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Abstract: Studying the relationship between human activities and soil erosion on a regional scale is
of great significance for macro-decision-making in soil erosion prevention and control. The entropy
weight method and RUSLE model are used to analyze the spatiotemporal variation in human
activity intensity (HAI) and soil erosion in the Weihe River Basin (WRB) from 2005 to 2020. Through
geographic detectors and a four-quadrant model, the impact of various driving factors and the
coupling degree of the human–land relationship are studied. The results showed: (1) During the
past 15 years, the moderate, high, strong, and severe erosion areas in the WRB decreased by 9.88%,
35.89%, 45.17%, and 70.05%, respectively. The ratio of the historical sand transport modulus to the
RUSLE model result is 0.83, indicating that the results obtained by the RUSLE model can be used
for further analysis. (2) Slight and weak degrees account for 80% in the northwest region. The high
and strong regions are mainly distributed in the Shaanxi section, accounting for 3% of the total basin.
(3) The coupling between human activities and soil erosion is constantly strengthening, and the joint
effect of pop and crop is the main reason for the slowdown and spatial differences in soil erosion.
This indicates that the ecological environment became stable. These findings contribute by acting as
references for soil and water conservation and management in the WRB to promote a harmonious
relationship between humans and the environment.

Keywords: anthropogenic activity; soil erosion; RUSLE; four-quadrant model; geographic detectors

1. Introduction

The human–land relationship is defined as the relationship between the survival and
development of human society or human activities and the geographical environment [1].
In recent years, there has been a great shift in research focus to the coordinated and
sustainable relationship between human beings and the living environment from land-use
change and assessment [2,3]. Soil erosion is one of the major environmental problems
causing worldwide soil degradation and crop yield reduction, which seriously threatens
the sustainable development of society and the environment [4]. Changes in soil erosion
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are generally considered to be the result of a combination of natural factors and human
activities. However, the effects of natural factors are generally long-lasting, while the effects
of human activities are visible for a short period of time. With the enhancement of human
activities and the expansion of their scope, human activities have gradually become the
key factor leading to the change in soil erosion [5,6]. Research on the relationship between
human activities and soil erosion changes and their spatiotemporal differentiation at a
regional scale is of great significance for macroplanning of soil erosion prevention and
control [7–9]. The research on the relationship between human activities and soil erosion
changes and their spatiotemporal differences is a scientific issue to be solved urgently in
current soil erosion research.

In the past 20 years, most of the research on soil erosion has focused on the spatial
variability of soil erosion under the background of land-use or landscape pattern changes
or on the use of models such as InVEST, SWAT, RUSLE, etc., to assess spatial and temporal
changes in soil erosion [10–12]. For example, Zhang et al. [13] discussed the impact of land
disturbance and restoration on runoff and sediment yield by comparing six temporary land
protection measures. Xu et al. [14] analyzed the spatiotemporal evolution and susceptibility
map of soil erosion on the Loess Plateau by using statistical methods and frequency ratio
models through field investigations. Zhang et al. [3] evaluated soil erosion for different
land-use types in each sub-basin of the Liusha River Basin based on the SWAT model.
Li et al. [15] used the InVEST model to explore the spatial distribution characteristics of
soil erosion intensity in Anxi County. However, it is not enough to only emphasize the
impact of land-use change while ignoring socio-economic factors, or to only focus on the
effects of different human activity factors and ignore spatial heterogeneity in the study of
the human–land relationship as it affects soil erosion.

The relationships between human activities and soil erosion are closely bonded and
complex, and these relationships can vary depending on the natural environment and
human factors in the region [16]. It is found that human activities act on soil erosion in
various ways, with complex processes and intensities, and the behavior is difficult to predict.
Jia et al. [17] explored the effects of natural and socio-economic factors on soil erosion in the
Weihe River Basin using a geodesic probe. Li et al. [18] used multisource data to decouple
the causes of soil erosion in South China, and obtained the relative contribution of climate
change and human activities. Wang et al. [19] used the coupled coordination degree model
to evaluate the coupling coordination level between population demand, agricultural
production, and soil erosion in 281 cities in China from 1995 to 2010, as well as the impact
of socio-economic factors. However, the spatialization of human activities on soil erosion
has not been reflected. The four-quadrant model can be used to indicate the interaction
strength and correlation degree of factors from two dimensions [16]. It was originally used
to analyze changes in the real estate market, but with the integration and development
of other disciplines, it has been widely applied in multiple fields, such as culture and
tourism, mining and agricultural ecology, human activities, and ecosystem services [20].
Research has shown that the four-quadrant model is suitable for the interaction between
two subsystems. By quantifying the spatial distribution of human activities and soil erosion,
the human–land relationship of soil erosion can be intuitively analyzed, and the areas that
need to be controlled can be identified, providing targeted reference for soil and water
conservation policies and work.

As the largest first-level tributary of the Yellow River Basin, the WRB undertakes an
important ecosystem service function and plays a critical role in maintaining the ecological
balance and social and economic development in Northwest China [21]. However, rapid ur-
banization and industrialization have increased the pressure on the ecological environment
of the WRB, exposing it to serious problems of soil erosion and ecological degradation [22]).
Several studies have revealed an improvement trend in vegetation and a good ecological
transition in the WRB from 2000 to 2014 [23,24]. However, the spatiotemporal coupling
between human activities and soil erosion changes should be strengthened, especially
over different spaces. The human activity factors considered in such studies are relatively



Sustainability 2023, 15, 10785 3 of 19

single, so the results are often more accurate. However, the effects of human activities on
soil erosion are complex and diverse, and it is difficult to comprehensively investigate the
patterns of human activities on a regional scale. In addition, research on the use of socio-
economic statistical data to characterize human activities and analyze their relationship to
soil erosion and spatiotemporal heterogeneity under the support of 3S technology has also
made corresponding progress. Such studies often use regression models to measure the
impact of soil erosion changes and human activities. However, socio-economic statistical
data are limited by administrative units, and the representation of human activities is
insufficient in terms of comprehensiveness and temporal and spatial details.

In this study, remote sensing and GIS technology were used as follows: (1) to integrate
socio-economic data, land-use data, and topographic data; (2) to construct the human
activity degree index at the raster level; (3) to simulate the soil erosion modulus in the
study area using the RUSLE model; (4) to quantitatively analyze the relationship between
soil erosion changes and human activity degree in the Weihe River Basin at the raster
scale; and (5) to analyze the driving mechanism of human activities on soil erosion from
multiple perspectives, such as population change, GDP, and land-use pattern change. On
the basis of traditional research, we spatialized the relationship between human activities
and soil erosion. We used a four-quadrant model to identify the spatiotemporal evolution
characteristics of the coupling relationship between HAI and soil erosion, and provided
targeted suggestions for controlling soil erosion in areas that need to be controlled. The main
content is reflected in three aspects: (1) the quantification of the spatiotemporal variation
characteristics of HAI in the WRB; (2) the clarification of the spatiotemporal changes in
soil erosion in the WRB from 2005 to 2020, and the use of geographic detectors to analyze
driving factors; and (3) the evaluation of the relationship between HAI and soil erosion in
the WRB using a four-quadrant model, and the proposal of targeted recommendations for
regional water and soil conservation. The results offer recommendations for soil and water
conservation management and ecological sustainable development in the WRB.

2. Materials and Methodology
2.1. Study Area

The Weihe River belongs to the largest tributary of the Yellow River, with a total length
of 818 km and a total basin area of about 1.35 × 105 km2 (103◦05′–110◦05′ E, 33◦50′–37◦05′

N) [17]. The WRB spans 84 counties in Shaanxi Province, Gansu Province, and Ningxia
Hui Autonomous Region, of which the Shaanxi, Gansu, and Ningxia sections account for
49.8%, 44.1%, and 6.1%, respectively (Figure 1). There are many geomorphic types in the
basin, including the North Shaanxi, Longdong Eastern Loess Plateau, Qinling Mountains,
and Weihe Valley. The region has a continental monsoon climate with an average annual
precipitation of 500 to 800 mm and an average annual temperature of 7.8 to 13.5 ◦C [21].
The WRB is not only an essential strategic highland in the economic field in the western
region of China but also a major industrial, agricultural, and energy base in China; it is
also the location of an equally important transportation hub in the western region of China.
However, due to its long history of indiscriminate logging, the ecology of the watershed
has been damaged, resulting in the Weihe River becoming an important source of sediment
for the Yellow River [23].

2.2. Data Sources

Table 1 displays a detailed description of the data sources, and the access date of the
data is 1 March 2023. The data were all uniformly resampled to 1 km before use in this
study to make the data additive.

2.3. Research Methodology

The RUSLE model was used to calculate soil erosion in the WRB. Four human activity
influencing factors including night lighting, population density, GDP density, and the
proportion of cultivated land, were selected to quantify the HAI in the WRB, and the
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driving factors affecting soil erosion were analyzed using a geographic detector. On this
premise, a four-quadrant model of HAI and soil erosion was established to spatialize the
coupling relationship between HAI and soil erosion. The research method is reported in
the following subsections.
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Table 1. Detailed description of data.

Data Resolution Time Period Source

DEM 90 m 2005, 2010, 2015, 2020 http://www.gscloud.cn/search
NDVI 250 m 2005, 2010, 2015, 2020 https://ladsweb.modaps.eosdis.nasa.gov

Monthly rainfall data 1 km 2005, 2010, 2015, 2020 http://www.geodata.cn/
Land use 500 m 2005, 2010, 2015, 2020 http://www.ncdc.ac.cn

Soil 1:1 million 2009 http://www.ncdc.ac.cn
Population 1 km 2005, 2010, 2015, 2020 https://www.worldpop.org/

GDP 1 km 2005, 2010, 2015 http://www.resdc.cn/
Cropland 3 km 2007, 2011, 2015, 2020 https://glad.umd.edu/dataset/croplands
PANDA 1 km 2005, 2010, 2015, 2020 http://data.tpdc.ac.cn

2.3.1. RUSLE Model

The RUSLE model is a modified version of the general soil erosion model, with a
broader range of applications based on the USLE modification of the general soil erosion
model [25]). The expression of the model is as follows:

A = R× K× L× S× C× P (1)

where A is the soil erosion amount in t·km−2·a−1; R is the rainfall erosivity factor in
MJ·mm/(hm2·h·a); K indicates the soil erodibility factor in t·hm2·h/(hm2·MJ·mm); L and S
are the slope length factor and slope factor, respectively, usually expressed as LS; C is the
vegetation cover and management factor; P is the soil conservation measure factor. LS, C,
and P factors are all dimensionless units.

In this study, the rainfall erosion factor was calculated by annual rainfall as proposed
by Zhang and Fu [26]):

R = α4 × Fβ4
F (2)

http://www.gscloud.cn/search
https://ladsweb.modaps.eosdis.nasa.gov
http://www.geodata.cn/
http://www.ncdc.ac.cn
http://www.ncdc.ac.cn
https://www.worldpop.org/
http://www.resdc.cn/
https://glad.umd.edu/dataset/croplands
http://data.tpdc.ac.cn
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FF = 1× N−1
N

∑
i=1

( 12

∑
j=1

P2
i,j

)
×
(

12

∑
j=1

Pi,j

)−1
 (3)

where R is the multiyear average rainfall erosion force (MJ·mm·hm−2·h−1·a−1); Pi,j is the
ith year, j is the annual month rainfall (mm), and N is the number of years; and α4 and β4
are model parameters with values of 0.1833 and 1.9957, respectively.

The soil erodibility factor (K) is a composite representation of the soil’s resistance to
erosion and was calculated with reference to previous studies [27] as:

K = {0.2 + 0.3exp
[
−0.026SAN

(
1− SIL

100

)]}
×
(

SIL
CLA+SIL

)0.3
×
[
1.0− 0.25C

C+exp(3.72−2.95C)

]
×
[
1.0− 0.7SNI

SNI+exp(−5.51+22.9SNI)

] (4)

SNI = 1− SAN
100

(5)

where K is the soil erodibility factor value in t/(MJ-mm); SAN, SIL, and CLA are the sand,
powder, and clay grain-mass content (%), respectively; and C is the organic carbon mass
content (%).

According to the empirical formula established by the slope of cultivated land in the
United States, the formula was modified by calculating the slope length factor (L) and slope
factor (S) in segments, drawing on the method of Cao et al. [28]:

S =


10.8× sinθ + 0.036 θ < 5◦

16.8× sinθ − 0.5 5◦ < θ < 10◦

21.9× sinθ − 0.96 θ > 10◦
(6)

where S is the slope factor and θ is the ground slope.

L =

(
λ

22.13

)m
(7)

m =


0.2 θ < 1◦

0.3 1◦ < θ < 3◦

0.4 3◦ < θ < 5◦

0.5 θ ≥ 5◦
(8)

where θ denotes ground slope, L denotes slope length factor value, λ denotes slope length
value, and m denotes slope factor index.

In this paper, the vegetation cover factor C is based on the algorithm of Alma-
gro et al. [29]:

C = ∑12
i=1 exp

[
(−2)× NDVImaxi

1− NDVImaxi

]
(9)

where C is the vegetation cover factor; and NDVImaxi is the NDVI maximum value in the
ith month of the study area.

Based on pertinent studies in loess hilly gully areas and combined with the actual
situation of the WRB [17,30], P of 0.2, 0.6, 0.8, 0, 0, and 1 were obtained for arable land,
forest land, grassland, water area, construction land, and unused land, respectively.

2.3.2. Entropy Method

Entropy has been applied in numerous research disciplines to determine the weight of
index variables by assessing the degree of disorder in variables and contrasting the infor-
mation content of variables [31]. Standardization is required to make each datum additive,
with the positive indicator in Equation (10) and the negative indicator in Equation (11).
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Yij =
Xij − Ximin

Ximax − Ximin
(10)

Yij =
Ximax − Xij

Ximax − Ximin
(11)

where Ximax and Ximin are the maximum and minimum values of the index, respectively,
and Yij is the jth impact prevention and control factor of the standardized results.

Ej = −
1

lnm ∑m
i=1

(
Yij

∑m
i=1 Yij

)
ln

(
Yij

∑m
i=1 Yij

)
(12)

where Ej is the information entropy of the influence factor; the smaller the value, the

less variation of the factor and the greater the weight.
Yij

∑m
i=1 Yij

is the proportion of the

standardized value Yij to the total standardized value.

Wj =
1− Ej

k−∑k
j=1 Ej

(13)

where Wj is the weight occupied by the factor and k is the number of influencing factors.

2.3.3. Geographical Detector

The geographic detector is a statistical model for analyzing spatial variation, proposed
by Wang et al. [31], which consists of four modules: factor detection, interaction detection,
risk detection, and ecological detection. Based on the principle of spatial autocorrelation,
factor detection and interactive detection can effectively determine the impact of a single
independent variable and the interaction between two independent variables on the de-
pendent variable, and can quantitatively analyze the impact of environmental change on
vegetation change in the study area. The formulas are as follows:

q = 1− 1
Nσ2 ∑L

h=1 Nhσ2
h = 1− W

T
(14)

W =
L

∑
h=1

Nhσ2
h (15)

T = Nσ2 (16)

where h is the hierarchy of the independent variable X, and h = 1,2, . . . L; and L is the classi-
fication of the independent variable X or the dependent variable Y. The range of q values
is [0, 1]. The larger the q value, the stronger the spatial heterogeneity of the dependent
variable Y, and the stronger the explanatory power of the independent variable X on the
dependent variable Y. Nh and N represent the number of units in layer h and the entire area,
respectively, and represent the variances of layer h and region Y, respectively; and W and T
represent the sum of intralayer variances and the total regional variances, respectively.

2.3.4. Four-Quadrant Model

The four-quadrant model combines dynamic and static analysis to analyze the rela-
tionship between the two factors [32]. In this study, the model was applied to the coupling
relationship between human activities and soil erosion in the WRB to explore the current
situation of the human–land relationship and spatial differentiation characteristics. A four-
quadrant model was constructed with the intensity of human activities as the horizontal
axis and the soil erosion modulus as the vertical axis. The positions of the quadrants
where the index values are located reflect the degree of differences to which human–land
connections differ among various assessment units (Figure 2). Based on the natural break
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point method in ArcGIS, the human–land relationship is divided into four zones: excellent,
good, general, and poor qualities (Tables 2 and 3).
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Table 2. Weight assignment results.

Indicator Direction Weight

Population Positive 0.29
GDP Positive 0.26

Cropland Positive 0.12
PANDA Positive 0.33

Table 3. Four-quadrant zoning table of HAI and soil erosion.

Quadrant First Quadrant Second Quadrant Third Quadrant Fourth Quadrant

HAI 0.106–0.875 0–0.106 0–0.106 0.106–0.875
Soil erosion 19,044.43–231,253.78 19,044.43–231,253.78 0–19,044.43 0–19,044.43

Human–environment interaction Good Poor General Excellent

The quadrant flow state index (QFSI) is established to reveal the dynamic changes in
the human–land relationship using the following equation:

QFSI(i) =
F(i)in − F(i)out
F(i)in + F(i)out

(−1 ≤ QFST ≤ 1) (17)

where QFSI(i) is the quadrant flow state index, F(i)in is the ith quadrant shift-in area, and
F(i)out is the ith quadrant shift-out area. When QFST is less than 0, it means the quadrant
area is in the decreasing state; when QFST is greater than 0, it means the quadrant area
is in the increasing state. When QFST is close to 0, it means that the quadrant is in the
equilibrium state of two-way conversion.
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3. Result
3.1. Changes to the Dynamics of LUCC

Figure 2 shows the changes in different land-use types in the WRB from 2005 to 2020.
Cropland is the main type of land use in the WRB, accounting for 42.22% of the total area,
followed by grassland (37.26%) and forest land (16.45%). The cumulative area of water
and other types of land accounts for less than 5% of the total area. From 2005 to 2020, with
population growth and rapid economic development, the land-use patterns in the WRB
have undergone significant changes. The order of different land-use types according to the
degree of area increase is grassland > construction land > unused land > water area > forest
land > cropland. The area of cropland and forest land has generally decreased, with the
former reaching 3.31 × 105 ha. However, the area of grassland and construction land has
increased year by year, with grassland increasing the most, reaching 2.04 × 105 ha. The
growth rate of construction land is the highest, with a dynamic increase of 35.39%.

3.2. Spatial–Temporal Variation Characteristics of Soil Erosion
3.2.1. Rationality and Validation of the Model

Using the annual sediment transport modulus data of hydrological stations within
the watershed, spatial interpolation is performed in CIS to obtain the sediment transport
modulus of the study area and compare it with the soil erosion modulus. Due to the use of
multiyear average rainfall erosivity in this article, it is necessary to compare the multiyear
average sediment transport modulus with the multiyear average soil erosion intensity in
the watershed. The hydrological monitoring stations used are Zhuangtou, Zhangjiashan,
and Huaxian (Figure 1). According to the “China River Sediment Bulletin” published
on the website of the Ministry of Water Resources (http://www.mwr.gov.cn/, accessed
on 1 March 2023), the average sediment transport moduli for many years in Zhuangtou,
Zhangjiashan, and Huaxian are 2520, 4580, and 2680 t·km−2·a−1, respectively. Kriging
interpolation was performed in GIS to obtain the annual average sediment transport
modulus of 3523.26 t·km−2·a−1 in the WRB. Through calculation, the average soil erosion
intensity of the Weihe River Basin from 2005 to 2020 was 4231.32 t·km−2·a−1, and the ratio
of sediment transport modulus to the results of the RUSLE model was 0.83, indicating that
the results obtained from the RUSLE model can be used for further analysis.

3.2.2. Time Variation in Soil Erosion Intensity

The soil erosion intensity of the study area in Phase 4 is divided into six erosion levels:
slight, weak, moderate, high, strong, and severe, according to the Classification Standard
for Soil Erosion. The area percentage of different soil erosion levels is presented in Table 4.

Table 4. Area proportions of different soil erosion levels in the WRB from 2005 to 2020.

Slight Weak Moderate High Strong Severe Average Erosion Modulus

2005 51.56% 8.56% 9.38% 7.64% 9.25% 13.61% 6363.49
2010 56.13% 9.38% 8.77% 6.54% 7.92% 11.25% 5451.36
2015 68.91% 9.63% 7.33% 4.51% 4.89% 4.72% 2571.37
2020 66.72% 10.78% 8.45% 4.90% 5.07% 4.08% 2539.06

In 2005, the minimum erosion modulus was 0 t·km−2·a−1, the maximum erosion mod-
ulus was 214,439 t·km−2·a−1, and the average erosion modulus was 6363.49 t·km−2·a−1.
Approximately 51.56% of the area had an erosion modulus of less than 1000 t·km−2·a−1,
about 69.5% of the area erosion modulus was below 5000 t·km−2·a−1, and an erosion
modulus of 15,000 t·km−2·a−1 or more accounted for about 13.61% of the watershed area.

In 2010, the minimum erosion modulus was 0 t·km−2·a−1, the maximum erosion mod-
ulus was 231253.78 t·km−2·a−1, and the average erosion modulus was 5451.36 t·km−2·a−1.
Approximately 56.13% of the area had an erosion modulus of less than 1000 t·km−2·a−1,
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about 74.28% of the area erosion modulus was below 5000 t·km−2·a−1, and an erosion
modulus of 15,000 t·km−2·a−1 or more accounted for about 11.25% of the watershed area.

In 2015, the minimum erosion modulus was 0 t·km−2·a−1, the maximum erosion mod-
ulus was 92,797.72 t·km−2·a−1, and the average erosion modulus was 2571.37 t·km−2·a−1.
Approximately 68.91% of the area had an erosion modulus of less than 1000 t·km−2·a−1,
about 85.87% of the area erosion modulus was below 5000 t·km−2·a−1, and the erosion
modulus of 15,000 t·km−2·a−1 or more accounted for about 4.72% of the watershed area.

In 2020, the minimum erosion modulus was 0 t·km−2·a−1, the maximum erosion mod-
ulus was 231,100.56 t·km−2·a−1, and the average erosion modulus was 2539.06 t·km−2·a−1.
Approximately 66.72% of the area had an erosion modulus of less than 1000 t·km−2·a−1,
about 85.95% of the area erosion modulus was below 5000 t·km−2·a−1, and am erosion
modulus of 15,000 t·km−2·a−1 or more accounted for about 4.08% of the watershed area.

3.2.3. Spatial Variation in Soil Erosion Intensity

Figure 3 reveals that there was significant spatial variation in soil erosion from 2005
to 2020. The distribution of severe eroded areas was relatively stable, mostly with high
and steep terrain and poor vegetation coverage, resulting in serious erosion and requiring
focused targeted treatment. The areas with strong erosion were mainly distributed in
the northern and western parts of the WRB, and the area gradually decreased with time
changes. Areas of high erosion mostly existed around areas of strong erosion. Some areas
of high erosion also existed in the central part from 2005 to 2010, and areas of high erosion
showed a trend of conversion to moderate and slight erosion from 2010 to 2015.
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The change degree of the stability rate of soil erosion intensity in different years and
the change intensity of soil erosion in each province are shown in Figure 4. It can be
seen from Figure 4A that the stability rate of weak, moderate, high, and strong erosion in
the WRB is relatively low as a whole. The stability rate of severe erosion is only higher
than 50% in the period of 2005–2010, and the stability rate of severe erosion is lower than
30% during the period of 2010–2020, which indicates a significant decreasing trend of soil
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erosion intensity. The WRB is composed of three sections: Gansu section, Ningxia section,
and Shaanxi section. The conversion rates (CVR) of weak, moderate, strong, and severe in
all three sections from 2005 to 2020 were above 80%, proving that soil erosion showed a
decreasing trend (Figure 4B–D).
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sents the steady change of soil erosion in different years, (B) represents the change of soil erosion
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3.3. Spatial–Temporal Variation Characteristics of HAI

The natural breakpoint method of ArcGIS 10.3 was used to classify the HAI into five
levels: slight, weak, moderate, high, and strong. During the period of 2005–2020, the
distribution of HAI in the WRB did not change significantly, showing a spatially strong
southeastern and weak northwestern feature (Figure 5). As shown in Figure 6a, there is
considerable spatial variation in the HAI levels in the WRB, taking the HAI level in 2005 as
an example. The slight HAI occupied 52.66%, of which the Shaanxi section accounted for
the most (26.66%), followed by the Gansu section (23.17%); the Ningxia section accounted
for the least (2.83%). The proportion of the three sections in the weak HAI changed, with
the proportion of the Gansu section accounting for 60.32% of the entire weak HAI, the
Shaanxi section accounting for 29.81%, and the Ningxia section accounting for 9.89%. The
proportion of the Ningxia section in moderate HAI was very small at 0.56%, and the
proportion of the Shaanxi section returned to the first position with 86.85%. The proportion
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of the Gansu section was 12.58%. The HAI in the Ningxia section of the WRB contained only
weak, mild, and moderate HAI. The high level of HAI accounted for 1.90% of the whole
basin, of which the Shaanxi section had an absolute advantage with 91.80%, followed by
the Gansu section with 8.44%. The strong HAI in the WRB had a very small percentage of
0.58%, of which the Shaanxi section accounted for 98.93%. In terms of changes in different
HAI levels from 2005 to 2020, the slight and weak HAIs covered most of the study area,
mainly in the northern and western parts of the WRB, accounting for more than 80% of the
total basin, as shown in Figure 5. The Ningxia section was basically in the stage of weak
HAI. The high and strong areas were mainly distributed in the Shaanxi section of the WRB,
accounting for 3% of the total basin. The degree of slight HAI decreased significantly, from
52.66% in 2005 to 49.44% in 2020. The area percentage of weak and moderate HAI showed
an increasing trend, with the percentage of weak HAI increasing from 32.03% in 2005 to
32.90% in 2020 and the percentage of moderate HAI increasing from 12.82% in 2005 to
14.61% in 2020. The percentages of high and strong HAI increased by 47.56% and decreased
by 60.55%, respectively. In general, most of the regions were characterized by slight and
weak HAI during the period of 2005–2020; the changes were not very significant, and the
high and strong HAI was mainly concentrated in the Shaanxi section of the WRB.
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3.4. Analysis of Anthropogenic Driving Factors of Soil Erosion Based on Geographic
Detector Model

The application results of the factor detector show that all five factors passed the
1% significance level test, and there are significant differences in the explanatory power of
different factors on soil erosion in the WRB. Over time, the explanatory power of various
factors on soil erosion in the watershed does not vary significantly, with POP and GDP
having a higher explanation than PANDA and crop. Figure 7 shows the results of the
interaction between factors, and it is found that the interaction results of any two factors
present a dual factor or nonlinear enhancement. These results indicate that the spatial
differences in soil erosion are caused by multiple influencing factors. The interaction
between POP and cropland has the greatest explanatory power on soil erosion.

3.5. Spatiotemporal Coupling Evolution between HAI and Soil Erosion

The spatiotemporal coupling characteristics of HAI and soil erosion in the WRB were
explored based on a four-quadrant model. As shown in Figure 8, there are obvious spatial
differences between the coupling degree of HAI and soil erosion in the WRB from 2005 to
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2020. The area with a coupling degree of poor is decreasing. Between 2005 and 2010, poor
coupling degree was mainly distributed in the northern and western parts of the WRB,
accounting for about 10%, and the area contracted to the north, reducing to about 3% of
the study area from 2015 to 2020, which indicates a greater improvement in the ecosystem
compared to 2005. The area with a coupling degree of general showed an increasing trend,
with the area proportion increasing from 72.89% in 2005 to 78.44% in 2020, far exceeding
the other three coupling degrees, indicating that the ecosystem is moving toward a stable
trend. The area with a coupling degree of good is the smallest and is more stable, with
the area being less than 0.5% in 2005–2020. The area with a coupling degree of excellent is
mainly distributed in the southeast of the WRB, showing an overall increasing trend, with
the area proportion increasing from 14.98% in 2005 to 17.36% in 2020, an increase of 15.89%.
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Figure 9 illustrates the dynamics of the degree of coupling for different periods
(2005–2010, 2010–2015, 2015–2020, and 2005–2020). From 2000 to 2010, the QFSI with
the poor, general, good, and excellent coupling degrees were −0.228, 0.024, −0.075, and
0.536, respectively (Table 5). The outflow with a degree of coupling of poor is greater than
the inflow, and its area tends to decrease, mainly shifting to the general coupling. The
inflows are greater than the outflows in the excellent coupling degree, and their areas
have a tendency to increase. The QFSI with good and general coupling degrees is close
to 0, indicating that the change is not significant and is close to the equilibrium state of
bidirectional conversion.
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Table 5. QFSI with different coupling levels in different periods.

Poor General Good Excellent

2005–2010 −0.228 0.024 −0.075 0.536
2010–2015 −0.696 0.495 −0.578 0.040
2015–2020 −0.189 0.023 0.517 0.236
2005–2020 −0.746 0.396 −0.139 0.592

From 2010 to 2015, the QFSI with the poor, general, good, and excellent coupling
degrees were −0.696, 0.495, −0.578, and 0.040, respectively (Table 5). Compared with
2005–2010, the area of the general coupling degree has increased significantly, while the
areas of poor and good coupling degrees have decreased, among which the area with the
poor coupling degree has decreased dramatically and the area with the general coupling
degree is still at the highest percentage.

From 2015 to 2020, the QFSI with the poor, general, good, and excellent coupling
degrees were −0.189, 0.023, 0.517, and 0.236, respectively (Table 5). Compared with
2010–2015, the area with the good, general, and excellent coupling degrees is increasing in
varying degrees, indicating a steady increase in the effectiveness of ecological management
in the WRB.

From 2005 to 2020, the QFSI with the good coupling degree is −0.139, indicating that
the good human–land relationship is basically in a two-way transition equilibrium state.
The area with the poor coupling degree where the relationship between humans and land
is poor decreases a lot, and the QFSI is −0.746. The poor coupling degree mainly shifts to
the general coupling degree. The general coupling degree has a partial flow into the fourth
quadrant, indicating that the ecological environment has partially shifted to an excellent
human–land relationship. Overall, it seems that the ecological environment of the WRB
has gradually improved.

4. Discussion

The RUSLE method was used to quantify soil erosion in the WRB, and the temporal
and spatial characteristics of soil erosion changes from 2005 to 2020 were discussed. In
terms of space, the northern and western parts of the WRB are areas of relatively severe soil
erosion. This heterogeneous spatial distribution is largely due to the special geographical
environment, where the loess is deep and loose and prone to erosion [17,33]. The south-
eastern area of the WRB is more economically developed, and soil erosion is relatively
low because socio-economic development has promoted awareness of soil erosion and
conscious changes in production and lifestyle [34]. In terms of time, the average soil ero-
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sion modulus in the WRB has decreased over time, indicating a change from relatively
severe to weak soil erosion. The results of Sun et al. [35] are consistent with our findings,
demonstrating that soil erosion in the Loess Plateau is decreasing at a rate of more than
1 t·km−2·a−1. Furthermore, the stability rate of soil erosion in the WRB was calculated,
and the results showed that the stability rate of severe erosion in the WRB from 2005 to
2020 showed a downward trend. Among them, the transformation rate of severe erosion
in the Shaanxi and Gansu sections was greater than 85%, and the transformation rate of
severe erosion in the Ningxia section was as high as 96.28%. This may be attributed to
the implementation of ecological protection projects, such as returning farmland to forests
and grassland, and the GCHP project, which increased vegetation cover and improved the
ecological environment of the WRB [24,36].

In addition, this study also found that the interaction between any two factors on soil
erosion is greater than that of one factor and mainly exhibits a nonlinear enhancement effect,
which is consistent with the findings of Xu et al. [23]. Soil erosion is affected by multiple
factors. This study uses the geographical detector method to determine the driving factors
that affect regional soil erosion changes. The results show that POP and crop have a greater
impact than other factors and are dominant factors. Due to the implementation of ecological
protection measures such as returning farmland to forests and grassland and GCHP since
1996, the overall ecosystem of the Loess Plateau has been restored and improved. For
example, the forest cover, grass cover, and habitat quality have shown an increasing trend
due to the implementation of the Grain for Green project [21]. Based on experiments,
Xu et al. [14] came to the conclusion that GLC projects can restore and mitigate soil erosion
while maintaining water and soil. Human activities are mainly concentrated in production
and living activities such as the development and utilization of natural ecological resources;
therefore, population density is also an important factor affecting soil erosion [37,38].

In this study, we analyzed the HAI in the WRB during the period of 2005–2020.
Temporally, there is an upward trend in the percentage of area with weak, moderate, and
high HAI. This indicates that the watershed ecosystem was effectively affected by human
activities from 2005 to 2020, which is consistent with previous studies [39,40]. Xu and
Xu [41] concluded that from 1992 to 2008, the number of county-level units included in the
intermediate type area of the Loess Plateau increased substantially, and the mean value
showed an overall upward trend. Spatially, the spatial distribution of HAI in the WRB
shows strong southeast and weak northwest characteristics, which are related to urban
population density. Human activities are mainly concentrated in production and living
activities such as the development and utilization of natural ecological resources [36,37],
so the higher values of HAI are mainly distributed in the southeastern part of the WRB.
The northwestern region is less densely populated and has less space and fewer resources
needed for human survival, so the Ningxia section as a whole is basically in a weak stage
of HAI. This is consistent with the findings of previous studies on human activities in
the WRB [17,21].

The relationship between HAI and soil erosion is dynamic. Our results show that
about 97% of the region is distributed in the good, general, and excellent coupling degrees.
Only 3% of the region is distributed in the poor coupling degree. This implies that the
ecological quality of the WRB is generally good, and the coupling of HAI and soil erosion
is good. The implementation of returning farmland to forests has improved the overall
ecosystem service quality of the Loess Plateau [42,43]. In addition, Xu et al. [23] concluded
based on the InVEST model that the soil conservation service capacity of the Jing River
Basin improved after ecological conservation measures, such as GCHP. The proportion of
good coupled regions gradually increased from 2005 to 2020. This may be related to human
activities and climate change during the study period, consistent with previous studies [44].
In the 19th century, soil erosion rates on the Loess Plateau increased due to disturbances
from human activities and interannual climate change [45]. However, with regard to the
QFSI of the human–land relationship, the area of poor human–land relationship decreased
between 2005 and 2020, with a QFSI of −0.746, in which there is mostly a flow to a
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general human–land relationship. Some of the general human–land relationship flows into
the excellent human–land relationship flow. These basic characteristics of this study are
consistent with the research results of Tan et al. [1] that the human–land relationship is
constantly improving.

Identifying the impact of human activities on soil erosion can support regional soil
and water conservation management and healthy development. It will be a long-term
and gradual process to improve the coupling relationship between human activities and
soil erosion, and the two will reach a good coupling state in order to achieve the goal of
harmonizing the relationship between humans and the environment. Therefore, future
policies should follow the principle of adapting measures to local conditions. For areas
with strong human activities and high soil erosion, it is necessary to rationally allocate
various land resources to avoid excessive reclamation and excessive use of land resources.
Water and soil conservation measures such as dams and terraces should be implemented in
the area. In areas with low human activity intensity and high soil erosion, environmental
management and resource protection should be strengthened to enhance regional ecologi-
cal resistance. For degraded land, vegetation restoration techniques can be used, such as
artificial planting or natural vegetation growth to restore land vegetation. Shelter belts can
also be established to reduce soil erosion. In some cases, there may be hydrologic factors un-
favorable to afforestation in some areas. There is a practical need for a rational allocation of
ecological conservation measures in the context of local economic development and urban
planning. Due to the relationship between regional economy and soil erosion, it is possible
to appropriately promote the development of cultural and tourism industries, increase
the income of local residents, enhance their awareness of soil and water conservation, and
reasonably develop land resources.

The quantification of HAI using the entropy weighting method has some limitations,
which cannot take into account the cross-sectional effects between indicators [43]. The
habitat of the WRB may face more anthropogenic influences than we have demonstrated,
with studies suggesting that anthropogenic factors such as traffic volume and grazing
intensity both impact the ecology [46,47]. Unfortunately, these factors must be excluded
due to discontinuous inventory records. The above problems can lead to bias in the
calculation of HAI [48]. Therefore, future work will comprehensively consider the impact
of other factors on HAI, refine socio-economic indicators, and further explore the impact
and contribution of regional industries to soil and water conservation. At the same time,
we will improve the model to simulate the dynamic feedback process between human
activities and soil erosion.

5. Conclusions

Anthropogenic disturbances to the ecosystem of the WRB will affect the spatial varia-
tion in soil erosion. Five types of landmark human activity factors were used to quantify the
HAI from 2005 to 2020, and the spatiotemporal trends of HAI were explored from regional
and provincial perspectives. Subsequently, the spatial–temporal variations of soil erosion in
the WRB from 2005 to 2020 were quantified based on the RUSLE method, and the driving
factors were analyzed using a geographical detector. Finally, based on the four-quadrant
model, the coupling relationship between HAI and soil erosion was evaluated to identify
areas with a low human–land relationship. The key findings can be summarized as follows:

(1) During the period of 2005–2020, the trend of soil erosion in the WRB shifted from
high erosion levels to low erosion levels. Over the 15-year period, the erosion areas of mod-
erate, high, strong, and severe decreased by 9.88%, 35.89%, 45.17%, and 70.05%, respectively.
The areas of slight and weak erosion increased by 29.41% and 25.93%, respectively.

(2) HAI shows spatially strong southeast and weak northwest characteristics. The
slight and weak HAI account for 80% in the northwest of the WRB, and the high HAI areas
are mainly concentrated in the Shaanxi section.

(3) The overall human–land relationship in the WRB was generally stable and had
a great improvement trend from 2005 to 2020. The proportion of general area in terms



Sustainability 2023, 15, 10785 17 of 19

of the human–land relationship increased from 72.89% in 2005 to 78.44% in 2020. The
distribution range of poor in the human–land relationship gradually shrank to about 3% of
the study area.

Changes in regional economic and social factors, especially due to the implemen-
tation of ecological protection projects, may be the main reason for the improvement of
human–land relationships across the region. The results are valuable for studying changes
in human–land relations in the WRB and provide effective references for future ecosys-
tem management.
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