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Abstract: Climate change has aggravated the frequency and severity of extreme weather events,
particularly in flood-related hazards. Cities nowadays face significant challenges in stormwater
management from frequent heavy rainfalls. Traditional urban drainage systems can no longer cope
with large amounts of surface runoff; cities are searching for new ways to deal with urban stormwater.
Green roofs and other nature-based solutions have been widely used for stormwater management by
combining water purification and retention functions but have not yet fully solved the flood problems.
This article aims to (1) explore the different aspects of urban water management, particularly the
urban stormwater topic, and (2) identify the existing solutions and discuss the potential and barriers
to integrated solutions implementation. By introducing the concept of four domains and finding the
overlapping area to investigate, we analyzed different solutions to reduce rainwater runoff from the
roof and ground level, aiming at building and district scales. This paper proves that further research
direction could constitute an integrated system to work together for urban stormwater management.

Keywords: blue and green infrastructure; stormwater management; intense rain event; nature-based
solutions; green roof; roof level; ground level

1. Introduction

Today, 55% of the world’s population lives in urban areas, and about two-thirds
of the global population is projected to live in an urban environment by 2050 [1]. The
expected population growth in urbanized environments and the corresponding increase in
the density of urban fabric will make cities even more vulnerable to natural events. Climate
change has been influencing the frequency and severity of these extreme events, including
heatwaves, droughts, wildfires, and floods; this significantly harms people, property, and
the environment [2–10]. Since the 1970s, 44% of all disaster events have been flood-related;
the 2022 Intergovernmental Panel on Climate Change (IPCC) reports that water-related
risks will increase with every degree of global warming and pose much greater risks to
exposed regions and people [11]. Water management is a primary issue, and it will be
much more in the future because water is a crucial resource for people to survive. However,
fact is that about four-billion people experience severe water scarcity for at least one month
of every year [12]. In addition, emerging research shows that stormwater can be used to
generate electricity as a renewable energy source from solar cells and a pumped stormwater
system, which can decrease carbon emissions and help mitigate climate change [13]. Thus,
more attention needs to be given to urban water management to ensure essential water
supplies and increase the capacity for adaptation and reduction of the vulnerability in
cities [14].

Cities nowadays face significant challenges in water management, from frequent heavy
rainfalls, water stress, and deterioration of the water environment, all of which impede
efforts to improve living conditions [15]. In recent years, many countries worldwide, such
as western Europe, China, the United States, and Australia, have suffered intense rain

Sustainability 2023, 15, 9984. https://doi.org/10.3390/su15139984 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15139984
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-8147-1768
https://orcid.org/0000-0002-8361-2963
https://doi.org/10.3390/su15139984
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15139984?type=check_update&version=1


Sustainability 2023, 15, 9984 2 of 16

events, which has led to substantial floods and caused significant economic, social, and
environmental losses. Urbanization has accelerated the increase of impervious urban areas,
such as roads, buildings, and roofs, producing large amounts of stormwater runoff that
may contribute flood problems [16].

Conventional stormwater management, also known as grey infrastructure, directly
routes runoff to nearby bodies of water through storm drains, gutters, and underground
systems [17]. However, pipe-based drainage systems alone have been proven inadequate
for managing stormwater; cities are searching for new ways to achieve multiple sustain-
ability goals simultaneously [18]. Several stormwater management strategies have been
adopted in trying to solve these issues, such as sustainable drainage system (SUDS), low
impact development (LID), water-sensitive urban design (WSUD), blue and green infras-
tructure (BGI) and sponge city (SC) by reducing stormwater runoff and increasing retention
and infiltration capacity [19,20].

In 2015, the European Commission officially defined nature-based solutions (NBS)
as “actions address environmental, social and economic challenges simultaneously by
maximizing the benefits provided by nature . . . inspired by, supported by, or copied from
nature” [21]. Green roofs (also known as “living roofs” or “vegetated roofs”) have been
widely recognized as sustainable nature-based solutions to mitigate floods in urban ar-
eas [22]. Typically, a green roof consists of three main groups of layers: growth substrate,
vegetation, and drainage. The green roof can be classified as intensive or extensive veg-
etated roofs depending on the depth of the substrate layer and the vegetation typology
with relation to water need and physiology [23]. In recent years, green roofs have received
increased interest because it has been demonstrated to offer many benefits beyond hydro-
logical ones, such as energy savings, thermal comfort, air pollution improvement, carbon
sequestration, and aesthetic benefits [24–26]. Castleton et al. [27] demonstrated that green
roofs could provide an annual energy saving of 1%, 6% in cooling, and 0.5% in heating.
Luo et al. [28] investigated the thermal benefits of green roofs, demonstrating the air qual-
ity improvement function by performing a 24-h monitoring experiment in surrounding
areas. Shafique et al. [29] gave solid evidence that green roofs could help to reduce carbon
emissions in urban areas, thus mitigating the adverse effect of air pollution.

In developed urban areas, roof surface areas account for 40–50% of all total impervious
surface areas [30], so green roofs can be regarded as an effective way to manage stormwater
on the roof level. Other nature-based solutions (NBS)—e.g., blue and green infrastructure,
rain gardens, and infiltration basins—have also been widely used for stormwater manage-
ment by combining water purification and retention functions on the ground level [17,31].
Blue and green infrastructure (BGI) is ecosystem-based, relying on biophysical processes,
such as detention, storage, infiltration, and biological uptake of pollutants, to manage
stormwater quantity and quality [32]. Rain gardens serve as small sponges that soak
stormwater into the ground through a soil-based medium, remove pathogens, and reduce
nutrients, organic substances, and various heavy metals in stormwater runoff [33]. An
infiltration basin is a shallow impoundment that capture, temporarily store, and gradually
infiltrate runoff into the ground, thereby reducing the net volume of runoff leaving the site
and can remove contaminants in stormwater runoff [34,35]. These NBS options from the
ground level often implement separately in neighborhood planning and design, which can
contribute to sustainability and resilience goals for urban development.

However, only a few studies have explored the effectiveness of their integrated solu-
tions, while single facilities might be ineffective in bigger storms and would never fully
solve the urban runoff problems [36–39]. Furthermore, several studies have suggested that
combing multiple NBS can result in a more effective strategy than their single implemen-
tation [40]. In addition, it has to be highlighted that, according to different disciplinary
perspectives—e.g., agronomy, infrastructural engineering, meteorology, etc.—the focus of
the studies widely varies and rarely looks at the issue in a systemic way, which possibly
would consider the built-natural environment interaction, especially in urban areas.
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The scope of this paper is to perform a literature review that primarily focuses on
urban water management. The review seeks viable and effective solutions that highlight
common ground between the current literature and possible gaps in multidisciplinary
boundaries, while also considering different scales. Despite widely available studies
in the literature, advantages and disadvantages of each single specific solution are not
discussed in this article, as the focus is on integrated approaches and not performance.
Hence, the key objectives of this study can be listed as follows: (1) to explore the different
aspects of urban water management particularly the urban stormwater topic; (2) to identify
the existing solutions and discuss the potential and barriers to the implementation of
integrated approaches.

2. Materials and Methods

The review was performed between October 2022 and March 2023, with regular
updates after completing each round. According to the shared approach in the academic
searches, the process initially considered 5 of the widest-used search engines or repositories,
i.e., (1) Science Direct; (2) Web of Science; (3) Scopus; (4) Google Scholar; and (5) Research
Gate. We then only proceeded with the first three, which are largely considered the
most reliable and diffuse search engines. After some initial attempts, Google Scholar
resulted in a high-repetition rate, with many irrelevant outcomes due to limited filtering
possibilities. Research Gate—based on a voluntary product addition to collections—made
it so that we could exclude certain irrelevant papers that were detected as relevant by other
search engines.

The literature search process consisted of two steps. The first step was to explore the
keywords about the “stormwater” topic separately because stormwater is an investigated
phenomenon, and many scientists have been exploring possible strategies for managing it.
It is a very interdisciplinary topic that involves various research fields, such as engineering,
architecture, and urban planning, and thus corresponding solutions can arise from different
perspectives to address this challenge and adapt to sustainable urban development. After
having a systemic understanding of how stormwater was approached, the second step
proceeded through the combination of keywords. It can be observed how these solutions
for managing stormwater were studied, proposed, investigated, and adopted by exploring
their common ground and possible gaps.

Figure 1 provides a conceptual workflow of the investigation process by implementing
the above two steps.
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Figure 1. Overall workflow of the investigation process.

2.1. Step 1

Depending on the way the urban stormwater topic was approached (the generated
problem or the possible solution), the search outcomes significantly varied. Therefore,
a spectrum of 5 keywords reflecting these different visions was adopted: (1) blue and
green infrastructure; (2) stormwater management; (3) intense rain event; (4) nature-based
solutions; and (5) green roofs.

These given keywords were chosen because “blue and green infrastructure”, “nature-
based solutions”, and “green roof” were regarded as effective methods for dealing with
urban stormwater (as described in the introduction part). “Stormwater management” was
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considered to be the ultimate goal to achieve, and “intense rain event” was considered to
be the major contributor for water-related hazards. They were separately put in different
search engines because they represented different aspects of the investigated topic.

To keep the same search settings of Science Direct, Web of Science, and Scopus
databases, article title, abstract, and keywords was chosen to perform the search. The
years’ range was set to 2012–2022, which was assumed to be the “maturation period”
during which a large amount of scientific activities were seen to have propagated. The doc-
ument types were limited to “reviews” and “articles” to control the quality and uniformity
of data. The language was set to English. A large number of results were accumulated,
which were then processed as the following section reports.

Looking back at these 5 different keywords, they seem to have a close connection.
“Stormwater” and “intense rain event” are hazards or problems influenced by climate
change, and cities are presently dealing with these events; “blue and green infrastructure”,
“nature-based solutions”, and “green roof” are considered to be powerful solutions that
absorb and collect stormwater, as well as help cities address these challenges. Between
the problems and possible solutions, there was a generator to serve as the “cause–effect
engine”, such as “mitigation” or “adaptation”, which are considered to be the driving
forces for lowering the negative impact of extreme rain events, as well as for building
resilience in urban development. Scales were also investigated so that we could determine
the severity of flood hazards at different levels. Knowing the scope of the current solutions
was important because it helped establish the priority of scale of implementation in the
future. Therefore, this research topic was composed of four domains, as shown in Figure 2.
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Figure 2. Four domains of the research topic.

2.2. Step 2

Based on step 1, the aim of step 2 was to explore the common ground and possible gaps
between the following 4 domains: (1) hazards or problems; (2) cause–effect; (3) solutions;
and (4) scale. This was done in order to explore different domains. More keywords were
added to search strings and to cover this topic as comprehensively as possible. Below are
the strings of 4 domains.

• Domain 1: Heavy rain OR flood* OR intense rain OR heavy storm OR storm water OR
stormwater OR flash flood* OR extreme rainfall OR pluvial flood* OR heavy rainfall.

• Domain 2: Mitigation effect OR mitigation OR rainwater management OR water
management OR adaptation OR water retaining capacity OR response capacity OR
water detention OR stormwater treatment OR flood risk management.

• Domain 3: Green roof* OR vegetated roof* OR vegetative roof* OR eco-roof* OR
nature-based solution* OR NBS OR ecosystem-based solution* OR (blue and green
infrastructure) OR BGI OR green infrastructure OR bioretention system*.

• Domain 4: (1) Building*; (2) district* OR neighborhood* OR neighborhood* OR com-
munity*; (3) urban OR city*.

In this step, a technical limitation was detected in the Science Direct database, which
did not support “*” and limited the Boolean connectors in the definition of the search script
to 8 per field. Therefore, it was processed differently with respect to the Web of Science and
Scopus database searches.
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In the end, additional records were identified though hand-searching to have as
comprehensive results as possible. The years’ range was set to 2012–2022. The language
was set to English. The document type was set to “article” and “review article”. Table 1
shows the categories that were selected to ensure more relevant results.

Table 1. The selection of categories.

Database Categories

Web of Science

Environmental Sciences
Environmental Studies

Green Sustainable Science Technology
Water Resources
Engineering Civil

Engineering Environmental
Ecology

Geosciences Multidisciplinary
Construction Building Technology

Regional Urban Planning
Urban Studies
Architecture

Scopus Environmental Science
Engineering

Secondly, exploring the combination of 4 domains, 3 small steps were introduced
to find inside relations, as shown in Figure 3. Step 1 examined water-related hazards at
different scales to see the frequency and urgency of this severe hazard. Step 2 sought
to discover research activities that attempted to solve this flood phenomenon. The last
step was to evaluate whether or not systematic research was linking the problems to their
potential solutions.
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A systematic review of the available scientific literature was performed according to
the PRISMA workflow [41]. The search process for the building scale and the district scale
were split into 2 separate streams. The titles and abstracts were first screened to check
for compliancy with the research criteria. Then, the full-text reading followed in order to
evaluate if the contents met the research focus. The results can be summarized as follows:

• Building scale: 416 records were identified; 130 duplications were removed; 286 records
were selected for the screening process; and 37 articles were considered eligible.

• District scale: 604 records were identified; 169 duplications were removed; 435 records
were selected for the screening process; and 36 articles were considered eligible.

Once the systematic review was completed, 5 additional records were added from other
databases, including Science Direct. Hence, 78 articles were reached, but 28 of them were
excluded because of (1) irrelevant scale, i.e., urban scale/infrastructure scale/watershed scale;
(2) not being in a pertinent field, i.e., theoretical framework/survey; (3) or they had a models’
approach. In total, 50 articles were included in this review.

3. Results
3.1. Results of Step 1

As previously stated, we classified three groups: (1) blue and green infrastructure,
nature-based solutions, and green roof; (2) stormwater management; and (3) intense rain
events. The following figures show the number of articles for the five keywords and their
proportion in the three different search engines, as well as the annual distribution of results
over the last decade. Due to this organization, there was a huge number of results with
possible duplications that did not affect the observation for trends in each group. These
duplications were solved at a further stage using a Microsoft Excel file, wherein titles were
filtered, and then eventual irrelevant or unqualified records were manually removed.

Figure 6 shows the results of the first group. From the above bar charts, Web of Science
and Scopus were observed to present more or less the same amounts of publications.
“Nature-based solutions” had the most amount of results, followed by “green roof” and
“blue and green infrastructure”. This demonstrates that “nature-based solutions” was the
most widely explored and investigated keyword. By looking at the distribution of the
results over time, we can confirm that there has been increased interest in this topic over
the past 10 years. Based on the statistical data of the previous three years, it is evident that
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a large number of scientists were working on exploring the possible response to deal with
hazard problems.
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Figure 7 displays the distribution pattern by three different search engines and the time
distribution of literature on the “stormwater management” topic. The total result numbers
were very high, showing that many research activities have been actively carried out. By
observing the annual distribution trend, we observed an urgent need for more studies on
this topic, demonstrating that the scientific community has been devoting increased effort
on how to manage stormwater during this period.

Figure 8 illustrates the distribution patterns of the selected search engines and the
annual distribution of the records from 2012 to 2022. In comparison with Figure 7, it is
obvious that there has been a reduction in quantity, showing that there is not enough
research investigating this extreme weather phenomenon. However, it can also be detected
from the records of annual distribution that the frequency of intense rain events has become
high and unsteady, probably influenced by climate change, and may act as a major trigger
for water-related hazards.
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3.2. Results of Step 2
3.2.1. Analysis of the Inner Relations of Four Domains

Firstly, exploring the combination of four domains was divided into three small steps
to inspect if these four domains had any inner connections or differences. Figure 9 shows
the results of the three small steps. Domain 1 was the hazards or problems, domain 2 was
the cause–effect, domain 3 was the solutions, and domain 4 was the scale.

Considering each domains’ role, fields 2 and 3 represented the cause–effect and
solutions, respectively. Therefore, the drop in the result reflects, on the one hand, that
there is a wide understanding of hazards or problems (field 1), as well as the impacts or
implications at the different scales (field 4), while, on the other hand, the causal chains or
possible solutions still need to be further explored and defined.

The result of “domain 1 + 4” demonstrated that water-related hazards were frequent
and severe at different scales, from micro to macro scales. “Domain 1 + 3 + 4” revealed that,
compared to hazards or problems, there were not enough studies that sought to solve the
flood phenomenon. As such, more efficient solutions must be put forward. With that said,
it is also possible that many current solutions are still in the theoretical or experimental
stage, and have not been put to use, which could lead to a significant reduction in the
results number. Further, “domain 1 + 2 + 3” demonstrated that existing solutions could not
fully solve the identified problems because the mitigation or adaptation effect showed low
efficiency to address these challenges.
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3.2.2. Analysis of the Investigated Research Focus

Although the research scope had an intermediate scale (building scale and district
scale), it was helpful to know that the existing literature research presents different scales.
Figure 10 shows the results number at different scales (after removing duplications). It is ob-
vious that stormwater problems have been widely explored at urban or city scales [42–48],
but the building and district scales have not been thoroughly investigated. Therefore, this
intermediate scale needs to have more attention paid to it.

As the investigated area of the research focuses on water management, we observed
several commonalities recur after reading full texts, particularly concerning the combination
of the four domains: (1) runoff reduction: hydrological performance; (2) runoff water
quality: water purification of pollutants; (3) field test: propose multiple scenarios to test the
efficiency of different solutions at selected areas; (4) experimental research: conduct in the
laboratory or perform in physical modules/test beds to test the performance by varying
different parameters (mainly in two categories: climate variables, such as the intensity and
duration of rainfall, temperature, and wind speed, etc. [49,50]; design variables, such as
plant species, soil type, and depth, etc. [51,52]). Figure 11 shows these recurring clusters.
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Table 2 shows the classification of results by category. In this table, each record falls
into one category only, even if some records consider more than one topic.

Table 2. Classification of results by category.

S. No Cluster Reference No. of Records

1 Runoff reduction [23,53–63] 12
2 Runoff water quality [64–67] 4
3 Field test [46,68–79] 13
4 Experimental research [80–100] 21

Total number of records —— 50

The “runoff reduction” refers to runoff quantity and it meets this research focus. As
such, 12 articles were included and further divided into roof or ground levels. Actions to
mitigate stormwater are listed below (Table 3). “Runoff water quality” was not our primary
research interest, but it is addressed in detail in the following section.

It should be noted that the primary investigation of this review involved a practical
application. Neither a field study nor experimental research was our focus.

Table 3. Detailed “runoff reduction” implementation levels and actions.

Scale Level Actions Reference

Building scale:
Building or plot

Roof level Green roof [23,55–59,62]

Ground level
Infiltration basin [53]

Retention basin and rain garden [60]
Crushed stones, rain garden,

infiltration pipes, etc. [61]

District scale:
District or neighborhood or

neighborhood or community

Ground level
Permeable pavers, infiltration

trench and rain gardens [54]

Rain gardens, bioretention lawns [63]

4. Discussion

This paper aimed to explore the “urban stormwater” topic. We sought to determine a
specific investigation area from a broad map, combining two steps to complete the search
process.

In step 1, different aspects of urban water management were investigated using
five keywords. “Nature-based solutions” had the highest number of results. The next
highest were “stormwater management”, “green roof”, “intense rain event”, and “blue and
green infrastructure”. This indicates that “nature-based solutions” are perhaps the most
effective method for dealing with water-related hazards, as it has received a high amount
of attention from the scientific community. Moreover, “stormwater management” refers to
the managing of quality and quantity of water using specific techniques and treatments.
“Intense rain event” is understood to be an extreme rain phenomenon influenced by climate
change and that causes urban surface runoff, which then requires technologies for removal.
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“NBS”, “green roof” and “blue and green infrastructure” were all seen to treat urban
stormwater. Furthermore, the three divided groups showed that, on the one hand, many
scientists are exploring the reasons for extreme rain phenomena; on the other hand, they
also actively find reactions and solutions to mediate urban stormwater problems.

In step 2, we observed various performances of current solutions that have been
widely studied, including thermal comfort, energy savings, and water management. More
importantly, many cities worldwide have suffered flood problems, but the existing solutions
have not fully improved these severe issues; only several studies investigated the combined
NBS options to deal with stormwater.

In the analysis of practical applications, greens roofs were found to be positive at
the building scale in the hydrological response. Moreover, green roofs have the ability
to hold 10% to 60% of total rainfall runoff in different rain events [23]. Nonetheless,
research has shown that the reduction ability of green roofs decreases when storms have
intense rainfall [56]. At the same time, the NBS solutions on the ground level have become
an important part of the areas surrounding the buildings (or plot) at the community
scale [53,54,60,61,63].

As for “runoff water quality”, Biswal et al. [64] analyzed the effectiveness of NBS
options for removal of stormwater pollutants, including total suspended solids (TSS),
total nitrogen (TN), total phosphorous (TP), heavy metals, bioretention systems, green
roofs, and constructed wetlands. They discussed the major factors that impact the perfor-
mance of NBS and pollutant removal mechanisms. Moreover, Yang et al. [65] investigated
continuous water quality monitoring by implementing bioswales in an American commu-
nity. They found lower pollutant concentrations of TN, TP, TSS, and heavy metals (Cu,
Zn, and Pb). Fleck et al. [66] compared green roofs with conventional roofs in terms of
pollutant removal, finding that green roofs can effectively reduce zinc, chromium, and
copper. Todorov et al. [67] monitored and tested the green roof on a commercial building
in New York, showing that the green roof was a sink of nitrogen, total phosphorus, and
chloride, as well as a source of phosphate. They also found that it dissolved inorganic and
organic carbon.

In addition, most of the existing research were field tests or experimental research,
which demonstrated that some scientists are still in the research proposal and testing stage
and are not yet conducting research seeking to address solutions to the identified hazards
or problems. This may be due to socio-cultural, socio-economic, and environmental bar-
riers [101]. As for field tests, different scenarios have compared and tested solutions. For
example, Barbaro et al. [79] tested the hydrological performance via a stormwater manage-
ment model (SWMM) and urban flow-cell model (MODCEL). Then, they compared three
scenarios with different combinations, demonstrating that the implementation of green
roofs and rainwater revisors had the most significant results for stormwater management.
Zhang et al. [77] adopted the SWMM model to test two scenarios in Chinese residential
areas: (1) the traditional drainage system without sponge facilities; and (2) the drainage
system with sponge facilities, i.e., bio-retention cells, permeable pavements, rainwater gar-
den, and grassed pitches. They demonstrated that the combined system was able to reduce
a storm with a five-year recurrence interval while also maintaining water quality. Steis
Thorsby et al. [46] applied a calibrated EPA stormwater management model (EPA SWMM)
to compare multiple scenarios of green stormwater infrastructure at a neighborhood scale.
They proved that combining solutions (i.e., bioretention basin, bioswale, and green roofs)
could help to effectively mitigate flood problems.

Moreover, a large number of current experimental research has focused on the per-
formance of green roofs. Wong and Jim [90] tested the hydrological performance of green
roofs under humid subtropical meteorological conditions and the effect of substrate depth.
Castiglia and Wilkinson [94] evaluated stormwater runoff attenuation from green roofs
with different soil depth. Bortolini et al. [83] tested hydrological behavior with different
native plants. As for the combination of NBS options, these studies were more interested in
testing different scenarios and comparing the performance of runoff reduction.
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Based on the results of steps 1 and 2, it is reasonable to conclude that scientists from
various perspectives, different academic fields, and multidisciplinary backgrounds have
explored stormwater as an investigated phenomenon. Four domains were introduced to
investigate the commonalities and the recurring clusters, demonstrating that the existing
solutions have been limited to single facilities and have not fully solved water hazard
problems. At the same time, many integrated options have been tested and can work with
high efficiency, but they have not yet been implemented.

5. Conclusions

Given the complexity of urban development and climate change, the pressure on
water resources is expected to continue. As a consequence, urban water management
will continue to play a vital role not only in managing stormwater and improving flood
problems but also in saving water for recycling in the face of water scarcity. Additionally,
it is necessary to deal with existing grey infrastructure underground and to transform
it into more resilient and sustainable solutions that can contribute to any given city’s
sustainability goals.

From the analysis of the results, it is possible to identify green roofs as being a very
effective solution; they provide multiple benefits at the building scale. Additionally, perme-
able pavements, infiltration basins, and rain gardens are powerful methods for managing
rainwater runoff on the ground levels at the district scale. Few studies, however, have
dove deep into the analysis of the combination of these NBS options from either the roof or
ground level. This represents promising research that deserves more attention and effort
in the future so that we can better understand the deriving mitigation potential at the
district level.

Considering the four investigated domains and their combinations, it can be clearly
noted that the existing literature primarily focuses on addressing runoff quantity and runoff
quality provided by green roof/NBS. However, quite a few studies (16 of 50) report and
discuss their implementation in real life, using concrete applications. Most of them (34) are
field tests and experimental research, which although they represent promising advances in
the field, do not allow them to state that the proposed solutions are currently implemented
at a wide scale. The limited level of implementation in real-life conditions may be due to
different barriers and causes from the lack of adequate governmental plans to economic or
technological issues hindering the diffusion of integrated solutions in different countries.
This can also be explained by a lack of fully understanding interrelated elements that draft
a comprehensive and adaptive framework which can connect various urban sectors to
properly consider the social, technical, and economic implications.
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