without abbreviations) is advocated by the W3C. Regarding statements, making this
association is to acknowledge that the statements which are usually called facts in KBs are
actually beliefs: the associations between them and their sources become the actual facts.
This association may be made via meta-statements that contextualize other statements to
represent who created these last ones or believe in them. (Unfortunately, as of 2022, the
W3C has not yet made recommendations regarding ways to represent contextualizations
and OWL does not support the representation of meta-statements). More generally, in
KBs that include such beliefs, the statements provided by users can be categorized as being
either “beliefs” or “definitions”. These last ones are always “true, by definition” since the
meaning of the term they define is whatever its definitions specify (thus, if a definition
of a term is inconsistent, this term means “something impossible”). For example, assuming
that pm is an identifier for a particular user in a KB, then pm is entitled to create the term
“pm:Table” (this identifier uses the term-prefixing syntax allowed by most KRLs advocated
by the W3C) and to define it as a type for flying objects rather than as a type for some kinds
of furniture. Thus, definitions do not need to be contextualized like beliefs are.

Thus, to avoid direct inconsistencies between statements from different contributors
(knowledge providers), a shared KB may have an editing protocol that leads to the entering
of beliefs instead of facts. When a contributor C is about to add a belief that the inference
engine detects as being in conflict or partially redundant with another contributor’s belief
already in the KB, the protocol may ask C to relate the two beliefs for (i) representing
why this addition is necessary (this is also a way to make C realize that the addition is
not necessary or has to be refined), and then (ii) let the inference engine exploit such
relations between conflicting beliefs for making choices between them when such a choice
is required. For example, if the statements “according to user X, birds fly” and “according
to user Y, healthy adult carinate birds can fly”, then a relation must be added between these
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statements to state whether the second statement is a correction (by Y) of the first statement,
or whether the first statement is a correction (by X) of the second statement. Such a relation
can then be exploited (according to application requirements or the preferences of the
current user) for automatically or manually selecting which statement should be exploited
by the used inference engine for the cases when this engine must choose between the two
statements. If the purpose is simply to retrieve knowledge, this choice may not be needed
since, when two statements are potential answers to a query, a good and informative result
may simply be to return both of them connected by the relevant corrective relation. One
particular rule for an automatic exploitation strategy may be a specification of the following
informal rule: “when a choice between conflicting statements from trustable authors is
needed, select the most corrected statements according to their inter-relations and then,
if conflicts remain, generate all maximal sets of non-conflicting statements and give the
results of the inferences made with each set”. Different users may refine or complement
this rule in many ways.

The shared KB editing protocol of the WebKB-2 server [36] implements and actually
adds some precision to this general approach. This protocol uses the addition of particular
relations to the KB not only to be able to manage KB sharing conflicts but also modifi-
cations to the KB: modifications are additive, not destructive. For example, when objects
(relations or terms) are made obsolete by their creators but are still used by other agents,
these objects are not fully removed but contextualized in a way indicating (i) regarding
terms, who their new owners are, and (ii) regarding relations, who do not believe in
them anymore. Regarding the addition of a belief that the inference engine detects as
being in conflict or partially redundant with already stored ones, the main principle of this
protocol is to ask the author of the belief to connect it to each of these particular other stored
ones via a relation of a type derived from each of the following ones: “pm:correction”,
“pm:logical_implication” (alias, “=>”) and “pm:generalization” (not all logical impli-
cations are generalizations). Here, “derived” means either “identical”, “inverse”, “exclusive
with”, “subtype of”, “subtype of the inverse”, or “subtype of a type exclusive with”. E.g.,
“pm:non-corrective_specialization_only” is defined as a subtype of the inverse of
“pm:generalization” as well as an exclusion to both “pm:correction” and “=>”. Thus, all
potentially conflicting or redundant statements are (directly or transitively) connected via
these relations. This organization has many advantages for inferences, quality evaluations
and checks of the KB, e.g. statements can be searched for via their exclusion to some other
ones. Even more importantly for general KS, this organization supports automatic choices
between conflicting statements via rules such as the one given in the previous paragraph.

Since knowledge providers can specify the above-cited relations even when an infer-
ence engine is not able to detect potential conflicts or implicit redundancies, knowledge
providers can also specify such relations between informal statements within a KB or a
semantic wiki. Thus, the above-described approach can also be used for organizing the
content of a semantic wiki and thus avoiding or solving edit wars in it. To sum up, the
approach described in the previous paragraph works with any kind of information, does
not arbitrarily constrain what people can store or represent, and keeps the KB organized, at
least insofar as people or the used inference engine can detect redundancies or inconsisten-
cies. In a fully formal KB, many implications have to be provided by knowledge providers
(e.g., these implications may be rules these persons believe to be true) but generalization
relations between statements can be automatically generated, e.g. for inference efficiency
purposes. To obtain or keep a partially informal shared KB organized, and hence better
exploit it for inferences and cooperation purposes, the more this KB uses some informal
terms in its statements, the more it is useful to also ask the knowledge providers to specify
generalization relation between statements.

2.4. KB Servers That Support Networked KBs

As hinted in the introduction (first paragraph), there is a huge amount of information
that can be valuable for a domain such as risk/emergency management (and the informa-
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tion can also be used for many other purposes). All the information cannot be stored into
a single individual KB (alias, physical KB). An individual KB is a KB having one associated
KB server that stores this KB and manages query/update accesses to it – one server or, for
security purposes, a set of equivalent ones. As opposed to such a KB, a networked KB (alias,
virtual KB) is composed of a network of individual KBs where the KB servers exchange
information or forward queries among themselves.

The W3C has not made recommendations about networked KBs, it only advised KB
authors to relate the terms of their KBs to terms of some other KBs. This advice tries to
reduce the problems coming from the fact that most KBs are developed independently from
one another, and hence are just structured data for one another since their ontologies are not
related or poorly related. However, this strategy for partially independent development
of KBs only very partially solves the above referred problems: the more knowledge is
added to such KBs, (i) the more inconsistencies and implicit redundancies they have
between them, i.e. together, (ii) the harder it then is to align or integrate them, and (iii) each
user wanting to reuse such KBs has to (re-)do such an integration work. Although there are
numerous approaches for partially automatizing such a work or aspects of it, as for example
recently summarized by [37], their success rates are necessarily limited: correctly and fully
integrating two (partially-)independently developped ontologies requires understanding
the meaning of each object in these ontology and hence, most often, finding information
that is not represented in them.

Thus, for reasons similar to those given in the previous (sub-)sections, requirements
for a networked KB to be scalable and interesting for general KS purposes are: (i) its overall
content, i.e. the sum of its component KBs, should be as organized as if it was stored
into one individual shared KB with the properties described in the previous subsection,
(ii) neither the repartition of the KRs among the KBs, nor the process of adding an individual
KB to a networked KB, should depend on a central authority (automated or not), and (iii)
no user of the networked KB should have to know which component individual KB(s) to
query or add to. Thus, ideally, for general KS on the Web, (i) there would exist at least one
networked KB organizing all KRs on the Web, and (ii) additions or queries to one KB server
would be automatically forwarded to the relevant KB servers.

These constraints are not satisfied by networked KBs based on distributed or federated
database systems. Indeed, in these systems, the protocols that distribute or exchange in-
formation and forward queries exploit the fact that each individual KB or database has a
fixed database schema or ontology, i.e. one that is not modified by its end-users (e.g. data
providers). On the other hand, in general KS, the ontologies of the individual KBs are often
updated by their contributors. Many networked KB architectures exploit such database
systems, including the architectures advocated in risk/emergency management related
articles, e.g. those of [15].

Similarly, these constraints are not satisfied by networked KBs based on peer-to-peer
(P2P) protocols or multi-agent system (MAS) protocols. Indeed, for exploiting the KRs
within these KB – e.g., for the distribution, indexation or exchange of knowledge – these
protocols also have to rely on some fixed and/or centralized ontologies (and/or use knowledge
similarity measures or automatic ontology integration techniques when these approach are
sufficient for the intended task or domains; these measures or techniques may be provided
by the individual servers, peers or agents). These fixed ontologies may be stored within
the individual servers, software agents or peers – or sometimes even the P2P routing table,
as described by [38]. They may also be external to them, with more structured networks
(e.g. the use of super peers) or centralized solutions, for instance as described by [39–41].

For satisfying the above-cited constraints, the solution proposed in [19] by the first
author of this present article is based on the notions of “(individual KB) scope” and “nexus
for a scope”. The rest of this section presents the underlying ideas of a recent extension
this solution by the first author. An intensional scope is a KR specifying the kinds of objects
(terms and KRs) that a shared individual KB server is committed to accept from Web
users. This scope is chosen by the owner(s) of this shared individual KB. An intensional core
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scope is the part of an intensional scope that specifies the kinds of objects that the server
is committed to accept even if, for each of these kinds of objects, another intensional core
scope on the Web also includes this kind of objects (i.e. if at least another server has made
the same storage commitment for this kind of objects). An extensional scope is a structured
textual Web document that lists each formal term (of the ontology of the individual KB)
that uses a normalized expression of the form “<formal-term-main-identifier>__scope
<URL_of_the_KB>”. Since extensional scopes are Web documents, such a format enables
KB servers to exploit Google-like search engines for retrieving the addresses of KBs storing
a particular term. A (scope) nexus is a KB server that has publicly published its intensional
and extensional scopes on the Web, and has also specified within its non-core intensional
scope that it is committed to accept storing the following kinds of terms and KRs whenever they do
not fall in the scope of another existing nexus: (i) the subtypes, supertypes, types, instances
of each type covered by the selected intensional scope, and (ii) the direct relations from
each of these last objects (that are stored in this KB only as long as no other nexus stores
them). (The WebKB-2 server that hosts the MSO is a nexus that has at least the MSO as
intensional scope. Thus, this server can be used by any networked KB as one possible
nexus for non-domain specific terms and KRs.) Then, “an individual KB (server) joining a
networked KB” simply means that the KB server is being committed not only to be a nexus
for its intensional scope but also to perform the following tasks whenever a command (query
or update) is submitted to the KB server:

• The first task is, insofar as the intensional scope allows it, to handle this command
internally via the KB sharing protocol of WebKB-2 or another protocol with similar or
better properties.

• The second task is to forward this command to the KB servers which, given their
scopes, may handle it, at least partly. These servers are retrieved via their published
extensional scopes.

Thus, thanks to this propagation, each command is forwarded to all nexus that can handle it,
and no KB server has to store all the terms of all the KBs, even for interpreting the published
scopes of other nexus. To counterbalance the fact that some forwardings of KRs may not be
correctly performed or may be lost due to network errors, i.e. to counterbalance the fact
that this “push-based strategy” may not always work, each KB server may also search other
nexus having scopes overlapping its own scopes and then import some KRs from these
nexus: this is the complementary “pull-based strategy”. KB servers that have overlapping
scopes may have overlapping content but this redundancy is not implicit and hence, as
explained in the previous subsection, not harmful for general KS purposes.

To sum up, Section 2.4 showed how some inter-KB organization(s) can replicate an inner-
KB organization that has advantages and supports that are described in Sections 2.2 and 2.3,
which themselves are made possible via the language-related techniques introduced in
Section 2.1. Section 3 illustrates some applications of some ideas from Sections 2.1 and 2.2
for some knowledge useful in risk/emergency management.

3. Examples of Representations for General Knowledge Sharing

In the present section, for clarity and concision purposes, the FL notation [19] is used
rather than a W3C KRL notation. Thus, for identifiers, the namespace end delimiter is “#”
(as in pm:Table) instead of “:” in W3C KRL notations (as in pm:Table); indeed, in FL “:” is
the end delimiter for relation nodes, as in most frame-based KRLs.

3.1. Organization of a Small Terminology about Disaster Risk Reduction

In 2017, the United Nations office for Disaster Risk Reduction (UNDRR) has defined a
“terminology about disaster risk reduction [42]”. It is here now referred to as “UndrrT”.
In [43], we represented UndrrT in FL, increased its organization and stored it in a Web
document. As illustrated by Figure 1 – which uses the Uniform Modeling Language
(UML) [44] – and Box 4 (which uses FL [19]), this document organizes UndrrT into a
subtype hierarchy that uses (i) whenever possible, subtype partitions or other subtype



Sustainability 2023, 15, 10803 14 of 26

exclusion sets, (ii) the MSO top-level concept types, and (iii) some additional types when
this is required for categorization purposes. This Web document – which is both an HTML
document and a KR storing document – is also informally structured via sections and
subsections, with respect to some of the MSO types, thus in a non-subjective and systematic
way. Thanks to these various points, the terms and relations between the terms in UndrrT
are much easier to understand and retrieve (by following relations between them or via
queries) than terms in the original UNDRR document: these last terms are only informally
defined and only listed in alphabetic order.

Among three points listed in the previous paragraph, the first two also enable some
automatic checking of the way the UndrrT terms are used in KRs or specialized by KRs,
in order to (i) detect full or partial misinterpretation of some of these terms, and (ii) guide
knowledge representation. E.g., instances of the type undrrT#Disaster_risk_management are
defined to be usable as source nodes in relations that have a signature with first parameter
undrrT#Disaster_risk_management or one of its supertypes. Since one of these supertypes
is pm#Process, and since the MSO provides many types of relations from pm#Process (e.g.
pm#object, pm#parameter, pm#duration, pm#agent, pm#experiencer, etc.), such relations are
usable (and similarly by all people) from all instances of undrrT#Disaster_risk_management.

The use of the MSO for representing UndrrT also highlighted important ambiguities
that are not resolved by the sometimes lengthy informal definitions associated with the terms.
E.g., are the types undrr#Vulnerability, undrr#Exposure and undrr#Resilience meant
to be specializations of what pm#Characteristic_or_dimension_or_measure means or of
what pm#State (which refers to non-evolving kinds of situations) means? In our UndrrT
representation [43], we selected the first interpretation since then representing information
using these types is easier than with the second interpretation. However, some other persons
using UndrrT probably have interpreted and used these UndrrT terms as if they represented
states. These two interpretations cannot be reconciled: they are exclusive. Thus, general KS is
clearly reduced by such ambiguities.
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Box 4. Commented extract of the FL representation of the UNDRR terminology (as in Figure 1, this
extract does not include relations for informal definitions and annotations but here there are many
comments that explain the meaning of the used abbreviations and FL expressions).

Sustainability 2022, 14, x FOR PEER REVIEW 33 of 66 
 

 

Box 4. Commented extract of the FL representation of the UNDRR terminology (as in Figure 1, this 
extract does not include relations for informal definitions and annotations but here there are many 
comments that explain the meaning of the used abbreviations and FL expressions). 

//Comments are pre ixed by "//" and here in italics; the FL namespace separator is '#', not ':'. pm#undrrT#Disaster_risk_handling  //"pm#undrrT#": the type, created by pm, was implicit in UndrrT   /^  pm#Process,  //"/^" or "↗ ": supertype relation in FL   pm#object: 1..* undrr#Disaster_risk,  //"1..*": one or several   \.part:  //"subtype relation" and "part relation between the instances of the connected types"        e{ //In addition to be destinations of "\.part", the next two types are exclusive: "e{…}"           undrrT#Disaster_risk_assesment             (undrrT#Disaster_risk_management  //"(...)": isolation of relations starting from this type              pm#goal: 1..* (undrrT#Disaster_risk_reduction                               pm#parameter: 0..* undrrT#Disaster_risk_reduction_strategy_or_policy ),              \.   //"\." or "↘": subtype relation in FL                 //No "e{ ...}" here since the following subtypes are not necessarily exclusive                 undrrT#Prospective_disaster_risk_management   //This type and its next four siblings                 undrrT#Corrective_disaster_risk_management    //  are direct subtypes of                 undrrT#Compensatory_disaster_risk_management  //  undrrT#Disaster_risk_management                 (undrrT#Community-based_disaster_risk_management                   \. undrrT#Local-and-indigenous-peoples_disaster_risk_management )                 (undrrT#Mitigation  //Since this type name is ambiguous, pm adds a clearer one                   = pm#undrrT#Disaster_mitigation            //  via this equivalence relation                 ) __[author: pm]  //pm believes that the last subtype relation is true even though                                   //  it is not in UndrrT (neither explicitly nor implicitly)           )  //End of relations from undrrT#Disaster_risk_management         }.  //End of the exclusion set and of all relations 
  

3.2. A General Model for Organizing and Representing Search&Rescue Information

As opposed to other general ontologies, the MSO provides a type for “description
instruments or results” (alias, “information objects”, e.g. procedures, stories, languages,
object-oriented classes, maps) and many subtypes for it, most of which are from KRLO.
These types are useful for categorizing and representing many information objects that
can be in risk/emergency management. Box 5 shows that the Search&Rescue domain
requires many of these subtypes for categorizing information, e.g. for maps and procedures
exploiting or enriching maps.

Box 5 shows the distinction between concrete and abstract information objects. It leads
to distinguishing concrete maps from abstract ones. A concrete map, e.g. one displayed on a
screen paper or on paper, is a 2D or 3D graphic representation of physical objects. On the
other hand, an abstract map is a structural representation of a concrete map. Advanced
Search&Rescue tasks imply that (i) search functions must exploit characteristics of map
objects, and (ii) search agents doing terrain mapping or discovering victims or possible
indices of victims must add objects to the map. Hence, structurally, an abstract map for such
tasks should not be a set of pixel representations but should permit the storage, querying and
update of (i) object representations that are, were or may be part of the map, and hence also
(ii) at least their partOf relations, types and attributes. These requirements do not mean that
such maps should be directly stored in a KB, using relations. Indeed, using KRs would not
only be an inefficient way to store and handle spatial coordinates or relationships of map
objects, this would also make them difficult to exploit via classic programs, i.e. those only
based on classic structures such as object-oriented classes. Therefore, such maps should
remain abstract data structures but should be represented or implemented in much richer
structures than those in binary formats for the 2D/3D abstract maps: raster image formats
(pixel-based formats) and vector formats (graphics/geometry + texture based format, e.g.
SVG and OBJ). More information can be described via the Geography Markup Language
(GML) which uses a very restricted kind of KRL – GML is used by the Web Feature
Service (WFS), an interface model created by the Open Geospatial Consortium (OGC) to
support requests for geographical features across the web using platform-independent calls.



Sustainability 2023, 15, 10803 16 of 26

However, GML is not for storage purposes. In any case, ideally, for each physical object,
such a map would store a reference (e.g. an identifier or a pointer) to an information object
representing this object in a KB, and this KB would support semantic queries about such
objects. For classic queries – the structural and lexical ones – abstract data structures are
sufficient. For conceptual queries or navigation, semantic relations stored in data structures
can be dynamically extracted and imported into the KB, when needed and based on the
kinds of needed relations. To that end, FL and WebKB-2 have been extended to enable the
reference to – and, when needed, automatic call of – “relation generators” (as we call them);
they are represented in ways roughly similar to normal relations or to function calls.

Box 5. Subtype hierarchy of MSO types that are useful for categorizing description-related types in
Search&Rescue representations.
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//  an indented list is used for showing subtype relations between types,

//Still for clarity purposes, from now on in boxes and figures, the source prefix of each

//  type identifier is left implicit (-> all types come from the MSO).

//Below, in this box, bold italic characters are used for referring to terms that are listed in Box 6

//  while bold non-italic characters are simply for highlighting purposes.

Description_instrument-or-result-or-container //Alias Description_object

  Description_semantic-content                               //E.g. Logic_proposition

  Description_instrument-or-result                           //Alias Information_object

    Abstract_description_instrument-or-result                //Alias Information_object

      Abstract_description_instrument-or-result_wrt_the_described_thing

        Situation_abstract_description_instrument-or-result  //E.g. Principle_of_Coriolis_acceleration

          Process_abstract_description_instrument-or-result   

         Control-structure_based_description_instrument-or-result    //E.g. While_loop, Abstract_procedure

              Abstract_function                       

            Declarative_based_abstract_description_instrument-or-result //E.g. Petri-Net 

            Search_algorithm

              Graph-traversal_and_path-search_algorithm    //E.g. the A* algorithm

          State_abstract_description_instrument-or-result  //E.g. Object_oriented_class, Array

        Entity_abstract_description_instrument-or-result  //E.g. Path_description, Integer and each term in Box 6

      Abstract_description_instrument-or-result_wrt_the_used_method_or_instrument

        Non-declarative_abstract_description_instrument-or-result  

        Declarative_abstract_description_instrument-or-result  

          Semantic_abstract_description_instrument-or-result 

            Semantic_description_instrument           //E.g. Java_semantic, Logic_semantic, Type

            Semantic_description_result               //E.g. Semantic_of_a_KB, Semantic_of_a_program

            Logic-independent_semantic_description_result        //E.g. Logical_statement

            Logic-dependent_description_instrument               //E.g. Logical_sentence

          Structural_abstract_description_instrument-or-result

            Abstract_data_type                        //E.g. Object_oriented_class, Array, Integer

            Structural_abstract_language-or-language_element     //E.g. Java_abstract_grammar

    Concrete_description_instrument-or-result

      Concrete_description_result                     //E.g. Java_concrete_function, Concrete_map

      Concrete_description_instrument                 //E.g. Java_concrete_grammar, Character

        Structural_concrete_description_instrument    //E.g. Concrete_data-structure_type

        Semantic_concrete_description_instrument      //E.g. Concrete_semantic-structure_type

  Description_container                               //E.g. File, Software, Web_server, KB_server

Box 6 shows a generic representation of such abstract maps that is useful for Search
&Rescue: it is a list of semantic relations between such maps and some other kinds of objects.
This representation can be viewed as a generalization or “minimal general specification” of
abstract data structures for such maps. More precisely, Box 6 is a top-level ontology – hence
a minimal general specification, listing or model – of functions and of the most interesting
kinds of objects that these functions could exploit, among those useful for Search&Rescue.
Before explaining the notation used in Box 6, it should be that the goal of this box is to
represent three combinable important functions:
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• A first one for retrieving objects (generally, people) within a map, given some of their
types or ranges for their attributes, e.g. a range for the expected health or social value
of actual/potential victims at particular places in a map (since an often-used strategy
is to first try to save the healthier and most socially valuable victims).

• A second one for computing values (possibly with some associated certitude coefficients)
for particular attributes of particular objects in a map, given other parameters such as
the environmental context (weather, ...) and when the rescue begins and/or when the
objects can or could be retrieved (since, for example, some victims may be difficult to
save by the time they are found).

• A third one for computing the best paths (possibly given strategic rules and/or a search
algorithm) from a starting place to others (thus, possibly an area) for finding objects of
given attributes, with additional attributes to maximize (e.g. the safety of the rescuing
agents and of the victims) and others to minimize (e.g. the power consumption of a
rover used for exploring a disaster area in search of victims).

In object-oriented (OO) programs, functions are often associated with some of the
objects they exploit by being represented as methods of classes for these objects. This
kind of association, which in KRLO is represented via a relation type of name “method”,
helps normalizing and organizing the code, and is now commonly supported by most
common programming languages. Box 6 uses “method” relations since it is meant to be a
minimal general specification of important primitive functions for Search&Rescue. The next
three points comment this use.

• Box 6 uses“_{” and “}” to delimit the set of relations that define a type. These delimiters
are not necessary in FL but are used here to make the specifications look more like
those in common OO-like notations, UML textual notations and frame-based notations,
and hence more intuitive to people that are used to those notations. (E.g. the separators
“,” and “;” are used in Box 6 where “ ” and “,” would otherwise be used in classic
FL.) However, despite this intended syntactic similarity with OO classes, genuine KRs
are represented in Box 6, not just OO classes; indeed, genuine relations are used, not
class attributes (unlike relations, attributes are local to classes and are not first-order
entities).

• One of the advantages of associating functions to information structures via “method”
relations is that this supports the use of an intuitive OO-like naming scheme for the
functions: in Box 6, see the “__” within method names. These names follow the
naming scheme “className__coreMethodName”. With a genuine OO programming
language, the part before the “__” is omitted because when a method is called on a
particular object, this one (and hence, indirectly, its class) is specified just before the
method, e.g. as in “objectName.coreMethodName” when the classic dot notation is
used. With a KRL, methods are not local to an object or class – like relations from a
object are not local to this object in the way its attributes are – and hence the name of the
class has to be specified with the method name, e.g. via the above-cited normalizing
and compact OO-like naming scheme.

• Another advantage of such associations is that, combined with the use of UML-like
cardinalities (e.g. “1..3”, “0..*”) in the parameters of these methods or functions, they
provide rather easy-to-use ways to generalize – or abstract away – implementation
particularities, at least compared to programming languages. Indeed, with a pro-
gramming language, class definitions are only tree structures and functions do not use
cardinalities nor have successive default parameters; this generally forces a user of
such languages to (i) cut a graph of relations (i.e. the model in the user’s mind) into
pieces when representing it via such structures, (ii) make the relations implicit, (iii)
choose a rather arbitrary embedding order between the graph elements, and (iv) im-
plement various similar versions of a same function, based on particular aggregations
of datatypes for the parameters.



Sustainability 2023, 15, 10803 18 of 26

Box 6. Commented FL representation of object-oriented classes for Search&Rescue.
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//The types in bold characters (in italics or not) are Abstract_representation types. The types in

//  italics (and not in bold) are information object types that are not Abstract_representation types.

//The other types (except for "Thing") are subtypes of Characteristic_or_dimension_or_measure.

//Variable names are prefixed by "?", as in many other KRLs. 

//As in the previous boxes, when comments at the right of some code line are spread on multiple lines,

//  each expression in a line is mostly focused on the code of that line.

Abstract_map  /^  Abstract_representation,      //Representation of a class for maps

 _{ attribute: 1 Map_scale,          //The scale of a map should be associated to it

               1 Temporal-point-or-region_coordinate ?timeStamp,   //When the map was valid

               1..3 Spatial-point-or-region_coordinate;            //A 2D/3D point/area

    part: 1..* Physical_object_representation_in_an_abstract_map;  //Object parts

           //This set can be implemented via a 2D/3D array or an SVG structure

    method: Abstract_map___objects_possibly_at      //------ For retrieving objects in (a portion of) a

            (1 Abstract_map, 1..3 Spatial-point-or-region_coordinate,           //  map (specified here),

             0..* Type ?typeOfAtLeastOneOfTheSearchedPhysicalObjects,           //  wrt. their types

             0..* Attribute ?attributeOfAtLeastOneOfTheSearchedPhysicalObjects) //  or attributes, e.g.

                  //  health, social value, etc. The next line specifies the types in the returned set 

            -> .{1..* Physical_object_representation_in_an_abstract_map} //-> The retrieved objects

            { }; //The body of this method could be written here, within these "{" and "}"

    method: Abstract_map___values_of_objects_possibly_at     //------ For knowing the values of objects

            (1 Abstract_map, 1..3 Spatial-point-or-region_coordinate,    //  in (a portion of) a map

             0..* Type ?typeOfAtLeastOneOfTheSearchedPhysicalObjects,    //  given the types&attributes

             0..* Attribute ?attributeOfAtLeastOneOfTheSearchedPhysicalObjects, //  of searched objects

             1..* Temporal-point-or-region_coordinate ?valuesDuringThisTimePeriod, //  at a given time,

             0..* Environmental_context ?environmentalContextOfTheSearch)  //  wrt. the weather, …

            -> .{0..* Representation_of_the_value_of_a_physical-object}; //-> The retrieved values

    method: Abstract_map___best_paths_from_somewhere_to_at_least_1_object //------ For knowing the best

            (1 Abstract_map,                                              //  paths to take (in a map),

             1..3 Spatial-point-or-region_coordinate ?fromPlace,          //  from a place to

             1..3 Spatial-point-or-region_coordinate ?regionOfSearchedObjects,  //  another, to find

             0..* Type ?typeOfAtLeastOneOfTheSearchedPhysicalObjects,           //  objects of given

             0..* Attribute ?attributeOfAtLeastOneOfTheSearchedPhysicalObjects, //  attributes, at

             1..* Temporal-point-or-region_coordinate ?valuesDuringThisTimePeriod,  //  a given time,

             0..* Environmental_context ?environmentalContextOfTheSearch,  //  wrt. the weather, ...,

             0..* .{Thing, 1..* Type ?typeOfAttributeOfTheThing,       //  given constraints on the

                           0..1 Value ?maxValue, 0..1 Value ?minValue  //  types+values of the objects

                   } ?constraintsDuringTheSearch,                      //  to find, while minimizing

             0..* Type ?typeOfAttributeToMinimizeForBestPaths,  //  some attributes (e.g. Battery_use)

             0..* Type ?typeOfAttributeToMaximizeForBestPaths,  //  & maximizing others (e.g. Safety)

             0..1 Abstract_function ?fctToSelectBestPaths,      //  and/or using a function to do so;

             0..1 Integer ?MaxNumberOfBestPaths,                //  a maximum number of best paths and

             0..* Search_algorithm ?preferredSearchAlgorithm)   //  a given algorithm may also be used

            -> 0..* .{1..* Spatial-point-or-region_coordinate} //-> The computed best paths

  }.

Physical_object_representation_in_an_abstract_map

 _{ attribute: 0..1 Reference_to_a_semantic_representation, //Identifier of (or pointer to) a KB object

                                                            //  that represents this physical object

               1 Representation_of_the_location_of_a_physical-object,

               0..* .{ 1 Physical-object_attribute,  0..1 Certitude_of_a_value };

    part: 0..* .{ 1 Physical-object_representation_in_an_abstract_map ?embeddedObject,

                  0..1 Certitude_of_a_value };

    part of: 0..* .{ 1 Physical-object_representation_in_an_abstract_map ?embeddingObject,

                     0..1 Certitude_of_a_value };

    method: Physical_object_representation_in_an_abstract_map___value

            (1 Physical_object_representation_in_an_abstract_map, 

             1..* Temporal-point-or-region_coordinate ?valueDuringThisTimePeriod,

             0..* Environmental_context_of_a_search)

            -> 1 Representation_of_the_value_of_a_searched_physical-object

  }.

Representation_of_the_location_of_a_physical-object

 _{ attribute: 1..3 .{ 1 Spatial-point-or-region_coordinate, 0..1 Certitude_of_a_value }  }.

Representation_of_the_value_of_a_physical-object

 _{ attribute: 1 Quantitative-or-qualitative_social_value_of_something, 1 Certitude_of_a_value  }.
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3.3. Representations about Automatic Explorations of a Disaster Area

This subsection shows how the process of systematically exploring a disaster area (e.g. by a
rover, to search for victims) can be represented at a high-level (as well as lower ones). The reuse
of functions from the previous subsection is not shown. The focus here is to illustrate how (the
elements of) procedures, tasks or processes can be variously organized and represented, via
KRs. Box 7 provides an example systematic search procedure written in a procedural notation.
Such procedures can often be automatically converted into pure functions (and this is the case
of the one in Box 7), thus in a declarative way. Pure functions can then be represented via a
KRL that handles functions, e.g. FL and KIF. With FL, or with KRLO and any KRL, procedures
can also be directly represented in a state-based form. Once in a KB, functions and procedures
can be organized via generalization relations and also generalized by more classic kinds of
KRs, e.g. logical formulas representing rules.

Box 7. Commented procedure for a systematic search by a rover, one based on an infinite loop in
which the only decision is to go ahead or not; the notation used here is common to C and Java but an
FL version can be obtained by replacing each “(” by “_(”.

Box 7. Commented procedure for a systematic search by a rover, one based on an infinite loop in 
which the only decision is to go ahead or not; the notation used here is common to C and Java but 
an FL version can be obtained by replacing each “(” by “_(”.

while ( true )  //Infinite loop. Below, "()" indicates a function call (the parameters are not specified)

{ if ( further_exploring_is_not_useful() )  //To decide that, the methods of Section 3.2 are used 

  { come_back_to_base();  break; } //"break": the loop is broken when the rover has returned

  else if ( going-ahead-and-then-come-back-to-base_is_not_possible() )  //Via the methods of Section 3.2

         come_back_to_alternative_route (); //E.g., given battery levels, obstacles, mechanical problems

       else  go_ahead();

}  

// Here are two example cases for a rover exploring underground spaces and fails, under debris and ruins:

// * The rover cannot continue on a particular path (e.g. because it would risk getting stuck):

//   it returns in the opposite direction to a point where it can continue its exploration,

//   an intersection with a not yet explored path.

// * The rover has explored the last path (-> "normal" end of mission) or

//   cannot continue exploring (e.g. because it has not enough energy): it returns to its base.

 Box 8. FL categorization of the “Safe_path_backtracking” task or process mentioned in Figure 2.

Selecting_a_path /^ Process,          //reminder: here, only type names are used (not type identifiers)

  part of: 0..* (Search_and_rescue /^ Process),

  \. (Selecting_a_safe_path \. (Selecting_a_safe_and_recently_explored_path \. Safe_path_backtracking) ),

  \. partition

     { Path_selection_when_going_ahead_is_possible_and_useful

       (Path_selection_when_going_ahead_is_not_possible_or_not_useful \. Safe_path_backtracking)

     }.
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Figure 2 illustrates some relations (a partOf one and several subtype ones) between
top-level tasks in Search&Rescue. Such relations can be exploited to categorize functions,
e.g. to exploit and organize a library of functions useful for Search&Rescue, as explained
in the introduction of this article. Such a library may for instance organize functions that
represent different ways of performing similar processes. This library – and thus programs
that reuse it – can also include a function selecting the most relevant of these different ways
for a particular environmental context given as a parameter. Box 8 illustrates some further
subtype relations from one of the tasks cited in Figure 2.
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while ( true )  //Infinite loop. Below, "()" indicates a function call (the parameters are not specified)

{ if ( further_exploring_is_not_useful() )  //To decide that, the methods of Section 3.2 are used 

  { come_back_to_base();  break; } //"break": the loop is broken when the rover has returned

  else if ( going-ahead-and-then-come-back-to-base_is_not_possible() )  //Via the methods of Section 3.2

         come_back_to_alternative_route (); //E.g., given battery levels, obstacles, mechanical problems

       else  go_ahead();

}  

// Here are two example cases for a rover exploring underground spaces and fails, under debris and ruins:

// * The rover cannot continue on a particular path (e.g. because it would risk getting stuck):

//   it returns in the opposite direction to a point where it can continue its exploration,

//   an intersection with a not yet explored path.

// * The rover has explored the last path (-> "normal" end of mission) or

//   cannot continue exploring (e.g. because it has not enough energy): it returns to its base.
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3.4. Representations about Ways to Create Rovers Adapted to a Terrain

The research articles of [45] or [46,47], here ordered by increasing length, describe a
simulation tool helping to design rovers adapted to a terrain, for Search&Rescue purposes.
Since the content of these article is in natural language, it is difficult – from this content,
manually or automatically – to identify, match, represent and synthesize (i) all the important
described objects (e.g., the described tasks and their instruments, subtasks, inputs, outputs,
...), and (ii) the relations between these objects. Box 9 illustrates relations from processes and
software, and Box 10 illustrates relations from artifacts, attributes and descriptions. These
boxes also show how the represented types are categorized as subtypes of top-level types
from the MSO. The relations are representations are mostly formal but the use of informal
parts (the strings within double quotes) is also illustrated since it is sometimes difficult or
not worthwhile to formalize everything. Without all such relations, such objects cannot
be retrieved via semantic browsing or querying. Without a shared KB (such as the ones
described in Section 2.3) where such objects and relations can be found and complemented,
general KS cannot be supported. Ideally, such relations should be added into shared KBs
by the information authors (researchers, engineers, technicians, . . . ). Indeed, as earlier
noted, relying on knowledge engineers to read articles and represent such relations is not
scalable and articles often lack the information necessary for inferring some generalization
relations or other important relations.
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problems related to traditional KR&S technologies are rather easy to be aware of when
the goal is to perform general KS, this last goal is still original since (i) it requires efforts
and training from knowledge providers (in exchange for less efforts and more results for
knowledge consumers), (ii) developing and implementing techniques, tools and general
ontologies for general KS is a difficult and very long work, and (iii) the focus of the research
community is on quick and automated results since these ones are easier to publish, more
granted or of more interest to the industry, and more incremental to develop and implement.
Nowadays, most of general KS related research focus on the content of foundational or
lexical ontologies. Section 2.2 is about the (manual) integration of such ontologies into a
unique one, something far less researched. More generally, the four subsections of Section 2
have to draw on techniques previously developed by the first author for these subsections
to present techniques that are both complementary and relevant for general KS. Although
some new research elements have been included, the originality of the provided panorama
is in the synthesis it makes: together, the described techniques provide a rather complete
approach for supporting general KS efforts useful for risk/emergency management, while
still allowing the reuse of advances in the well-researched field of restricted KS. Together,
these techniques answer the following research question: how to let Web users collabo-
ratively build KBs (i) that are not implicitly “partially redundant or inconsistent” internally
or with each other, (ii) that are complete with respect to particular subjects or criteria,
(iii) without restricting what the users can enter nor forcing them to agree on terminology
or beliefs, and (iv) without requiring people to duplicate knowledge in various KBs or
to manually search knowledge in various KBs and aggregate knowledge from various
KBs? Although our framework for these points is now well developed, much more is still
(and will probably always have) to be developed or implemented, e.g., more features in
FL and FE, more KRLs or equivalence rules between knowledge constructs represented in
KRLO, more general ontologies integrated in the MSO as well as more representations of
cooperation rules within or between shared KBs – rules for the owners or users of these KBs
to choose from. However, at last, these extensions can now be made by these KB owners
and users.

Via Section 3, the second part of this article, the second kinds of contributions of this
article were (i) KRs showing how complementary kinds of risk/emergency management
related information can be represented for general KS purposes, and (ii) highlights of
the interest of creating or reusing such KRs. The focused-on example domains were (i)
the UNDRR terminology, (ii) a general model to represent and organize Search&Rescue
information, (iii) tasks or procedures for automatically exploring a disaster area, and (iv)
research articles about the use of a simulation tool for creating rovers adapted to a terrain.
The prototype rover designed using the above represented pieces of information [17] is
also validating them. Even regarding this last point, more work will have to be performed
via more extensive field testing. More generally, KRs will also continue to be added to the
MSO of the WebKB-2 server for supporting risk/emergency management but, since this is
a huge domain, the additions will understandably be related to knowledge first needed by
our own projects.

Regarding the most immediate planned extensions, WebKB-2 – and especially its
procedures for evaluating or preserving the KB content quality and general KS supporting
organization – will continue to be refined. These procedures allow their users to exploit
the ontologies of their choices, and thus so far are generic: they have not yet proved to be
domain sensitive, including in risk/emergency management.
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