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Abstract: Effective waste management is critical to environmental sustainability and public health.
Various dynamics, such as seasonal changes and waste education programs, influence solid waste
generation, increasing the complexity of prediction. This is important, as the proper prediction
of waste quantity is necessary to develop a sustainable waste management system. In this study,
municipal solid waste (MSW) management is examined in Regina, the capital city of Saskatchewan,
Canada. A system dynamics (SD) model is developed to evaluate garbage and recyclable waste
generation behaviours in Regina across four seasons. Three years of Regina landfill waste generation
records (2016–2018) are considered to analyze and predict seasonal waste-generation trends. The
effect of various factors, such as gross domestic product (GDP), population, and education attainment
on the amount of waste generation is considered in the SD model. The SD model is designed as a
stock-flow diagram to illustrate the relationships between variables and predict the next three years
of waste trends. This finding highlights the importance of waste education and awareness program
and seasonal effects on the accuracy of SD waste modeling.

Keywords: municipal solid waste management; system dynamics; seasonal variation; recyclable
waste; education and awareness; recycling behaviors

1. Introduction

The rapid socioeconomic development that has occurred in many urban centers and
regions over the last few decades has led proper management of municipal solid waste
(MSW) to receive a significant increase in attention [1,2]. According to the World Bank [3],
2.1 billion metric tonnes of waste are generated annually worldwide—a figure that, under
current conditions, is projected to rise by 70%. Prediction and estimation of MSW generation
using regression analysis, material flow models, and machine learning approaches have
been reported [4–7]. Recently, several studies have used system dynamics (SD) modelling
to analyze MSW management systems (e.g., [1,2,7,8]).

Most researchers that have employed SD modelling to analyze MSW management
have considered population, gross domestic product (GDP), and waste volume [9,10].
Wang et al. [8] designed various SD models to evaluate the relationship between socioe-
conomic benefits and waste separation in Tianjin, China. They found that a rise in waste
separation is correlated with an improvement in socioeconomic benefits. Dianati et al. [11]
designed SD models to assess waste volumes, including mixed waste and food waste,
in Kisumu, Kenya. These models incorporated greenhouse gas emissions to assess the
atmospheric impact of solid waste burning. Table A1 presents the summary of waste
management studies using SD models.

Most waste studies have focused on a single type of waste to assess the effect of
policies on specific types of waste treatment or disposal. For example, Dhanshyam et al. [1]
used SD modelling to investigate various policies’ effects on plastic waste generation
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in India, considering socioeconomic level, recyclable rate, plastic waste generation rate,
and waste sources. Some recent studies have assessed the impact of certain policies and
scenarios on MSW management as a whole [11–13]. Such systematic approach may aid
in minimizing global waste generation and their corresponding environmental impacts.
Lu et al. [2] developed a SD model to predict total waste generation by considering GDP,
population, local policies and conditions in China’s Southern Tai Lake Watershed. The
modeling results suggest that certain variables are more effective in extending the capacity
of landfills for longer period of time. Such findings may enable governmental agencies and
policymakers to better manipulate waste generation characteristics and recycling behaviors
of the residents, improving overall sustainability.

Rafew et al. [12] estimated long term MSW quantity using a SD model in Khulna,
Bangladesh. Their SD model considered several socioeconomic variables and looked at the
entire life cycle of MSW management from waste collection to permanent land disposal
through 2050. Ultimately, they found a need to increase the city’s budget for both collection
and landfill development.

Education and the awareness of residents is one policy element that can improve MSW
management and environmental sustainability [10,14,15]. Due to the nature of this parame-
ter, education is difficult to quantify precisely and thus mostly ignored in waste studies.
The City of Regina, the capital city of Saskatchewan, Canada, recently identified education
as a key factor in their MSW management strategies [16]. This education factor largely
refers to knowledge and awareness of the residents on how to distinguish and properly
dispose recyclable waste from non-recyclable waste. According to the City, educational
efforts using various outreach program and recycling campaigns have led to a 16% decrease
in waste generation between 2018 and 2020 [16]. As such, education as defined by the City
is adopted in the present study to model MSW waste generation rates.

The proposed model also considers seasonal effects on MSW generation characteristics
and recycling behaviors [17,18]. Knowledge of the climatic drivers behind MSW generation
may aid policymakers in better responding waste quantity fluctuations, thereby mitigating
health concerns during a global pandemic [19,20]. Seasonal effects on waste generation
rate and composition appears site specific. For example, minimal seasonal variations on
waste composition are reported in a Danish residual household waste study [21], whereas
strong seasonal variations on food waste are reported in a Chinese study [22]. In this study,
the objective is to develop an SD model to evaluate the effects of several socio-economical
variables on waste generation rate, with the consideration of the education of the residents
and seasonal variations. By examining the effects of education seasonal variations on the
amount of waste generation, we may uncover means of improving MSW management
processes. This is especially important in Canada, where the historical per-capita waste
diversion rates were noticeably lower than other industrialized nations [23,24]. Canadians
send the majority of their waste for permanent land disposal, contributing to the risks
of landfill gas emission [25–27] and leachate groundwater contamination [28,29]. This
SD model reported in this paper can, however, be generalized to other cities all over the
world. The modeling results of this study reveal various ways in which decision-makers
can advance the planning and operation of MSW management systems.

The paper Is organized as follows. Section 2 presents the methodology followed in
this study. Results and outcomes of the study are analyzed and discussed in the following
section. The model validation and scenario analysis are summarized in Section 5. Finally,
the last section highlights the conclusions and limitations and suggests future research.

2. Methodology

MSW generation rates in Regina, Canada, have been reported in a number of stud-
ies [18–20], and it is selected as the study area. Population and economic growth in
Regina over the last several decades have led to significant increases in waste disposal [16],
prompting the city to consider alternative MSW management plans. Figure A1 presents the
population and growth rate of Regina, SK, Canada. In this study, we examined the residents’
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waste generation characteristics and recycling behaviors to predict future MSW genera-
tion using SD models. Regina covers 118.4 square kilometres, making it the province’s
second-largest city. The population of Regina, which has been growing for several decades,
was 258,960 in 2020 [30]. Given the resultant rise in waste generation, Regina drew up the
Official Community Plan, which proposed various methods of minimizing waste and, in
turn, mitigating environmental issues. Socioeconomic factors, such as population and GDP,
influence waste disposal [8,11]. Birth, death, and immigration rates are effective factors
behind population, and the city’s GDP has risen over the last decade, driving up waste
generation [30].

Given the nature of the problem, we have adopted an SD modelling approach in this
study to predict the amount of waste generation in Regina. SD models was developed in
the 1960s to analyze large, complex systems with a non-linear model [31]. Causal loops
are designed to illustrate an overview of the SD model’s processes. SD models work
with stocks and flows, with the relationships between stocks illustrating the root of the
problem in the model. The stocks also show the main variables’ processes separately,
displaying the interconnected behaviour of the SD systems. SD models are appropriate
for systems that work overtime and include various linguistic parameters and policies,
as they better capture the effects of these variables. Literature has suggested that SD
model performance is comparable or more accurate than other predictive models [2,11].
SD models are appropriate for assessing MSW management processes [8,12,13], and they
provide insights into the effects of variables on waste generation.

2.1. Causal Loop of the SD Model

Figure 1 presents the causal loop of our MSW generation SD model using literature.
Causal loops illustrate the positive and negative relationships between the variables, with
the positive (+) and negative (−) flows indicating the increasing and decreasing effects of the
cause-effect parameters, respectively. This specific casual loop illustrates the relationships
among population, education, and GDP with respect to the nine types of waste.
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ics model.

As population and GDP grow, the waste generation rate increases, meaning they
possess a positive relationship [8,13]. Liu et al. [15] investigated the influence of public
education on residents’ willingness to classify household waste. The performance of the
education program was systematically evaluated and reported annually by the Taiyuan
City of China [16]. The education parameter is expressed as a percentage with respect to the
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residents’ knowledge on their ability to identify non-recyclable wastes from recyclables. A
higher percentage denotes a more effective and accessible waste education and awareness
campaign. In this study, education or awareness programs have negative and positive
effects on non-recyclable waste (garbage) and recyclables, respectively, with the term
“garbage” referring specifically to the non-recyclable waste fraction.

2.2. Stock-Flow Diagram and SD Model

A recent waste study suggests that modeling by multiple waste streams is more
advantageous [19] than the traditional approach, and therefore our SD model assesses
the generation of nine different waste types (i.e., paper waste, paper packaging waste,
food waste, plastic waste, glass waste, yard waste, household hazardous waste, electronic
waste, and metal waste) in Regina. The proportions of garbage (non-recyclable waste) and
recyclables were considered across four seasons (winter, spring, summer and fall). In this
paper, stocks and flows were used to illustrate the city’s waste generation processes and
the relationships between policies and various waste types. In this study, Vensim PLE
software was used to build the SD model. Figure 2 presents the stock-flow SD model for
waste generation in Regina. The SD model was developed using three years (2016–2018)
of Regina landfill waste records. The amount of garbage and recyclable waste generation
were measured from brown garbage cart and blue recycling cart statistics in Regina. GDP
and population constitute the model’s socioeconomic variables, both of which have a direct
effect on waste generation. The details of the variables are summarized in Table A2. The
rates in the SD model illustrate the changes in waste generation volumes. The model’s
initial validity was assessed by examining the accuracy of its structure and its ability to
replicate behavior, as compared to real-world observations [12]. In this study, the calibration
process involves comparing the historical data on waste generation in the Regina landfill
from 2016–2018 with the data generated by the model.
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3. Results and Discussion

According to the historical statistics, Regina’s GDP increases at an annual rate of
about 1.5%; therefore, the SD model predicts that the GDP will increase from $16,194 M to
$17,505 M between 2016 and 2021. Additionally, the model predicts a population increase
from 344,751 to 357,836 between 2018 and 2021. Population growth stems from several
variables, including births, deaths, and immigration and emigration rates.

The models predict the quantity (in million tonnes) of nine different waste types from
2019 to 2021 (Figures 3–7). The predicted waste trends stem from the effects of popula-
tion, GDP, and education. Various waste-focused educational programs and awareness
campaigns have been held to boost MSW management knowledge among the public in
Regina, and data suggests that resident behaviors have been changing gradually during the
study period [32]. For example, more consumers decided to choose paper bags over plastic
bags and to select products with less plastic packaging due to the educational programs on
waste minimization.
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Figure 3. Waste prediction of (a) garbage paper, (b) recyclable paper, (c) garbage paper packaging,
and (d) recyclable paper packaging.
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Figure 4. Waste prediction of (a) garbage food, (b) recyclable food, (c) garbage plastic, and (d) recy-
clable plastic.
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Figure 5. Waste prediction of (a) garbage glass, (b) recyclable glass, (c) garbage yard waste, and
(d) recyclable yard.
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Figure 6. Waste prediction of (a) garbage household hazardous waste, (b) recyclable household
hazardous waste, (c) garbage electronic waste, and (d) recyclable electronic waste.
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Figure 7. Waste prediction of (a) garbage metal and (b) recyclable metal.

Figures 3–7 illustrate the actual statistics (2016–2018) and predictions (2019–2021)
on different waste fractions in Regina with respect to the four seasons. Figure 3a shows
garbage (non-recyclable) paper waste generation rates, while Figure 3b shows recyclable
paper waste generation rates. In general, the amount of recyclable paper waste exceeds that
of garbage paper waste, indicating that the population has been appropriately separating
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its paper. Between 2016 and 2018, the largest amount of garbage paper waste generation
occurred during the spring (Figure 3a). However, there was a sharp decrease in paper waste
generation between 2017 and 2018 as a result of promoting a culture of waste segregation
in schools, showing the significant impact of education variables in this part. For this, the
simulation predicts less garbage paper waste during the spring between 2019 and 2021.
Figure 3b shows that the generation characteristics and recycling behaviors of recyclable
paper is heavily influenced by the seasons, with noticeably lower waste generation rate
in winters.

As shown in Figure 3c,d, the SD model predicts that the garbage paper packaging
waste generation rate is greater during the summer than during other seasons, while the
recyclable paper packaging waste generation rate is greatest during the spring, with ap-
proximately 0.25 metric tonnes between 2016 and 2021. The model predicts more recyclable
paper packaging waste generation than garbage paper packaging waste generation. It
appears that the seasonal effects are more important on the amount of recyclable paper and
paper packaging (Figure 3b,d) than others. The waste predictions from 2019 to 2021 are
quite consistent with a mild decreasing trend in all four waste fractions.

The SD model’s predictions for garbage and recyclable food waste are shown In
Figures 4a and 4b, respectively. There is a mild increase in garbage food waste generation
during the summer and winter months between 2019 and 2021. Evidently, the highest
amount of garbage food waste is generated during the summers, from 0.732 million tonnes
in 2016 to 0.850 million tonnes in 2021. Li et al. [22] recently investigated the changes in
food waste bulk densities between summer and winter in Beijing, China, and reported
higher food waste bulk densities in summer. Figure 4b shows that the recyclable food
waste generation rate is noticeably lower than garbage food waste generation. However,
there has been a sharp increase in recyclable food waste generation during the fall from
0.001 million tonnes in 2016 to 0.036 million tonnes in 2021. This sharp increase is probably
due to the increasing trend in the baseline period from 2016 to 2018 (Figure 4b). In general,
due to the general increase in the amount of food waste generation between 2016 and 2018,
the SD model predictions from 2019–2021 are quite consistent in the four seasons. In The
City has recently implemented food- and yard-waste pilot programs to address the future
changes of these wastes [33]. These projects may aid Regina in mitigating organic waste
generation and achieving a higher waste diversion rate.

Garbage and recyclable plastic waste generation rates are plotted in Figures 4c,d,
respectively. The general decreasing trend in the amount of plastic garbage waste is evident
across all four seasons. The highest amount of plastic garbage waste generation occurs
during the summer. On the other hand, the highest amount of recyclable plastic waste
occurs during the springs, with about 0.002 million tonnes per year. In all cases, the
predicted amounts for 2019–2021 are quite different among the seasons. Information on
changes in waste generation characteristics and recycling behaviors across the seasons
could provide interesting and valuable insights on planning and operating of a sustainable
waste management system [19]. Many regulatory and administrative measures could be
taken to mitigate plastic waste generation; for instance, Regina passed the Plastic Checkout
Bag Ban Bylaw in July 2020. This is particularly important during a global pandemic,
when higher plastic waste generation from masks, gloves, and other personal protective
equipment is expected [34].

Figure 5 illustrates the predicted amount of garbage and recyclable glass and garbage
and recyclable yard waste. Figure 5a shows a sharp decrease in garbage glass generation
in fall and spring from 2016 to 2018, which affects the prediction values for the 2019–2021.
Most glass waste in Regina consists of food and beverage containers, which can be reused to
minimize the amount of glass waste generation. The summer features the highest volume
of garbage and recyclable glass waste. Figure 5c,d show garbage and recyclable yard waste,
respectively. As shown in Figure 5d, the quantity of recyclable yard waste in Regina is
negligible (generally < 0.001 million tonnes) for 2017 and 2018. For this, the predicted values
from 2019 to 2021 are also negligible. Garbage yard waste, however, is most prominent in
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the spring and summer due to seasonal landscaping efforts and the pruning of trees and
shrubs. This sharp decline in yard waste between 2017 and 2018 can be attributed to the
opening of the city’s yard waste depot [33].

Figure 6 illustrates the volume of garbage and recyclable household hazardous waste
and garbage and recyclable electronic waste between 2016 and 2021. The prediction
(between 2018 and 2021) in Figure 6a illustrate that most household garbage was generated
during the summers because of the increasing trend in the baseline period from 2016 to
2018. Figure 6b highlights that the most household recyclable waste was generated during
the falls and winters. Common household hazardous waste in Regina includes cleaners,
batteries, solvents (e.g., acetone), and all poisonous materials [33]. Education can lead
to a decline in the generation of household hazardous waste by raising awareness about
recycling of this waste to minimize health risks and to mitigate environmental footprints.

Figure 6c,d show the volume of both recyclable and garbage electronic waste. Evi-
dently, electronic waste generation peaks during the summer months. Electronic waste
refers to electrical and electronic devices, including household appliances, machine tools,
monitors, computers, and others. Tutton et al. [35] presented that there was a fluctuating
trend for electrical waste in Canada due to the pre-processing of e-waste systems dur-
ing 2016–2018. According to a Spanish study, environmental education is a key factor in
improving electronic waste management [36].

The volumes of garbage and recyclable metal are shown in Figures 7a and 7b, respec-
tively. There was a downward trend from 2016 to 2018 across all seasons for the quantity of
garbage metal, which includes aluminium, steel cans and foil containers. For this reason,
the predicted value of metal garbage during the summer and spring is around 0.05 million
tonnes from 2019 to 2021, or about 0.02 tonnes higher than that during the fall and winter.

4. Model Validation and Simulation Scenarios

Promoting a culture of waste sorting and waste diversion is one key facet of the educa-
tion variable in this research. An education variable is included in our SD models to assess
the effects of educational program and awareness campaigns on waste generation behav-
iors in Regina. Due to the nature of the parameter, two scenarios considered specifically
(with and without waste-focused education) to verify the sensitivity of the parameter on
modelling results. Figure 8 illustrates the six recyclable generation waste quantities (paper,
paper packaging, plastic, metal, glass, and food wastes) in Regina for the two scenarios.
The SD models predict neglectable amount of household hazardous, yard, and electronic
recyclable wastes between 2019 and 2021, and these three waste fractions are therefore
ignored in this sensitivity analysis.

Figure 8a,b suggest that the educational campaigns are effective. Figure 5a shows that
the amount of recyclable paper waste generation declined between 2019 and 2021 due to
educational efforts. This effect of education is evident across all seasons.

Recyclable plastic waste is shown in Figure 8c. Most recyclable plastic waste generation
has been generated during the spring and summer, which can be attributed to the high
number of picnics and holidays during these seasons [33]. Evidently, more policies are
necessary to minimize plastic waste, especially during the spring and summer. Figure 8c
clearly visualizes the effect of education, as recyclable plastic waste generation is greater
alongside educational efforts.

Recyclable glass waste generation and metal waste generation have increased between
2019 and 2021, as shown in Figures 8d and 8e, respectively. The effect of education can be
clearly observed. For example, recyclable metal waste generation is at least 0.05 million
tonnes higher with education than without education. This positive association with
education is evident across all seasons.
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Figure 8f illustrates recyclable food waste generation both with and without education.
It demonstrates that the amount of recyclable food waste generation is predicted as 0.0104
to 0.0103 million tonnes with the effect of education; however, the same situation without
the effect of education is slightly lower, at 0.0101 to 0.0096 metric tonnes between 2019
to 2021.

Evidently, education brings about a general increase in the amount of recyclable waste.
This suggests that education on waste minimization and recycling can aid Regina in improv-
ing its waste diversion rate. Maddox et al. [37] investigated the effects of waste education
programmes on residential waste in UK and found that both old and young audiences are
important to the success of waste minimization and recycling initiatives. Similar findings
are reported by Halkos and Petrou [38] using 20-year data from 25 OECD countries.

5. Conclusions

In this study, a SD model was designed to predict the volumes of different types of
waste between 2019 and 2021 in Regina. Paper, paper packaging, food, plastic, metal,
household hazardous, glass, yard and electronic waste were considered for distinguishing
between garbage (non-recyclable) and recyclable waste. Three years of Regina landfill
waste records were used as inputs and the effects of three socio-economical variables,
namely GDP, population, and education, on MSW generation rates were assessed. Unlike
other similar SD waste models, seasonal waste generation rates were explicitly modeled
in this study, improving the overall model accuracy. Furthermore, education is a critical
factor on waste diversion, as outlined in the Regina Waste Plan. The results showed that
education plays a significant role in MSW management processes across all seasons and for
all types of waste. The effects of seasons were found to be sensitive to waste type.

In addition, the most waste generation occurred during the summers, likely due to
the high frequency of holidays and social gatherings in the warmer weather. In contrast,
food garbage waste generation peaked during the winters and springs. Interestingly, there
was a 41% reduction in paper garbage waste and a 26% reduction in plastic garbage waste
across all seasons between 2016 and 2018. Therefore, the SD model predicted a declining
trend on these waste streams.

In this study, the variables of education, GDP, and population were considered in the
SD model. However, future research could certainly employ other variables related to the
local MSW management policies and practices and consider more data for better prediction.
Seasonal effects and education appear significant in waste modeling and are recommended
in future studies. The suggested system dynamics have multiple applications. They can be
employed for forecasting landfill capacity, examining long-term sustainable strategies, eval-
uating environmental quality, taking into account customer concerns, assessing employee
performance, and analyzing the budget of a municipality. Furthermore, the suggested
system dynamics can be combined with various multi-criteria decision-making methods to
address the uncertainties and ambiguities involved in decision-making.
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Appendix A

Table A1. Summary of waste management studies using SD model.

References Description Factor Location

Wang et al. [8]

Developed five different SD
models to investigate the
effect of separated food waste
rates and socioeconomic
benefits on the amount of
greenhouse emissions and
saving lands.

Socioeconomic benefit factors,
anaerobic digestion factor Tianjin, China

Dianati et al. [11]
Estimates the greenhouse gas
(GHG) and PM2.5 in
Kisumu, Kenya.

Waste collection, Biogas,
Scattered waste Kisumu, Kenya

Dhanshyam et al. [1]

The focus of this paper is
about plastic waste generation
and the objective is to use the
effect of the policies on the
amount of plastic
waste generation.

Waste to energy,
Illegal and legal production,
Packaging factor, Recycling
factor GDP

India

Lu et al. [2]
Investigates the waste
generation processes using
economic variables

GHG, GDP, Population, MSW
landfilling, MSW composting,
MSW incineration

Southern Tai Lake, China

Rafew et al. [12]

Estimates waste generation
using SD model with
considering social and
economic factors.

Society concern, Composting
Capacity, Landfill capacity,
Required fund

Khulna, Bangladesh

Chica-Morales et al. [10]
Analyzed the amount of waste
generation by using different
policies such as education.

Education, Budget, Funds Darkhan (Mongolia)

Xiao et al. [13] Investigates the amount of
unsorted and sorted MSW. GDP, Population Shanghai

Ding et al. [39]

Designed a SD model to
reduce construction waste by
using construction and design
stage policies.

Waste reduction China

Zulkipli et al. [40]
Used SD model for a waste
generation without any
specific policies.

Economic factor Malaysia
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Figure A1. Population and growth rate of Regina, SK, Canada.

Table A2. Detail of the variables.

Variable Note Value Unit Source

Population Stock variable 320,000 person https://www.canadapopulation.net/regina-
population/ (accessed on 11 May 2023)

Input population
Flow, Population ×
(Immigrant rate +
Birth rate)

Output population
Flow, Population ×
(Death rate +
Emigrant rate)

GDP Stock variable 16,194 $million
https://economicdevelopmentregina.com/
economic-data/economic-report-card
(accessed on 11 May 2023)

Input GDP GDP rate × GDP
lookup

Paper garbage Stock variable Spring: 0.13802; Summer: 0.1556;
Fall: 0.14909; Winter: 0.14927 Tonnes Regina landfill data

Paper-packaging
garbage Stock variable Spring: 0.0763; Summer: 0.08187;

Fall: 0.06694; Winter: 0.0636 Tonnes Regina landfill data

Metal garbage Stock variable Spring: 0.04509; Summer: 0.04796;
Fall: 0.03266; Winter: 0.03009 Tonnes Regina landfill data

Glass garbage Stock variable Spring: 0.03221; Summer: 0.04229;
Fall: 0.02885; Winter: 0.02593 Tonnes Regina landfill data

Household
hazardous garbage Stock variable Spring: 0.007; Summer: 0.02203;

Fall: 0.0043; Winter: 0.00385 Tonnes Regina landfill data

Plastics garbage Stock variable Spring: 0.188781; Summer: 0.20636;
Fall: 0.14044; Winter: 0.162402 Tonnes Regina landfill data

Yard garbage Stock variable Spring: 1.657984; Summer: 0.58898;
Fall: 0.10094; Winter: 0.01885 Tonnes Regina landfill data

Food garbage Stock variable Spring: 0.6041; Summer: 0.82474;
Fall: 0.5886; Winter: 0.62993 Tonnes Regina landfill data

Electronic garbage Stock variable Spring: 0.00251; Summer: 0.05565;
Fall: 0.01632; Winter: 0.00236 Tonnes Regina landfill data

Recyclable paper
waste Stock variable Spring: 0.21596; Summer: 0.24263;

Fall: 0.2175; Winter: 0.14342 Tonnes Regina landfill data

Recyclable
paper-packaging Stock variable Spring: 0.232652; Summer: 0.20411;

Fall: 0.14556; Winter: 0.16609 Tonnes Regina landfill data

https://www.canadapopulation.net/regina-population/
https://www.canadapopulation.net/regina-population/
https://economicdevelopmentregina.com/economic-data/economic-report-card
https://economicdevelopmentregina.com/economic-data/economic-report-card
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Table A2. Cont.

Variable Note Value Unit Source

Recyclable metal
waste Stock variable Spring: 0.01995; Summer: 0.02812;

Fall: 0.0131; Winter: 0.01828 Tonnes Regina landfill data

Recyclable glass
waste Stock variable Spring: 0.04276; Summer: 0.0443;

Fall: 0.01788; Winter: 0.03665 Tonnes Regina landfill data

Recyclable
Household
hazardous waste

Stock variable Spring: 0; Summer: 0.00012; Fall:
0.00097; Winter: 0.00117 Tonnes Regina landfill data

Recyclable plastics
waste Stock variable Spring: 0.07862; Summer: 0.06768;

Fall: 0.04978; Winter: 0.051017 Tonnes Regina landfill data

Recyclable yard
waste Stock variable Spring: 0; Summer: 0; Fall: 0;

Winter: 0 Tonnes Regina landfill data

Recyclable food
waste Stock variable Spring: 0.00402; Summer: 0.00594;

Fall: 0.01008; Winter: 0.01039 Tonnes Regina landfill data

Recyclable
electronic waste Stock variable Spring: 0; Summer: 0.00332; Fall: 0;

Winter: 0 Tonnes Regina landfill data

Rates Auxiliary variable Calculated from the Regina landfill
data Regina landfill data
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