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Abstract: Nutrient recovery technologies have been constantly developed and optimised to address
challenges in water and wastewater management, sanitation, and agri-food systems, while pro-
moting sustainable management of resources and circular phosphorous economy. However, these
technologies have been rarely explored beyond the laboratory-scale in developing countries where it
is mostly needed. In this study, a nutrient recovery batch reactor system was installed at a local farm
in the Philippines to process raw septage from an onsite sanitation system, a septic tank, to recover a
high-value fertiliser for local crop production. The batch reactor was used for two processes, namely
acid hydrolysis for pre-treatment of septage and chemical precipitation for recovered phosphorous
fertiliser (RPF). The recovered fertiliser was then applied to produce eggplants and tomatoes, which
are the common crops grown in the farm. Results show that an average of 290 g of RPF was produced
for every 100 L of raw septage processed. With hydrolysis, 77% of the phosphate concentration were
released as phosphates from the solid component of the raw septage. About 98.5% of phosphates
were recovered from the hydrolysed septage. The RPF when applied to the farm’s eggplants and
tomatoes has yields comparable to that of the commercial fertilisers. This study was able to demon-
strate the potential of a resource-oriented sanitation system that promotes nutrient recycling towards
sustainable agriculture that further leads to meeting the United Nations sustainable development
goals, particularly zero hunger (goal 2), clean water and sanitation (goal 6), sustainable cities and
communities (goal 11), and responsible consumption and production (goal 12).

Keywords: circular economy; nutrients; onsite sanitation system; recovered phosphorous fertiliser
(RPF); resource-oriented sanitation system; septage

1. Introduction

Rapid urbanisation, population growth, and socio-economic development have caused
a 3–4% increase in phosphorus (P) demand annually, leading to an accelerated P supply
depletion [1,2]. Hence, it is expected that the future global security of agriculture and
food (agri-food) systems will be compromised by year 2050 if P extraction continues to
increase [3]. Moreover, the P in the agri-food supply chains following a linear pathway
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from phosphate rock mining for fertiliser production would eventually end up in various
waste streams that cause adverse environmental impacts, such as eutrophication in water
resources [4]. Developing countries with emerging economies are greatly affected with
eutrophication and problems with sanitation due to high population density, increase in
anthropogenic activities, and lack of appropriate sewage treatment systems or sanitation
systems [5]. Particularly in the Philippines, 84% of the households use a septic tank as
an onsite sanitation system to dispose of and treat human wastes since it is cheaper, but
the design commonly installed does not incorporate a leach field; hence without regular
desludging, the raw septage would overflow and leak directly into the environment posing
health risks [6].

A paradigm-shift to a resource-oriented sanitation system could play an important
role in addressing the challenges and risks with the linear P pathway through the concept of
circular economy. Circular P economy is the sustainable management of P from resources,
materials, and products within the economy while minimising waste generation through
recycling and recovery from the waste stream endpoints from the linear P flows [7]. This
implies that P can be recovered from waste streams to be used back as a high-value product
for various economic sectors. Agri-food systems connected to wastewater streams and
water body sinks have the most potential for recovery [8]. This will supplement the
decreasing supply of P while minimising the end-point wastes [9].

An established nutrient recovery process that is already implemented in some wastew-
ater treatment plants to recover P is chemical precipitation to form calcium phosphates
(Ca5(PO4)3OH) and struvite MgNH4PO4·6H2O [10]. Although calcium phosphate could
be an alternative source of P for industries, it needs further processing to be used efficiently
for agriculture [11]. For agri-food systems, phosphorus recovered as struvite is preferred
because of production efficiency while promoting economic sustainability [12,13]. Struvite
is a high-value slow-release fertiliser that can be typically recovered from wastewater
through the addition of magnesium salts at alkaline condition [14,15]. Several studies have
reported on the use of struvite as fertiliser for different kinds of crops where it produced
higher or similar crop yields compared to other commercial fertilisers [16–18]. A lot of
studies were conducted solely in the production of struvite from wastewater feedstock but
these studies do not usually proceed to its application to crops [19].

The typical wastewater input feedstock used for P recovery via precipitation are
dewatering liquor, digestate (from anaerobic digestion), and waste activated sludge liquor
from domestic wastewater and animal manure [20]. Although recovery from urine has been
widely studied [21], the use of human wastes from septic tank sludge or septage has been
rarely explored because of potential microbial contaminants and low social acceptance [22].
Septage or fecal sludge is generated from raw or partially digested blackwater in an onsite
sanitation system (e.g., septic tanks after collection, storage, or treatment) [23]. It contains
an average of 215 mg/L of phosphate, 96.3 mg/L of total phosphorus, 1300 mg/L of
total nitrogen, and 1805 mg/L ammonia nitrogen [24]. Septage has minimal heavy metal
concentrations and hence, it can be used as a non-hazardous phosphorous source for
agriculture application and a clean raw material for industry use [24–26]. It was also found
that organic contamination from organic toxins in fecal sludge, such as hexachlorobenzene
and naphthalene, is around 95% lower than in regulations on fertiliser for some European
countries [27,28]. Therefore, the potential of P and N recovery from septage for agri-food
applications can be considered advantageous compared to other wastewater streams.

Struvite has been successfully recovered as a macronutrient fertiliser from blackwater
effluent or supernatant with around a 90% recovery rate [27,29]. The struvite produced
contained minimal quantities of heavy metals, and a reduction in pathogen levels was
observed during precipitation. These few studies on struvite recovery from septage are
focused on the liquid component, either the supernatant, effluent, or liquor, but the potential
of the solid component or sludge of the septage has been hardly explored. Particularly for
septic tanks, the wastewater undergoes partial aerobic-anaerobic digestion that captures
significant P and N content in the sludge [26]. Hence, the maximum potential of nutrient
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recovery from septage is not yet thoroughly investigated. Consequently, hydrolysis could
be used as a pre-treatment method for septage to release the nutrients from the sludge into
liquid soluble components, as what has been performed in sewage sludge to maximise
nutrient recovery.

Hydrolysis is typically used as a pre-treatment of sludge to release soluble organics
that can be an additional carbon source for a subsequent nutrient removal processes [30].
To optimise nutrient recovery from wastewater, this process has also been applied in
some studies to release phosphorus into a soluble form for nutrient recovery and removal
processes. Hydrolysis could release around 75% of P (800–900 mg TP/L) from initial sludge
(700–800 mg P/L was dissolved from 1100–1200 mg P/L sludge) [31]. Though there were
few studies on hydrolysis of sewage sludge, there are no known studies conducted yet on
the hydrolysis of septage, considering that it has lower, if at all, heavy metal contamination
compared to sewage sludge [25]. Moreover, most of the studies on hydrolysis focus more on
the release of soluble organic components, such as a soluble chemical oxygen demand and
volatile fatty acids, yet only a few focus more on the release phosphates and ammonium
for nutrient recovery [32].

In this study, the sustainability and challenges of integrating a nutrient recovery
system for the localised production of fertilisers were assessed through the installation of
a nutrient recovery batch reactor at a local operating farm, where the produced fertiliser
would be applied. The study involves four major processes: septage collection, hydrolysis,
chemical precipitation, and farm application. The batch reactor installed was used to treat
the raw septage and to recover a high-value fertiliser through hydrolysis and chemical
precipitation, respectively. The efficiency of the recovered phosphorous fertiliser (RPF) as
a P-source fertiliser was also evaluated through its application for eggplant and tomato
production. There is a lack of demonstration projects beyond laboratory-scale to evaluate
the sustainability of existing technologies for nutrient recovery from wastewater feedstock.
Through this study, the concept of a circular phosphorous (P) economy would be applied
in a real scenario to promote a paradigm shift to a resource-oriented sanitation system for
sustainable communities in developing countries, such as the Philippines.

2. Materials and Methods
2.1. Nutrient Recovery Batch Reactor

A fabricated batch reactor for the recovery of nutrients (i.e., RPF) from septage was
installed at Salikneta Farm (Salikneta), Upper Ciudad Real, City of San Jose Del Monte,
Bulacan, Philippines (14◦48′09.3′′ N 121◦07′38.5′′ E), a 63 hectare-farm managed by a univer-
sity. Various crops are being grown inside the farm, such as tomatoes (Solanum lycopersicum)
and eggplants (Solanum melongena), and livestock are being bred for research purposes
and for local food distribution and consumption. The nutrient recovery batch reactor was
designed with a maximum capacity of 100 L (0.10 m3) per batch with an overall dimension
of 0.762 m (L) × 0.762 m (W) × 1.859 m (H), shown in Figure 1. Its conical tank with a
diameter of 0.610 m and depth of 0.644 m is supported by a stand and frame. The reactor
mixer has a motor drive (0.37 kW, 220/440 V, 60 Hz, 3-phase) and a variable frequency
drive to adjust the mixer speed between 20.94 and 41.89 rad/s (0–60 Hz).

2.2. Septage Sources

The septage was collected from two different sources, namely the septic tanks at
Salikneta farm and from a septage treatment plant (SpTP) in Metro Manila, to recover the
required amount of fertiliser for farm application. The septic tanks at Salikneta and from a
septage treatment plant (SpTP) were collected using a slurry pump. Salikneta has about
10 functional septic tanks with a cumulative capacity of 200 L. For the business-as-usual
scenario, the septage is being hauled twice a year by a third party for desludging and
septage treatment, thus accumulating an average of 400 L of septage every year. The
SpTP, located 35 km from Salikneta, has an operational treatment capacity of 240 m3/day
(240,000 L/day) at 16 hrs/day operation, where the raw septage is typically hauled from



Sustainability 2023, 15, 9904 4 of 20

residential buildings and houses within Metro Manila. Prior to the operation of the batch
reactor, the liquid and solid components of each septage source were characterised, and the
analyses are shown in Table 1.
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Table 1. Characterisation of raw septage (liquid and solid components).

Raw Liquid Septage Raw Solid Septage

Parameter Unit Salikneta SpTP Salikneta SpTP

Total Phosphorus mg/kg - - 4830 12,700
Total Nitrogen mg/kg - - 10,800 15,700

Potassium mg/L - - 1010 780
BOD mg/L 1325 1459 - -
COD mg/L 30,750 2648 - -

Phosphate-P mg/L 7.7 7.9 - -
Ammonia-N mg/L 77 129 - -

pH 6.38 6.53 - -
Fecal coliform MPN/100 mL 1.25 × 106 9.20 × 105 19,000 1800

Escherichia coli (E. coli) MPN/100 mL 697,000 920,000 60,000 7500

Arsenic (As) mg/L 0.03 0.1 1.6 2.9
Calcium (Ca) mg/L 365.5 723 14,200 18,400

Cadmium (Cd) mg/L 0.03 0.1 2.7 6
Chromium (Cr) mg/L 0.09 0.6 - -

Copper (Cu) mg/L 0.01 0.02 - -
Iron (Fe) mg/L 107 307 21,700 19,300

Mercury (Hg) mg/L <0.0002 <0.0002 ND ND
Magnesium (Mg) mg/L 35.5 80 2340 2200
Manganese (Mn) mg/L 1.9 14 - -

Nickel (Ni) mg/L 0.15 0.7 - -
Lead (Pb) mg/L 0.1 2.1 33 78
Zinc (Zn) mg/L 26.5 61 5270 1870

ND—not detected.

The raw septage was characterised showing that it contains the basic components
of a fertiliser, such as phosphorus (P), nitrogen (N), and potassium (K). The solid compo-
nent of septage from Salikneta has an average of 4830 mg/kg of total phosphorus (TP),
10,800 mg/kg of total nitrogen (TN), and 1010 mg/kg of potassium (K), while the septage
from the SpTP contains an average of 12,700 mg/kg TP, 15,700 mg/kg TN, and 780 mg/kg
of K. The raw septage was also analysed to have 54,410 mg/L total solids. It is evident
that both septage sources contain high concentrations of nutrients that could be potentially
recovered. Consequently, the liquid component of septage from Salikneta only contains an
average of 7.7 mg/L PO4-P and 77 mg/L NH4-N while the SpTP has 7.9 mg/L PO4-P and
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129 mg/L NH4-N. This is lower than the required average soluble PO4-P needed to eco-
nomically precipitate struvite, that is 50 mg/L PO4-P [33]. Moreover, both septage sources
have high amounts of micronutrients, such as calcium (Ca), iron (Fe), magnesium (Mg), and
zinc (Zn) which are usually bonded with phosphate ions [34]. Hence, it would be difficult
to apply the current nutrient recovery technologies directly without the pre-treatment of
septage through hydrolysis, releasing P from the solid components into a soluble form
as phosphates.

Heavy metals were also analysed and showed to have very low concentrations to
no detection of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni),
lead (Pb), and mercury (Hg). In addition, the raw septage also contains a high amount
of microbiological components, such as Escherichia coli (E. coli), which is expected based
on the conventional parameters of septage characteristics reported by the United States
Environmental Protection Agency (US EPA) [35], but these parameters could be reduced
throughout the nutrient recovery process [27].

2.3. Batch Reactor Operations
2.3.1. Hydrolysis of Septage

The first process in the batch reactor was hydrolysis for the pre-treatment of raw
septage that releases the P and N from the solid component of the septage into soluble forms
in the liquid component. The operating conditions for the hydrolysis stage are summarised
in Table 2. The lower the pH the more phosphorus could be dissolved efficiently, and the
product is assumed to be generally pathogen-free [31]. Hence, the septage was treated with
37% hydrochloric acid (HCl) gradually, to achieve the target pH of 2.0 under continuous
mixing at 200 to 250 rpm (20 to 25 Hz). After every addition of HCl, a 10-min homogeneous
mixing was performed, and samples were collected to measure the pH. When the target
pH was achieved, hydrolysis continued for around 2 h. Then, the hydrolysed septage was
drained into a settling drum. Settling was performed for two to three days to separate
the hydrolysed septage (i.e., supernatant) from the solid waste sludge. The solid waste
sludge was transferred into the drying pan for air drying. The dried waste sludge was then
characterised for its future use as a soil conditioner. The supernatant was collected and
transferred back to the batch reactor for the subsequent struvite precipitation process.

Table 2. Operating conditions for each production process.

Process Parameter Value

Hydrolysis

HCl concentration 37% (12 M)
Agitator speed (pre-homogeneous

mixing) 20–25 Hz

Agitator speed (HCl mixing) 35–55 Hz
Target pH 2.0

Continuous mixing 20–25 Hz
Hydrolysis hours 1–2 h

Settling of hydrolysed septage Settling days 2–3 days

Nutrient recovery

NaOH concentration 8.35 M
Agitator speed (pre-homogeneous

mixing) 20–25 Hz

Agitator speed (NaOH mixing) 20–25 Hz
Target pH 9.0

Continuous mixing 10–15 Hz
Precipitation hours 1–2 h

Product Drying
Drying type Air drying

Drying time 3–5 days (sunny)
7–14 days (rainy)

Waste Management Waste sludge Air-dried and stored for further study

Effluent
Stored in drums for further study

(neutralisation or constructed wetland
or for hydroponics)
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2.3.2. Recovery of Phosphorous Fertiliser

The recovery of phosphorous fertiliser was conducted in the batch reactor through
chemical precipitation to promote struvite formation. The precipitation occurs at a basic
condition, thus the initial pH of the supernatant was first analysed to determine the
amount of sodium hydroxide (NaOH) needed. The calculated amount of NaOH solution
was poured into the batch reactor while being subjected to continuous mixing until pH
9.0 was achieved [36]. The supernatant was analysed for phosphate and ammonium
concentrations to determine the amount of magnesium chloride hexahydrate (MgCl2·6H2O)
and ammonium chloride (NH4Cl) needed to form struvite according to Equation (1).
However, the MgCl2·6H2O added is calculated based on the Mg:P molar ratio of 2:1, since
it is recommended to apply a ratio higher than to that of the stoichiometric value of 1:1 [37],
while the NH4Cl added is calculated based on the N:P molar ratio of 4:1 [36]. The mixture
was subjected to continuous mixing for one to two hours at 100 to 150 RPM (10–15 Hz) for
the struvite crystallisation process. Then, the precipitates were left to settle at the conical
bottom of the batch reactor for 18–24 h. The settled precipitates at the bottom were flushed
and transferred to drying pans subjected to air and sun drying. The dried precipitates
were collected for characterisation. The recovered precipitates were used as recovered
phosphorous fertiliser for farm application research. The remaining effluent from the
batch reactor was also drained and stored in storage drums, and samples were analysed to
identify the proper treatment process prior to application, such as an added water source
for crop irrigation or hydroponics.

Mg2+ + PO4
3− + NH4

+ + 6H2O→MgNH4PO4·6H2O (1)

2.3.3. Batch Reactor Performance

The performance of the batch reactor was evaluated based on the material balance
calculated throughout the process flows for every 100 L or raw septage processed. Thirty-
eight batches were run, processing around of 3682 L of raw septage from Salikneta and
SpTP to produce 10,252 g of RPF for farm application studies [38]. Thirty-one batches (batch
numbers: 1–31) were evaluated using the septage from SpTP and Salikneta with a ratio of
90:10, two batches were evaluated using the septage from Salikneta farm (batch numbers:
32–33), and five batches was evaluated using the septage from SpTP (batch numbers:
34–38). The batches were run to accommodate the required phosphorous fertiliser needed
for the crop yield studies. To evaluate holistically the performance of the batch reactor in
the context of a circular economy, an overall material balance was calculated considering
1 batch or 100 L of raw septage processed from collection to recovery. The calculations
are based on the analyses of raw septage, including septage density (1.006 kg/L) and
total solids (54,410 mg/L), and characterisation of RPF, effluent, and waste sludge. Losses
throughout the processes were also considered in the calculations, estimating 20% losses-
to-septage ratio due to the attached water/moisture and manual collection of intermediate
products (i.e., wet waste sludge and wet precipitates) during the drying process. The
efficiency of hydrolysis is evaluated as the amount of PO4-P released, that is the difference
in PO4-P concentration before and after hydrolysis, as shown in Equation (2):

[PO 4 − P]released = [PO 4 − P]h − [PO 4 − P]sl, (2)

where [PO4-P]h is the PO4-P concentration after hydrolysis and [PO4-P]sl is the initial PO4-P
concentration in the liquid component of the raw septage. The nutrient recovery efficiency
in the form of RPF is evaluated by the percent of PO4-P recovered based on changes in
PO4-P concentration from the hydrolysed septage and the effluent shown in Equation (3):

%[PO 4 − P]recovered =
[PO 4 − P]h − [PO 4 − P]e

[PO 4 − P]h
× 100%, (3)

where [PO4-P]e is the concentration of PO4-P in the effluent.
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2.4. Application of the Recovered Phosphorous Fertiliser to Farm

Experiments were conducted at Salikneta under field andgreenhouse condition, to
compare the growth and performance of eggplant (Solanum melongena, Calixto variety) and
tomato (Solanum lycopersicum, Diamante Max F1 variety) in response to the application
of RPF and a commercial fertiliser (ammonium phosphate). Tomatoes and eggplants
were tested as these crops responded with the phosphorous fertiliser application through
increased yield, quality, and resistance to diseases [39]. P is an essential plant macro-
element and a component of nucleic acids and phospholipids that plays an important role
in photosynthesis, root development, and nutrient and water absorption. The application
of fertiliser for every treatment in the experiments is based on the initial soil analysis of
80 kg N, 120 kg P2O5, 30 kg K2O and recommended rates for eggplant and tomato.

2.4.1. Field Experiments for Eggplant

Eggplants were planted in 12 m2 plots laid out in a randomized complete block design
(RCBD) with three replicates of four fertiliser treatments: control or no fertiliser application
(E-T1); application of 16 g ammonium phosphate per plant (E-T2); application of 42 g RPF
per plant (E-T3); and application of 21 g RPF and 8 g ammonium phosphate (E-T4).

The field plots were ploughed twice at a depth of 15–20 cm deep at a one-week interval,
followed by harrowing to further break the soil peds into the desired soil tilth and level the
field. Plastic mulch was placed over each plot and was fastened to the soil using 6–8 cm
long bamboo slats placed 30 cm apart. Planting holes were distanced at 75 cm between
columns and 50 cm between rows.

For seedling production, one to two seeds were placed in each hole of the holed
seedling tray filled with soil growing media. The seedlings were watered regularly in
the morning for soil moisture. Thinning was conducted 3–5 days after emergence, only
the robust seedling was left in each hole. The seedlings were drenched weekly with urea
solution (10 g of urea diluted in 1 gal of water) for one month. The seedlings were kept
in the greenhouse for three-weeks and cared against weeds, pests, and diseases. Seedling
hardening was performed one week before transplanting. Twenty-eight eggplant seedlings
were transplanted in each plot. Each seedling was gently pulled out from the seedling
tray and carefully transplanted into the prepared holes of each plot to avoid root–shoot
injury. Re-planting of the missing hills was performed three to five days after transplanting.
During the dry season, the plants were watered thrice a week, and during the wet season
the eggplant was watered when soil was dry. The plants were strictly monitored against
wilting through pruning and weeding.

The recommended rate of fertiliser that was applied to eggplants has an NPK ratio
of 80-80-0. The first application of fertilisers was performed 14 days after transplanting
(DAT). The second application with urea fertiliser was performed 30 DAT. Urea was used
for sufficing the nitrogen requirements and the calculated rate of 2.5 g, 6.5 g, and 5.0 g for
E-T2, E-T3, and E-T4, respectively. Harvesting started two weeks after flowering and was
performed twice a week. The harvested eggplants are usually 8–10 cm long and should
be soft.

2.4.2. Field Experiments for Tomato

Tomato grown in polyethylene bags was laid out in RCBD with four replicates of
six fertiliser treatments: control or no fertiliser application (T-T1); application of 13.50 g
of N, 16.20 of P, 1.35 of K, NPK fertiliser per plant (T-T2); application of 42.95 g RPF per
plant (T-T3); application of 42.95 g RPF and 1.35 g K per plant (T-T4); application of 16.20 g
ammonium phosphate per plant (T-T5); and application of 16.20 g ammonium phosphate
and 1.35 g K per plant (T-T6).

Seeds were sown in a seedling tray with a planting medium having a ratio of 2:2:1 of
compost, soil, and perlite. Seedlings were watered twice a day. Seedlings were hardened
through full sunlight exposure for 10 days. Tomato seedlings was transplanted 30 days
after sowing. Seedlings were then transferred in a 9 in × 16 in polyethylene bag with
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20 kg of soil. Watering of the plants was performed every other day to avoid waterlogging
that may lead to development of diseases and even death of plants. Weeding was also
performed to avoid competition for water, space, and especially nutrients; and to reduce
the possibility of the occurrence of pests and diseases. Trellising was also performed
15 days after transplanting to provide support for the growing tomatoes.

Application of ammonium phosphate was performed during transplanting. By con-
trast, RPF was applied during planting and 14 days after transplanting using the ring
method. To supply plants their needed requirement for N and K, urea and muriate of
potash were applied using split application at 15 and 30 days after transplanting, one-inch
deep and 3 inches away from the base of the plant. Harvesting of tomato fruits was per-
formed at the light red stage. The frequency of harvesting is twice a week early in the
morning for five harvestings.

2.5. Analyses

The ammonia–nitrogen (NH3-N), orthophosphate–phosphorus (PO4-P), and nitrate–
nitrogen (NO3-N) of raw septage, supernatant, and effluent were analysed using a portable
spectrophotometer (DR 1900, HACH, Loveland, CO, USA). The raw septage, effluent, and
recovered phosphates were outsourced to accredited third-party laboratories for analyses
of various parameters, such as wet chemistry (biological oxygen demand, chemical oxygen
demand, NH3-N, PO4-P, NO3-N, total nitrogen, total phosphorous, potassium, total organic
carbon, total suspended solids, calcium and magnesium), heavy metals through inductively
coupled plasma optical emission spectroscopy (ICP-OES, Agilent Technologies, Santa Clara,
CA, USA) (arsenic, cadmium, iron, mercury, lead, and zinc), and microbiology (E. coli and
fecal coliform). Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX)
analysis, and X-ray diffraction (XRD) analysis were conducted to identify the elemental
composition and mineralogical phases of composite samples from the recovered P-fertiliser
processed from the raw septage of Salikneta and SpTP.

For the application of fertilisers to tomato, titratable acidity (TA) was measured after
every harvest following the standard procedure by the Association of Official Analyti-
cal Chemists [40]; the total soluble solids (TSS) of tomato fruits were measured using
refractometer; the number of seeds per treatment was recorded; and the yield per plant
was measured every harvest. The data collected were subjected to analysis of variance
(ANOVA) using SPSS 22 and Microsoft Excel data packages. Comparison among means was
performed using Tukey’s honestly significant difference (HSD) at a 5% level of significance.

3. Results
3.1. Process Flow and Material Balance

The performance of the nutrient recovery batch reactor was evaluated based on the
movement of all the materials entering and leaving the identified system boundary as
shown in Figure 2. The whole production is divided into four major processes: septage
collection, hydrolysis, nutrient recovery via chemical precipitation, and product application
to farm for local crops (i.e., eggplant and tomato). The material balance of raw materials,
by-products, and the RPF was calculated with the basis of processing 100 L of raw septage,
having the characteristics presented in Table 1. The material balance for every component
of the raw materials, by-products, and RPF is presented in Table A1. The detailed data
and results of the material balance are presented in the Supplemental Information (Tables
S1–S3). An average of 290 g of RPF for every 100 L of raw septage processed, or for every
batch, was produced. Moreover, the whole system would produce 38.37 L of effluent and
1.87 kg of dried waste sludge as by-products.
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Effect of Hydrolysis

To maximise the recovery from the raw septage, hydrolysis was performed as a
pre-treatment to increase the concentration of dissolved phosphates needed for struvite
precipitation. Figure 3 shows the trend of phosphates initially present in the raw septage
liquor and the total concentration of phosphates after hydrolysis (i.e., hydrolysed septage),
for every batch. The initial raw septage liquor has an average of 17.84 ± 4.62 mg/L PO4-P.
After hydrolysis, the phosphate concentration of the supernatant or the hydrolysed septage
increased to an average of 76.74 ± 13.63 mg/L PO4-P. Hence, the pre-treatment managed
to release about 58.90 ± 9.33 mg/L PO4-P from the septage sludge, that is 77% of the total
phosphate concentration in the hydrolysed septage (details in Table A2). The fluctuation of
results observed in Figure 3 reflects the varying characteristics of each batch of raw septage
processed, which mainly depends on the source and type of septic tank, especially for the
septage collected from the SpTP. Generally, lower pH could dissolve more phosphorus but
in actual scenarios, the phosphorous dissolution rate varies due to the presence of different
phosphorous compounds in various types of wastewater sludge [31].
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3.2. Recovered Phosphate Fertiliser (RPF)

For struvite precipitation using the batch reactor, an average of 98.50% was recovered
from the hydrolysed septage as phosphate fertiliser leaving an effluent that passed the
regulatory standards as shown in Table A2. The phosphates were successfully recovered as
phosphate fertilisers with characteristics shown in Table 3. Based on the definition given by
the Philippine government through the Fertilizer and Pesticides Authority (FPA), the RPF
can be classified either as: non-traditional inorganic fertiliser, wherein the major nutrients
(i.e., NPK) are supplied by synthetic or chemical compounds; or a fortified organic fertiliser
defined as any decomposed organic product of plant or animal origin that is enriched with
chemical ingredients to increase its nutrient content to a minimum total NPK of 8% [41].
Thus, the characterisation results of the RPF are compared to both types of fertilisers. The
recovered precipitates contain 2010 mg/kg TN, 32,900 mg/kg TP, and 2400 mg/kg K,
resulting in a total NPK of 8.03% by weight. The value of total NPK is above the minimum
limits by the Philippine National Standards (PNS) for organic fertilizer; hence, the recovered
precipitates can be qualified as a fertiliser [42]. The precipitates also have high contents
of micronutrients (Ca, Fe, Mg, Zn) that are supplemental for plant growth [43]. Moreover,
the E. coli, fecal coliform, and heavy metals are of lower values than the standards set
by the FPA and the Association of American Plant Food Control Officials (AAPFCO) for
inorganic fertilisers [41,44]. The subsequent analyses would discuss the quality and purity
of struvite produced.

Table 3. Recovered phosphorous fertiliser (RPF) analysis.

Parameters Unit
Recovered

Phosphorous
Fertiliser

PNS and FPA
Limit for Organic

Fertiliser

AAPFCO and FPA
Limit for Inorganic

Fertiliser

Total Nitrogen mg/kg 2010 -
Total

Phosphorus mg/kg 32,900 -

Potassium mg/kg 2440 - -
Total NPK 8.03% 5–7% -

Total Organic
Carbon (%w/w) 3.58 - -

Fecal coliform MPN/g 0.25 <5 × 102 CFU/g -
E. coli MPN/g 0.25 <5 × 102 CFU/g -

Calcium mg/kg 75,400 - -
Magnesium mg/kg 15,500 - -

Fe mg/kg 43,800 - -

Heavy Metals
As mg/kg ND 5 98
Cd mg/kg 3.60 5 75
Hg mg/kg ND 2 7
Pb mg/kg 26 250 459
Zn mg/kg 501 5 3166

The scanning electron microscopy (SEM) images for the recovered precipitates and
waste sludge showed various crystal shapes as shown in Figure 4. The image for the
commercial struvite fertiliser was observed to have more orthorhombic crystal shapes with
lesser contamination of other compounds, as shown in Figure 4a, while the image of waste
sludge from the hydrolysis process (Figure 2b) expectedly showed more heterogeneous
shapes. It could also be observed that the images of RPF processed from the septage
of Salikneta do not differ from the septage processed from the SpTP. There are some
orthorhombic shapes that represent struvite, but there were other irregular course shapes
that could be attributed to other phosphate precipitates, such as amorphous calcium
phosphates [37], given that the initial concentration of calcium is relatively high in the raw
septage (see Table 1). Since the precipitates produced were not pure struvite, the term
recovered phosphorous fertiliser (RPF) would better describe the main product as it can
still be classified as fertiliser based on the characterisation results in Table 3. Some studies
utilising animal manure [45] and municipal wastewater [46] produced similar SEM images.
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X-ray diffraction (XRD) analysis for the RPF from Salikneta (blue line) and SpTP sludge
(black line) are illustrated in Figure 5. The distinct peaks in both samples are observed at
around 2Ө = 31, 45, and 56◦. The peaks observed at 2Ө = 31.9372, 45.6552, and 56.6247◦

have almost similar intensities for the RPF from Salikneta sludge. By contrast, the peak
at 2Ө = 31.7463◦ had the highest intensity for the RPF from SpTP sludge. Comparing
the results with the XRD analysis of struvite presented in the recent study of de Souza
Meira et al. [47] and Sun et al. [29], it could be concluded that the RPF mostly contain
impurities. The distinct peaks in Figure 5 refer to the presence of halite and small peaks are
attributed to the presence of struvite and other precipitates. By contrast, the distinct peaks
illustrated in the XRD plots in the study of Sun et al. [29] and de Souza Meira et al. [45] refer
to the presence of struvite. The presence of other micronutrients may have affected the
morphology and composition of the recovered fertilisers. The impact of the micronutrients,
such as Ca2+ and Al3+, is explained in the study of Acelas et al. [48], by investigating the
struvite purity and morphology at varying Mg2+:Ca2+ and Mg2+:Al3+ molar ratios. The
XRD analysis showed that the peaks for struvite crystals became less distinct at increasing
concentrations of Ca2+ and Al3+.

Based on the SEM and XRD analyses, there is a need to further improve the operating
conditions to achieve high quality and purity of struvite in the RPF. One possible solution
is to reduce the presence of the other micronutrients, such as calcium and iron, in the
hydrolysed samples but at the expense of higher production costs.
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By-Products

As shown in the process flow and material balance in Figure 2, two by-products were
produced, the wastewater effluent and the dried waste sludge. The effluent is typically
discharged in water bodies while the waste sludge is transported to landfills for disposal.
However, in this study, both the effluent and the waste sludge were characterised, shown
in Table 4, to evaluate its potential as by-products of the proposed circular phosphorous
economy application. The effluent characteristics passed the Philippine Department of
Environment and Natural Resources (DENR) Administrative Order (DAO) 2016-08 and
DAO 2021-19 General Effluent Standard (GES) for Class C, shown in Table 4, providing
evidence that the batch reactor could efficiently treat the septage [49,50]. Moreover, this
shows the effluent’s potential reuse as irrigation water in the farm, avoiding a significant
amount of water use and thus saving water costs. The dried waste sludge was also analysed
and compared to the US EPA standard for biosolids, as shown in Table 4, to evaluate its
potential as a by-product rather than as waste [51]. Considering the characteristics of the
raw septage processed presented in Table 1, the dried waste sludge was expected to contain
minimal to no detection of heavy metals (i.e., As, Cd, Hg, and Pb), fecal coliform, and E.
coli while having significant amounts of nitrogen, phosphorus, and potassium (NPK), and
other nutrients (i.e., Ca, Fe, Mg, Zn), thus showing its potential as a soil conditioner or
supplemental fertiliser for local farm crops.

3.3. Crop Yield

Field experiments were conducted to compare the growth and performance of eggplant
and tomato in response to an application of RPF and commercial fertiliser (i.e., ammonium
phosphate). The results presented in Table 5 show that differences in eggplant yields ranged
from 9 to 11 tons compared with the yield from the control. It was found that the yields
of treatments E-T3 and E-T4 containing RPF as a phosphorous source does not have a
significant difference with E-T2 containing commercial fertilisers. Hence, this research was
able to demonstrate that eggplant fertilised with RPF and urea could have a comparable
yield with eggplants fertilised with commercial fertilisers.

For the quality of tomato produced, Table 6 presents that the highest titratable acidity
(TA) of 5.82 measured from T-T2 plants applied with NPK followed by T-T5, T-T6, T-T4,
and T-T3. This study also shows that T-T2 had the highest recorded total soluble solids
(TSS) but was comparable to T-T3, T-T4, T-T5, and T6 but statistically different to T-T1.
It was found that potassium (K) has a profound influence on fruit quality, particularly
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size, appearance, colour, soluble solids, acidity, and vitamin contents; thus, TSS and TA
significantly increased with increasing rates of K [52].

Table 4. Characterisation of by-products: effluent and waste sludge from the nutrient recovery system.

Characterisation

Effluent Quality Waste Sludge Quality

Effluent
DAO 2016-08 and

DAO 2021-19
(Class C GES)

Waste Sludge US EPA, 1994
Part 503

Biochemical Oxygen
Demand, mg/L 12 50 - -

Chemical Oxygen Demand,
mg/L 71 100 - -

Nitrate as NO3-N, mg/L 2.52 14 - -
Phosphate-P, mg/L 1.09 4 - -

Ammonia as NH3-N, mg/L - 4 - -
Total Suspended Solids,

mg/L 30 100 - -

Total Nitrogen, mg/kg - - 15,300 -
Total Phosphorous, mg/kg - - 5150 -

Potassium, mg/kg - - 542 -
Total NPK - - 2.78% -

Total Organic Carbon,
(%w/w) - - 28.95 -

Fecal coliform, MPN/100 mL 2.0 400 0.21 <1000
E. coli, MPN/100 mL 2.0 - 0.21 -

As, mg/L 0.008 0.040 3.5 75
Ca, mg/L 1570 - - -
Cd, mg/L <0.001 0.010 3.1 85
Fe, mg/L 0.10 7.50 12,600 -
Hg, mg/L <0.0002 0.004 ND 57
Mg, mg/L 77.00 - 1560 -
Pb, mg/L <0.005 0.10 104 840
Zn, mg/L 0.03 4.00 2310 2800

Table 5. Eggplant plot yield and yield per hectare.

Parameters
Treatments

E-T1
(Control)

E-T2
(16 g AP + 2.5 g Urea)

E-T3
(42 g RPF + 6.5 g Urea)

E-T4
(8 g AP + 21 g RPF + 5 g Urea)

Yield per plot (kg) ** 8.99 ± 0.91 b 13.13 ± 1.25 a 11.69 ± 0.96 a 12.60 ± 1.12 a

Yield per Ha (ton) ** 20.32 ± 1.16 b 32.82 ± 3.12 a 29.23 ± 2.40 a 31.51 ± 2.81 a

AP—Ammonium phosphate, RPF—Recovered phosphorous fertiliser. Means of the same letter are not significant
at 5% level of significance. ** Highly significant.

Table 6. Tomato titratable acidity, total soluble solids, number of seeds, and yield per plant.

Treatment Titratable Acidity
(TA)

Total Soluble Solids
(TSS), ◦Brix

Number of
Seeds Yield Per Plant, g

T-T1 Control (No fertiliser) 3.78 3.65 a 109 a 977.50 d

T-T2 NPK Fertiliser 5.82 5.43 b 183 b 1870.00 a

T-T3 Recovered phosphorous fertiliser (RPF) 3.97 5.10 b 178 b 1693.75 b

T-T4 RPF and K fertiliser 4.35 5.11 b 183 b 1738.7 bc

T-T5 Ammonium phosphate 5.22 4.89 b 162 b 1797.50 ab

T-T6 Ammonium phosphate and K fertiliser 5.41 4.86 b 172 b 1829.25 ab

Means of the same letter are not significant at 5% level of significance.

On the number of seeds, the study showed that amongst treatments T-T2 and T-T4
had the highest number of seeds followed by T-T3, T-T6, and T-T5. Statistical analysis
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shows that T-T2, T-T3, T-T4, T-T5, and T-T6 are comparable but are statistically different
from T-T1. According to Xie et al. [53], the addition of P fertiliser showed an increased seed
yield of oilseed flax. Oloyede et al. [54] reported in their study that an application of NPK
on pumpkin had significantly improved its seed yield.

The yield per plant was measured every harvest. The highest yield was obtained from
T-T2 (1870 g) followed by T-T6, T-T5, T-T4, and T-T3. This result can be attributed to the
nutrients supplied to the plants. T-T2 received complete and high nutrient content of N,
P, and K. However, statistically, T-T3, T-T5 and T-T6 yields were comparable to T-T2. The
lowest yield was still obtained from T-T1 with no fertiliser application. In general, the
improved vegetative growth, yield and chemical content of tomatoes was attributed to
receiving complete NPK nutrients.

The RPF produced from the nutrient recovery reactor contained significant amounts
of P and N required for crop growth, but the P in the RPF is not just in struvite form, but
other phosphates were also formed based on the SEM results (see Figure 4). However, the
crops fertilised with RPF managed to produce comparable yields with crops fertilised with
commercial and conventional fertilisers.

4. Discussion

The potential of integrating a local nutrient recovery system for onsite sanitation
systems to create a paradigm shift from the business-as-usual scenario of a linear P path-
way to a circular economy was exhibited and evaluated, hence resulting in a sustainable
management of waste and resources within a community. A circular P economy considers
sustainability wherein socio-economic and material aspects are integrated into the circular
pathway of P systems management [55]. Ultimately, a circular P economy utilises nutrient
recovery systems to divert P flows before reaching the water resources back to agri-food
systems while by-passing further extraction of fossilised P [9]. Through the results of this
research, the integration of the nutrient recovery systems generally played a critical role in
transforming the value and supply chains from the linear P pathway to circular P economy
flows as summarised in Figure 6.
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For nutrient recovery systems, the processes and technologies are being constantly
developed and optimised. However, there is a lack of demonstration projects beyond the
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laboratory-scale and application to real scenarios while considering most, if not all, of
the value and supply chains in the circular economy [56]. In this real-case study, waste
feedstock (i.e., septage) from a farm–school community and a treatment facility were
processed and converted to a high-value product (i.e., RPF) while the by-products (i.e.,
effluent and waste sludge), typically considered as waste, could potentially be recycled
for other purposes within the circular flow. Results show a favourable recovery of P from
waste for the local effluent standard; however, economic production of RPF should be
further investigated and improved. Additionally, the application and use of the RPF were
evaluated for the local production of crops for food. The yields for both eggplants and
tomatoes are comparable to that of crops grown using commercial fertilisers. These results
are congruent with previous studies stating that utilising pure struvite is not agronomically
viable, but when blended with other phosphate fertilisers, it could maintain crop yields
that are comparable to conventional P fertilisers [15,57]. Though RPF application to crops
producing promising yields and fruit quality, other factors still needed to be explored
in future works, such as the variable release patterns of P through the soil and nutrient
uptake of the crops. Consequently, the periodic effects of heavy metals on the soil and crops
should also be taken into consideration, even if the produced RPF passed the government
standards for fertiliser [44] since weathering could also occur among other external factors.
Conversely, since one of the components of RPF is struvite, there is also lesser chance that
heavy metals could attach due to its crystalline structure [58,59]. In general, this study
shows that septage management could be turned into a circular economy industry that the
local government and community could support to reduce environmental pollution and
improve food production without heavy reliance on fertiliser importation.

Stakeholder engagements through workshops and focus group discussions were con-
ducted to understand challenges in the implementation of a nutrient recovery system in
the Philippines [38]. The farmers, in particular, gave positive perspective of the system as it
produces a high-value product that could be used locally in their crops; however, their main
issue is their technical capacity for the whole production process. This shows the potential
of recovered fertiliser as an alternative for local farmers being affected by the exponential
increase in fertiliser prices. Furthermore, acceptability of fertiliser obtained from human
waste will have more social acceptability as compared to the direct application of human
waste for food production. Indeed, social impacts are important for sustainable develop-
ment through involvement of potential users to improve the marketability of the product
while minimising the complexity of the technology [20]. Hence, there is a high potential
to apply the circular phosphorous economy concept in a localised setting for sustainable
sanitation and sustainable management of resources and wastes in vulnerable areas.

Further research needs to be performed to assess and quantify the avoided environ-
mental impacts due to the application of a circular P economy (nutrient recovery system in
a localised setting), addressing current challenges in sanitation, waste management, and
phosphorus resource depletion. Sustainability assessment tools could be applied, such as a
life-cycle sustainability assessment or multi-criteria decision-making analyses, to assess
and quantify the socio-economic impacts holistically for all value and supply chains within
the circular economy scope. This will further address the challenges on the agri-food sector,
such as the increase in prices for fertiliser and thus food, eventually increasing poverty;
and it will provide support for policies to improve the local socio-economic endeavours for
sustainable development programmes.

5. Conclusions

This study involves local production of recovered fertiliser and its application to the
local farm; thus, it provides a clear understanding of the potential and challenges brought
about by the system in promoting a resource-oriented sanitation system for sustainability,
especially in developing countries, such as the Philippines. The overall nutrient recovery
process using the batch reactor could produce an average of 290 g of recovered phospho-
rous fertiliser (RPF) for every 100 L of raw septage processed. The acid hydrolysis of
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raw septage could increase the soluble phosphate concentration to 76.74 ± 13.63 mg/L
PO4-P (supernatant of the hydrolysed septage) from 17.84 ± 4.62mg/L PO4-P (the initial
concentration of the raw septage liquor). As the result of hydrolysis, about 77% of the
phosphate concentration of hydrolysed septage comes from the released phosphates from
the solid component of the raw septage. The chemical precipitation resulted to about 98.5%
of phosphate being recovered as fertiliser from the hydrolysed septage. Moreover, the
effluent could be used as irrigation water for the crops in the farm, and the waste sludge
could be used as soil conditioner or supplemental fertiliser based on the characterisation
results. Consequently, the RPF was applied to eggplant and tomatoes having compara-
ble yields with commercial fertilisers. Having an onsite nutrient recovery batch reactor
could incur savings for both septage desludging and fertiliser costs, helping farmers and
the local community. Further assessments are needed as social and economic factors are
equally important for the sustainable development. In general, this research actualised the
proof-of-concept of the circular phosphorous economy towards achieving the sustainable
development goals identified by the United Nations, particularly zero hunger (goal 2), clean
water and sanitation (goal 6), sustainable cities and communities (goal 11), and responsible
consumption and production (goal 12), to improve the planetary health.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/su15139904/s1, Table S1: Material balance for raw mate-
rials and intermediate products for every 100 L of raw septage processed (1 batch process); Table
S2: Material balance for recovered phosphorous fertiliser and by-products for every 100 L of raw
septage processed (1 batch process); Table S3: Ratio of raw materials, by-products, and recovered
phosphorous fertiliser per L of septage; Figure S1: Fabricated nutrient recovery batch reactor installed
at Salikneta Farm; Figure S2: Tomato and eggplant cultivated using the recovered phosphorous
fertiliser from septage.
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Appendix A

Table A1. Material balance for every component of the raw materials, by-product, and product.

Material Balance

Raw Materials By-Product Product

Raw
Septage 37% HCl 8.35 M

NaOH MgCl2·6H2O NH4Cl Waste
Sludge Effluent

Recovered
Phosphorous

Fertiliser

Volume, L 100.00 0.71 0.37 - - - 38.37 -
Mass, kg 100.60 0.85 0.48 0.018 0.009 1.87 38.37 0.29

NPK
Total Nitrogen, g 101.72 - - - 2.39 28.56 4.76 0.59

Total Phosphorous, g 69.89 - - - - 9.61 0.00 9.61
Potassium, g 49.31 - - - - 1.01 1.15 0.71

Calcium, g 172.41 - - - - 11.67 60.24 22.03
Magnesium, g 19.97 - - 2.15 - 2.91 2.95 4.53

Heavy Metals
Arsenic, g 0.03 - - - - 0.01 0.00 ND

Cadmium, g 0.04 - - - - 0.01 <0.001 0.00
Iron, g 135.71 - - - - 23.52 0.00 12.80

Mercury, g <0.0002 - - - - <0.0002 <0.0002 <0.0002
Lead, g 0.63 - - - - 0.19 <0.005 0.01
Zinc, g 16.27 - - - - 4.31 0.00 0.15

Fecal Coliform,
MPN/100mL 9.20 × 105 - - - - 0.21 2.00 0.25

E. coli, MPN/100mL 9.20 × 105 - - - - 0.21 2.00 0.25

Table A2. Phosphates released via hydrolysis of raw septage and percent phosphate recovered.

Batch Raw Septage,
PO4-P, mg/L

Hydrolysed Septage,
PO4-P, mg/L

PO4-P Released,
PO4-P, mg/L

% of Phosphate
Released

Effluent,
PO4-P, mg/L % PO4-P Recovered

SpTP:Salikneta (90:10)

1 20.90 81.60 60.70 74.39 1.03 98.74
2 20.90 81.60 60.70 74.39 1.03 98.74
3 34.85 77.17 42.32 54.84 4.36 94.35
4 30.19 87.12 56.93 65.35 4.36 95.00
5 32.52 82.14 49.62 60.41 6.14 92.53
6 32.52 92.63 60.11 64.89 6.14 93.37
7 28.77 94.15 65.38 69.44 0.61 99.35
8 30.03 96.28 66.26 68.81 0.61 99.37
9 30.54 84.45 53.92 63.84 0.41 99.51

10 29.49 85.64 56.15 65.56 0.41 99.52
11 6.62 103.22 96.60 93.59 0.38 99.63
12 11.84 65.65 53.81 81.96 0.38 99.42
13 14.79 96.45 81.66 84.66 0.49 99.49
14 6.71 98.71 91.99 93.20 0.49 99.50
15 10.16 83.12 72.95 87.77 0.43 99.49
16 6.96 75.56 68.60 90.79 0.43 99.44
17 6.39 66.24 59.85 90.35 0.32 99.51
18 7.63 74.59 66.95 89.77 0.32 99.57
19 17.02 77.28 60.25 77.97 0.46 99.41
20 17.53 58.11 40.58 69.83 0.46 99.21
21 15.90 71.77 55.87 77.84 0.37 99.48
22 15.90 75.83 59.93 79.03 0.37 99.51
23 13.30 81.47 68.17 83.67 0.33 99.59
24 15.33 47.08 31.75 67.43 0.33 99.29
25 22.78 72.43 49.65 68.55 1.39 98.08
26 29.42 72.80 43.38 59.59 1.39 98.09
27 27.85 88.69 60.84 68.60 1.31 98.53
28 20.41 65.49 45.08 68.83 1.31 98.00
29 21.36 80.60 59.24 73.50 0.74 99.08
30 20.70 67.98 47.28 69.55 0.74 98.91
31 23.87 57.38 33.51 58.40 1.01 98.23

SpTP:Salikneta (90:10)

Average 20.10 ± 8.87 78.81 ± 12.94 58.71 ± 14.59 74.09 ± 10.98 1.24 ± 1.64 98.45 ± 1.91

Salikneta farm

32 21.70 75.23 53.53 71.15 0.53 99.29
33 20.09 103.22 83.13 80.53 0.53 99.48

Average 20.90 ± 1.14 89.23 ± 19.79 68.33 ± 20.93 75.84 ± 6.53 0.53 ± 0.00 99.39 ± 0.14



Sustainability 2023, 15, 9904 18 of 20

Table A2. Cont.

Batch Raw Septage,
PO4-P, mg/L

Hydrolysed Septage,
PO4-P, mg/L

PO4-P Released,
PO4-P, mg/L

% of Phosphate
Released

Effluent,
PO4-P, mg/L % PO4-P Recovered

SpTP

34 13.24 60.57 47.33 78.14 1.73 97.15

35 12.02 58.95 46.94 79.62 1.73 97.07

36 12.91 68.20 55.30 81.08 1.57 97.69

37 13.44 69.19 55.75 80.58 1.57 97.73

38 11.00 54.06 43.06 79.65 0.90 98.34

Average 12.52 ± 1.01 62.20 ± 6.41 49.67 ± 5.60 79.81 ± 1.12 1.50 ± 0.35 97.60 ± 0.51

Total
Average 17.84 ± 4.62 76.74 ± 13.63 58.90 ± 9.33 76.58 ± 2.93 1.09 ± 0.50 98.48 ± 0.90
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