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Abstract: Integrating building information modeling (BIM) technology into historical and cultural
heritage structures has resulted in historic building information modeling (H-BIM), an effective
method for managing and documenting invaluable historical artifacts. H-BIM has the potential to aid
with the design, restoration, and maintenance activities of historical buildings by properly integrating
parametric data and deliberately assessing semantic information, thus progressing the 3D model’s
performance. H-BIM also aims to conduct cultural heritage (CH) studies in a systematic manner by
combining 3D modeling techniques and information management. The first step in this process is to
conduct a suitable geomatic survey to build accurate 3D models. The most efficient modeling method
is to employ 3D point cloud data that are acquired using the terrestrial laser scanning method. This
study proposes a manual modeling strategy for urban historical buildings that falls within the scope
of the H-BIM methodology. The proposed modeling strategy follows a workflow that inserts point
cloud data into the BIM environment in order to create a 3D urban cultural heritage model using
ontologies applied with the H-BIM methodology. With this objective in mind, the H-BIM model
development platform Revit was used to model the object elements of the inheritance structure in 3D
and save them in the BIM library. It is very important to model building elements separately in 3D
modeling studies. The resulting BIM product sheds light on fundamental data for the future planning,
design, operation, and maintenance processes of the building. Users can obtain data suitable for
H-BIM by adding graphical and non-graphical data.

Keywords: architectural heritage; BIM; H-BIM; construction documentation stage; BIM-based
drawings; urban heritage documentation; terrestrial laser scanning

1. Introduction

Historical and cultural heritage structures are significant masterpieces reflecting the
fundamental architectural identities of communities. Such heritage structures, which
offer immeasurable cultural value, require interventions targeted at conserving, improv-
ing, and renewing their structural integrity while considering the principal conditions
of their constructed era. For these structures to survive and maintain their current
form, targeted restoration and maintenance interventions must be planned rapidly and
systematically [1–3]. In CH studies, contemporary measuring technologies and software
offer new insights into the modeling and analysis of buildings by facilitating the acquisition
of geometric data. In this sense, acquiring useful information for CH studies is achievable
while obtaining precise 3D digital representation models of structures [4–7]. Currently,
the BIM approach offers users the opportunity to work from different perspectives within
the remit of the architecture, engineering, and construction (AEC) industry. Moreover, it
delivers interdisciplinary work to the project stakeholders in a 3D setting at every stage,
beginning with a construction project, followed by the completion and activity stages,
as well as a process that facilitates the follow-up of retrospective data [8–12]. BIM offers
the opportunity for collaboration, data sharing, data integration, and the ability to store
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parametric objects from multiple disciplines in its library; it also facilitates the application
of BIM methodology into architectural structures [13–15]. Integrating BIM methodology
into historical heritage buildings reveals the H-BIM methodology. In general, H-BIM
methodology is applied to historical architecture, and its primary objective is to conceive
the potential of the BIM paradigm. Given its ability to associate with various disciplines,
the methodology is a multidisciplinary process that delivers a promising approach for man-
aging and documenting heritage structures. It further provides utility in terms of tracking
changes in the buildings’ surroundings and monitoring the aging process of the buildings
of interest. However, the H-BIM restructuring procedures for historical buildings are rather
complex. The heterogeneous and distinctive features of the entities in heritage structures
consist of items unrepresented in current BIM software libraries [16–18]. Currently, 3D
data are indispensable components in permanently conserving cultural heritage styles and
passing them on to future generations; however, modeling a historical building as it re-
mains requires both semantic information and technical information about the components
of that building. The data obtained via research and application within the purview of
the H-BIM methodology encompass semantic and geometric data [19]. Building-related
research and observations lead to the acquisition of semantic data. These data include
historical data, building material type, construction technique, physical property data, and
archival information. The gathered semantic data make it easier to accurately interpret
and analyze structures; this positively affects the decision-making procedure regarding the
buildings in subsequent processes. An H-BIM is created by integrating these piled data
into geometric data. In addition, metric measurements taken from structures allow us to
obtain geometric data. The advancement of measurement techniques makes it possible to
obtain geometric data with photogrammetry and terrestrial laser scanning (TLS) devices.
Obtaining the 3D model also enables the provision of diverse views, floor plans, façades,
and section drawings of the building in question [20]. Three-dimensional point cloud
data acquired from terrestrial laser scanners are a data type that enable the provision of
BIM-compatible studies [21–24]. The 3D laser scanning technique produces a series of
digital data points in the global point cloud based on the principle that each data point is
represented by a coordinate in 3D space. Laser scanners swiftly and precisely calculate
the 3D geometry of a structure by using the back-reflection of laser beams focused on the
construct or object. The key benefit of this approach is its ability to acquire a dense point
cloud between 5 and 10 mm, thus allowing users to capture the intricate geometry of the
structure with high accuracy. Therefore, the TLS approach has gained popularity in most
prominent studies seeking higher accuracy and applicability [25–27]. In this context, 3D
models and parametric objects are generated with H-BIM by analyzing the 3D point cloud
data generated via TLS in BIM software. The model developed by the H-BIM model is
also practical in terms of identifying the knowledge gaps in the historical structures in
question and proposing a theoretical approach for the heritage site. Various studies have
recently focused on managing the point cloud, creating parametric objects, and developing
a compatible 3D model within the scope of BIM [26,27]. It may be possible to discuss
the existence of this strategy over the past ten years by considering studies that were
focused on conserving cultural heritage sites and conducted within the context of BIM and
H-BIM. However, the number of scientific studies in this area has increased significantly
since 2018. Some findings of the studies are as follows: [28] analytically criticized the
latest technological state of the H-BIM methodology and [3] sought to identify structural
deformities by developing a digital twin of 18th-century architecture. In this context, the
studies compiled data using the TLS method and assessed the point cloud model using
Revit 2022 software on the BIM platform, concluding that the structural deviation values
were within the permissible limits of the sizes of the objects. In [10], point cloud data
were utilized as part of restoration and reconstruction projects, thus simplifying the 3D
modeling processes. They employed the point cloud data in their study and stayed within
the parameters of the H-BIM methodology. They also developed semi-automatic solid mod-
eling using TLS-generated cloud data and relevant software. Correspondingly, [29] used
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terrestrial laser scanning equipment to gather data while conducting a selective analysis
of the Church of Saint Barbara for 3D documentation processes in the CH analyses. The
study further discussed the applicability of point cloud data within the scope of H-BIM
methodology. In the context of H-BIM, a 3D model was created individually by modeling
the components of the building. [30] executed a procedure to generate 3D models in a BIM
setting. While acquiring the solid model directly from the point cloud of the 3D model
in the Revit environment, they classified and modeled each architectural element in the
object library. They also emphasized that BIM was parametrically competent to model
historical architectures and complicated aspects in this way. [6] used TLS, UAV, and fisheye
cameras to develop a BIM model and analyze the historical constructs of The Church of
San Nicola in Montedoro and San Cono Bridge. The authors used all three techniques for
measuring the church, whereas they collaboratively employed TLS and UAV approaches
while measuring the bridge. Initially drawing the images in the Rhinoceros environment,
they subsequently emphasized both the bridge and the church in the BIM environment in
Revit 2022 software. Finally, structural analyses were performed by running additional soft-
ware. This study built an H-BIM of the urban heritage structure under consideration using
a manual modeling procedure. In line with this modeling process, individual entities of the
studied architecture were modeled in a 3D format by applicable software and integrated
into the research model. Therefore, this endeavor aimed to develop a novel approach
to designing the structural components to be built from the point cloud data during the
H-BIM model creation phase as objects compatible with the originality of the building.

1.1. Building Information Modeling (BIM)

Building Information Modeling (BIM) is the running process of a digital model repre-
senting a building’s physical and functional features [8,22–24,31]. The primary intent of
BIM technology is to enable better construction in light of science, technology, and innova-
tion [8,22,31,32]. In addition, BIM technologies are also used in planning, design, operation,
and maintenance processes. Especially for maintenance work, BIM provides the necessary
information and documents to the project stakeholders [9,13,21,33,34]. BIM generates novel
working perspectives and visual environments in architecture and restoration. The first
step of this process, which refers to constructing a structure or an entity twice, is to create
the building in the virtual background, while the second step covers building it physically
on the site. The first stage comprises updating the 3D model of a construct with the relevant
details and information and performing various analyses. Hence, this step addresses nu-
merous potent issues through the virtual model, which provides practical convenience and
advantages for the actual building construction on site [24,31]. BIM technology is a ground-
breaking approach and improves the effectiveness of the process. It also sustains quality
control, minimizes the time spent, and aims to avoid budget excess while constructing new
buildings [16,34,35]. It is possible to employ diversified approaches and software to model
structures within the scope of BIM. In the BIM technique, there are various item-based
parametric models for constructions. These items usually include fundamental construction
elements such as walls, floors, ceilings, windows, doors, and columns. Although the objects
are predetermined, users are reluctant to modify, personalize, or use them directly. The
items in question fall under the category of parametric functions. Such a categorization
makes it simpler to supply the relevant standards and streamline application processes.
Saving several object classes in libraries increases accessibility and facilitates application
processes [33–37].

1.2. Level of Detail (LOD)

The concept of level of detail (LOD) refers to setting the standards and level of detail
for BIM model elements from the design phase of the project to the construction phase. LOD
levels contain information about the project, graphical data, and non-graphical data. Thus,
it contributes to improving the level of communication among BIM users and ensuring
consistency in application [12,38–40]. LOD is a reference corresponding elementarily to
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the questions of the project stakeholders about BIM. The geometric information content of
the building components is apprehended through LOD levels and is a way for disciplines
to convey their provisions to each other. The main reason for applying the LOD concept
is to clarify how the information will progress and deliver higher quality and competent
projects by alleviating complexities. The LOD100 refers to the preliminary design universe.
The model element can be represented graphically by a symbol or general representation
whereas the LOD300, LOD400, and LOD500 levels derive from capturing data into the
model Figure 1 [11,24,38–40]. It is also feasible to conduct more in-depth studies using the
LOD250 and LOD350 levels depending on the conditions [11,38–40].

Sustainability 2023, 15, x FOR PEER REVIEW 4 of 22 
 

1.2. Level of Detail (LOD) 
The concept of level of detail (LOD) refers to setting the standards and level of detail 

for BIM model elements from the design phase of the project to the construction phase. 
LOD levels contain information about the project, graphical data, and non-graphical data. 
Thus, it contributes to improving the level of communication among BIM users and en-
suring consistency in application [12,38–40]. LOD is a reference corresponding elemen-
tarily to the questions of the project stakeholders about BIM. The geometric information 
content of the building components is apprehended through LOD levels and is a way for 
disciplines to convey their provisions to each other. The main reason for applying the LOD 
concept is to clarify how the information will progress and deliver higher quality and 
competent projects by alleviating complexities. The LOD100 refers to the preliminary de-
sign universe. The model element can be represented graphically by a symbol or general 
representation whereas the LOD300, LOD400, and LOD500 levels derive from capturing 
data into the model Figure 1 [11,24,38–40]. It is also feasible to conduct more in-depth 
studies using the LOD250 and LOD350 levels depending on the conditions [11,38–40]. 

 
Figure 1. Level of detail. 

LOD100: This level defines the initial state of the construction phase. It refers to the 
design and semantic stage. Details produced at this level ground on basic mass rendering, 
lines, and 3D geometry. This level typically provides information about how the structure 
of a building will scrutinize in principle. LOD100 retains no details such as doors or win-
dows [11,17,24,38]. 

LOD200: This level signifies components graphically represented within the model, 
such as an available system, object, or assembly, with approximate qualities, quantities, 
sizes, shapes, positions, and orientations. The LOD200 level also represents spaces with 
limitations such as walls, height, and columns. Any conclusions drawn from LOD200 
items should be deemed approximate. This level stands for the creation of an introductory 
presentation model. The level also provides initial attributes about doors, window shapes, 
sizes, rudimentary and overall furniture arrangements, etc. For instance, this level dis-
plays door and window locations. LOD200 models are a critical aspect of architectural 
BIM services that begin with models for design purposes and potentially diversify for 
several additional functions [17,38–41]. 

LOD300: The other model phases begin with LOD300. The model phase is more than 
just a representation, displaying the 3D geometry created. LOD300 is the level where 
model detailing will retain proper quantity, size, location, and orientation, along with 
manufacturing, assembly, and installation details. This model phase may use both general 
and parametric Revit library items [17,41]. 

LOD400: It denotes LOD300’s upper level. Apart from the items displayed in the 
LOD300, all other components, including columns, beams, crosses, gusset plates, joints, 
reinforcement plates, angles, casting plugs, metal grates, seismic or secondary supports, 
and beam transitions, are situated at this level. The model also includes non-graphical 

Figure 1. Level of detail.

LOD100: This level defines the initial state of the construction phase. It refers to the
design and semantic stage. Details produced at this level ground on basic mass rendering,
lines, and 3D geometry. This level typically provides information about how the structure
of a building will scrutinize in principle. LOD100 retains no details such as doors or
windows [11,17,24,38].

LOD200: This level signifies components graphically represented within the model,
such as an available system, object, or assembly, with approximate qualities, quantities,
sizes, shapes, positions, and orientations. The LOD200 level also represents spaces with
limitations such as walls, height, and columns. Any conclusions drawn from LOD200 items
should be deemed approximate. This level stands for the creation of an introductory
presentation model. The level also provides initial attributes about doors, window shapes,
sizes, rudimentary and overall furniture arrangements, etc. For instance, this level displays
door and window locations. LOD200 models are a critical aspect of architectural BIM
services that begin with models for design purposes and potentially diversify for several
additional functions [17,38–41].

LOD300: The other model phases begin with LOD300. The model phase is more
than just a representation, displaying the 3D geometry created. LOD300 is the level where
model detailing will retain proper quantity, size, location, and orientation, along with
manufacturing, assembly, and installation details. This model phase may use both general
and parametric Revit library items [17,41].

LOD400: It denotes LOD300’s upper level. Apart from the items displayed in the
LOD300, all other components, including columns, beams, crosses, gusset plates, joints,
reinforcement plates, angles, casting plugs, metal grates, seismic or secondary supports,
and beam transitions, are situated at this level. The model also includes non-graphical data
that properly relate each element to its assembly sequence and illustrates the size of the
structural components [17,38–41].

LOD500: This level stands as the final phase of BIM modeling. The model designed at
this level is saved for subsequent use in facility management and building renovation. It
is also attainable to utilize this model for the effectiveness analysis of building efficiency.



Sustainability 2023, 15, 10726 5 of 21

This level of the model will have all the necessary geometry and data to support building
lifecycle operations and maintenance [17,41].

1.3. Historical Building Information Modeling (H-BIM)

H-BIM technologies are tools using point clouds to create BIM geometry while model-
ing historical buildings. These technologies utilize information from laser scanning devices
or photogrammetry [3,42–45]. H-BIM enables the management of historical building ge-
ometry and, in particular, the planning of the restoration process. Working in the H-BIM
environment aims to build more complex models from 2D drawings [9,46–49]. The H-BIM
approach manages building attraction and deterioration data or information analysis to
sustain material and structure characterization and protection response measures in diverse
scenarios [31,42,50]. From the standpoint of building conservancy, the H-BIM model may
exclusively be regarded as a building catalog, assisting in determining affordable and
reasonable maintenance and keeping track of the potential modifications over time. For
instance, it serves as a database that enables suitable restoration and replacement in case
of an earthquake event or artificially caused (human-driven) demolition [51–53]. There
has been substantial progress in proper conservation, restoration, and reconstruction pro-
cedures for historical heritage, thanks to the numerous advantages H-BIM offers [54–56].
Historic England published the bulletin of ‘BIM for Heritage’ to guide the development
of the H-BIM methodology in 2017. Additionally, it proposed a lifecycle policy for H-BIM
implementations depicted in Figure 2 [17,20,22,47].
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After the decision-making process on the study area and the relevant geometric data
collection technique, the initial process begins with compiling information on graphical,
semantic, morphological, and typological data within the scope of H-BIM. Utilizing 3D
laser scanning and photogrammetry techniques is the method for gathering graphic data.
Object surfaces scanned by these technologies are transferred to the geometric plane
using point clouds; however, the semantic, morphological, and typological information
is accessed through textual and historical sources. This information provides details



Sustainability 2023, 15, 10726 6 of 21

about the materials and construction techniques of the building, its architectural features,
and the transformations it has undergone from the past to the present [10,52,53]. The
utilization of all gathered data in a database constitutes the foundation of the second
stage of the study methodology. Preferentially, the generated point clouds are modeled
best parametrically using automatic or manual techniques. The auto method derives
from automatic segmentation and parametric-object creation by point clouds via utilizing
specific algorithms and software plugins available for level surfaces or primitive geometries.
However, the manual method involves directly integrating filtered point clouds into BIM
environments to generate objects [43,54].

2. Materials and Method
2.1. Study Area

The historical education building constructed in 1929 is still active for educational
purposes in Konya. The school building consists of a basement and two floors. Smooth-cut
stone was used in its construction, and it was built with the masonry technique. The
first-floor windows are round and the second-floor windows are pointed arches. Figure 3
displays the location map of the school building, which serves as the study area, and
Figure 4 illustrates a current photograph of the building exterior (outside).
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2.2. Terrestrial Laser Scanning and Working Principles

One of the most functional and cutting-edge measuring technology items is undoubt-
fully the TLS method. Laser scanners, which allow architectural documentation studies
to be carried out vigorously and by the required standards, are frequently used for doc-
umentation studies nationally and globally [20,55–57]. This study employed a terrestrial
laser called ‘Faro Laser Scanner X-330 HDR’. The FARO Laser Scanner Focus3D X 330 is
a precision measuring tool that creates photorealistic 3D images. The Faro Laser Scanner
X-330 HDR device is also suitable for 3D documentation studies and field surveys. It is a
top-tier German-patented terrestrial scanner and can complete post-measurement oper-
ations with minimum effort owing to its improved range and scanning capacity [58–60].
Table 1 displays the primary technical specifications of the Faro Laser Scanner X-330.

Table 1. Technical specifications of the FARO Focus3D X 330 laser scanner.

Scan Distance 0.6–330 m

Size 240 × 200 × 100 mm

Weight 5.2 kg

Measuring Speed 976,000 points/s

Accuracy ±2 mm

Camera 70 megapixels

Resolution 1/1, 1/2, 1/4, 1/5, 1/8, 1/10, 1/16, 1/20, 1/32

Focus3D X-330 offers an operating principle based on sending an infrared laser beam
to the center of a rotating mirror. It also employs phase change technology to measure
distance. This technology enables the modulation of the laser beam through fixed waves of
various lengths. By measuring the phase alteration in infrared light waves, it is possible
to calculate the precise distance between the scanner and the object. Subsequently, each
point X, Y, and Z coordinate is computed using angle encoders to measure the horizontal
and mirror rotations of the Focus3D X-330. These angles are encoded simultaneously with
the distance measurement. The distance, vertical angle, and horizontal angle create a polar
coordinate (δ, α, and β), which is converted to a Cartesian coordinate henceforward (x, y,
and z). It scans at 360 degrees horizontally and 300 degrees vertically [58–61]. Also, Figure 5
includes the workflow diagram followed throughout the study for the H-BIM process.
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2.3. Software Used: Autodesk Revit 2022 and As-Built for Revit 2021

Revit 2022 software is a 3D vector drawing program that allows functioning within
the scope of H-BIM. It is a software allowing various users to create designs with para-
metric modeling and drawing elements. Revit 2022 software enables the generation of
objects related to the building of interest, digitally modeling the structures by H-BIM and
explicitly visualizing the depth of the objects [62]. In the context of conservation and
restoration projects, architects have the potential to employ the 3D digital data class, which
includes vector drawings produced by Revit 2022 software. Revit has no automatic object
recognition tool; thus, object creation requires a manual process. Despite the studies on
methods for creating object geometries in 3D format, these techniques are more practical
for contemporary geometries nowadays [12,50,55]. Yet, they are not suited to the H-BIM
technique since objects developed by automatic object creation fail to reflect historical
architecture accurately. The primary reason to prefer Revit 2022 software in studies is that
it employs real-life blocks and contains various templates while drawing, compared to
other drawing programs. It is also achievable to acquire more detailed layouts and sheets
(map section) from the building sections taken after running structural 3D modeling via
Revit [62]. As-Built for Revit, on the other hand, is a Revit 2022 software plugin created
by Faro. This program enables architects and engineers to efficiently create precisely com-
pleted data-driven building designs that are fully compatible with CAD and BIM systems.
As-Built expedites the information extraction time from point cloud data and completes
the job successfully [18,54]. Furthermore, this software program may extensively advance
the effectiveness of the point cloud on the Revit program.

3. Results

This section covers modeling the scanning data of the historical education building,
used as the study material, in the H-BIM environment via Autodesk Revit 2022 software.

3.1. Geometric Data Extraction from the Point Cloud into Revit

The building data were transferred to the Revit application using Autodesk Recap
2022 software, point cloud processing, and management software, as well as file conversion
in the ‘.rcp’ format (.rcp or .rcs). The 3D point cloud data of the building, used as the
study material, were imported into the software. Figure 6 displays the visuals of the 3D
point cloud.

3.2. Creating Level Plans (Floor Plans)

The study focused on creating the level plans via utilizing the point cloud based on
the attic and floor walls of the building’s existing floors. Each of the building’s floor plans
refers to a level. Accordingly, level 1, level 2, level 3, and level 4 represent the ground floor,
first floor, second floor, and attic, respectively. The level plans for each floor’s height were
entered using the previously constructed level plans. Identifying the level plans is the
initial step of the modeling process. Drawing the walls and designating the placements of
items like doors and windows within and outside the building, within the range of detail
levels, concludes the modeling at the LOD 200 level after setting the level measurements.
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Figure 7 displays the overview of the level plans (floor plans) created upon the project’s
conclusion.
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3.3. Creating the Wall and Floor Objects

Walls are the most critical constituent of a structure as they support the entire mass of a
building. Every other object is somehow attached to the wall. Thus, the wall is the first and
foremost object to consider for building construction. Accordingly, choosing a wall type is a
priority. The family wall type possesses general characteristics of the wall, such as the wall
thickness, the wall type properties to set the wall material, and the interior or exterior wall
properties [29]. Initially, the drawings of the thin/thick walls were generated using a point
cloud to determine the wall thicknesses. The most critical issue while building a model is to
define distinct wall types with various thicknesses and geometrical characteristics. In this
sense, modeling diverse types of walls based on their self-features will make them easier to
classify and access [57]. This study employed a Basic Wall CW 102-50-100p family-type
object. After defining the wall type, the wall-drawing phase begins, using the point cloud
as reference data. Drawings are made on the cloud by separating the interior and exterior
walls Figure 8. At this stage, the wall thickness was estimated at 550 mm. Then, in adhering
to the uniqueness of the building, stone was selected as the material for the wall.
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Ground (floor) designing is the next crucial step in the process. A floor refers to the
lower surface of the room. These floors, in other words, floor plans, may be attached to
the groundwork. This study employed a floor generic 150 mm object type, and 330 mm
thickness was found suitable. At this stage, wall and floor objects can be immediately
created from the point cloud using As-Built 2022 software in an appropriate format. It
can automatically select and generate the most accurate wall type according to the wall
thickness settings. Furthermore, it may also intelligently assign the ground object to the
model [62].

3.4. Creating Window and Door Objects

For the creation of door and window objects within the scope of the building, As-Built
2022 software generated orthophotos of the building façades; accordingly, adding two
doors and four windows individually confined the building’s door and window drawings.
Subsequently, the 3D depth details were prepared from the point cloud. Thanks to Revit
and As-Built 2022 software, the door and window objects were created and saved in the
Revit family library. Thus, these objects were stored to be used again in case of need at later
necessary stages. Therefore, this step finalized the creation of the LOD300-level design. As-
Built 2022 software potentially enables the design of semi-automatic objects throughout the
object construction process, and the program may also localize the position of the window
or door objects. However, since the details of the building are unique to this structure and
do not contain the object characteristics saved in the library, a window or door object could
not be created automatically [35]. Therefore, this study utilized a manual method while
designing the building-specific object details. Figure 9 displays orthophotos of the window
and door objects acquired from the point cloud. However, the study created the drawing
over the orthophoto of the window object in Figure 10 following applicable commands of
the Revit program. Afterward, the depth was assigned referencing the point cloud. The
building’s vertical window object and the window on the ground floor both underwent
identical procedures. Then, material preferences were made for the window and door
objects by referencing the original designs of the building objects. They were attached to
the model after saving it in the main library. Figure 11 displays the final versions of these
items representing finalized and saved drawings and material assignments in the object
library. Figure 12, however, depicts the appearance of the objects attached to the 3D model.
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Figure 12. Attaching the created window objects to the 3D model.

The same commands were executed to generate door and window object drawings,
except that the ‘Metric Door’ option was different when creating a new family class. Graphic
generation was also materialized by calculating one-to-one twinning over the point cloud.
Figure 13 illustrates the material assignments for two different door objects pertaining to
the graphics of the front and the back doors. An orthophoto was used meticulously for the
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detailed door drawings. Figure 14 depicts a shaded view of the model built by including
the door object drawing in the 3D model.
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3.5. Creating the Stairs and Ramp Object

The building’s staircase objects were created by executing the stair instructions in the
Revit software. For the ladder drawings, the graphic was made directly on the point cloud.
The railing command for the railing detail and the ramp command for the school entry
ramp created accurate images. Figure 15 displays the detailed perspectives attached to the
3D model.
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Figure 15. Manual drawing of stairs, ramps, and railing objects. (a) stairs and railing details and
(b) entry ramp and staircase object.

3.6. Creating the Roof Object

The building roof, one of the essential parts of a building, is composed of many
physical roof kinds. The shape of the roof varies from region to region, depending on the
construction style. Especially intricate structures may retain more than one roof. In essence,
the roof structure in this study is in the traditional hip roof design. As a result, the Basic
Roof Generic 400 mm family type object was selected as the building roof object (Figure 16).
Figure 17 displays attaching the roof object to the model.

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 22 
 

3.6. Creating the Roof Object 
The building roof, one of the essential parts of a building, is composed of many phys-

ical roof kinds. The shape of the roof varies from region to region, depending on the con-
struction style. Especially intricate structures may retain more than one roof. In essence, 
the roof structure in this study is in the traditional hip roof design. As a result, the Basic 
Roof Generic 400 mm family type object was selected as the building roof object (Figure 
16). Figure 17 displays attaching the roof object to the model. 

 
Figure 16. Creation of the traditional hip roof object. 

 
Figure 17. Attaching the roof object to the model. 

Figure 16. Creation of the traditional hip roof object.



Sustainability 2023, 15, 10726 16 of 21

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 22 
 

3.6. Creating the Roof Object 
The building roof, one of the essential parts of a building, is composed of many phys-

ical roof kinds. The shape of the roof varies from region to region, depending on the con-
struction style. Especially intricate structures may retain more than one roof. In essence, 
the roof structure in this study is in the traditional hip roof design. As a result, the Basic 
Roof Generic 400 mm family type object was selected as the building roof object (Figure 
16). Figure 17 displays attaching the roof object to the model. 

 
Figure 16. Creation of the traditional hip roof object. 

 
Figure 17. Attaching the roof object to the model. Figure 17. Attaching the roof object to the model.

Subsequently, the material selection process ensued for the model created among
available databases in the Revit library. For this step, proper materials in the Revit library
were used Figure 18. For instance, a wooden model was chosen for the window, a stone
model was chosen for the wall, or an iron material was chosen for the railing object. The
outcomes of all these steps led to the creation of floor plans, building details, façades, and
3D models of the building. Figure 19 represents the final version.
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3.7. Render Image Acquisition

The final stage of model creation involved a render acquisition in the study. Although
the software operated during the design process delivers options such as necessary light
coatings, colors, and objects, the users may still fail to acquire the desired final image.
Accordingly, the designed image becomes final following the rendering process. While
devising design and effects programs, light, objects, and color options do not retain the
highest quality or coating. Yet, processing and rendering design options in real time may
go beyond the capacity of many current computers at this stage. Rendering is, therefore,
necessary to finalize a design by producing an output image with high quality and coatings.
Such a process also eventuates in time-saving and reduces expenses for computerizing.
Figure 20 demonstrates the rendered images of the four façade of the building acquired
through Revit software.
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4. Discussion

Acquiring and modeling the objects from the constructions under consideration is
essential in the context of H-BIM since the primary objective is to depict the historical
heritage structure and its artifacts. The creation of 2D drawings is also necessary for this
goal, much like in the current study, employing orthophotos and subsequent software,
such as As-Built, etc. The point cloud then enables the obtainment of 3D depth perception
of the object. Additionally, the advantage of capturing the RGB color settings in the
point cloud data, used as a modeling reference in the current study, played a critical role
in achieving the building’s realistic view (panorama), particularly in the assignment of
materials and the selection of object kinds. In this regard, the scanning device’s technical
features bring forward its significance once again [29,50]. It is unattainable to automatically
fetch geometric and semantic data directly from the point cloud since parametric objects of
historical buildings are composed of excessively complex and unique object geometries.
Hence, it would be wise to acquire items manually, as proposed in this study. Clip boxes
are necessary to capture the demanded point in the point capture steps during modeling
due to the size and complexity of the point cloud data within the scope of the study. In this
manner, it is viable to acquire the demanded drawings by applying the necessary filters in
the point cloud. Acquiring orthophotos from point cloud data to reflect architectural details
and to be able to dominate objects during modeling delivers tangible model outcomes. In
this context, when using H-BIM software, user competence is a critical issue in generating
high-quality and operative models. In addition to architectural expertise and software
experience, data management necessitates proper usage and point cloud interpretation
during laser scanning and H-BIM model creation.

5. Conclusions

Studies on the conservancy of cultural heritage reside on the outcome of holistic and
collective efforts. H-BIM is a multidisciplinary process that develops in line with user
cooperation possessing various professional backgrounds [17,26,32,42]. H-BIM essentially
serves as a database for geometric historical and archaeological data and a virtual proto-
type of an ancient building from a long-term perspective. In essence, this is a significant
advantage as it considerably facilitates stakeholders to explore potential relationships un-
derlying the vast amount of information associated with the architectural reference [37,45].
H-BIM is not a widely utilized technology due to its complex and demanding application
procedures, expensiveness, and demanding skilled users. However, some theories in this
field imply that the advancement of futuristic and technological tools boosting productivity
and affordability will eventually make H-BIM a more popular and preferred methodology
for historical documentation and management [16]. This article focuses on the use of
point cloud data in H-BIM. The functional use of point cloud data for protection, renewal,
maintenance, and other H-BIM processes is evident. In this context, it will be valuable
for H-BIM studies that users can model para-metric objects manually and realistically in
3D modeling studies. There are no set criteria for the precision of point cloud modeling
within the context of H-BIM. However, evaluation of the final product has revealed that
it is an auxiliary for the survey data since the collected data are mostly in scaled format.
Additionally, since the metrics used in this study refer to actual building measurements,
it serves as a basis for architectural documentation studies for restitution and restoration.
Since the final product is in the form of 3D numerical data, it poses the potential to take
horizontal and vertical sections from preferred locations, floor plans, and façade views. It
is also viable to assess the building life cycle from past to present and make attachments to
it during the restitution phase owing to semantic data integration. As a result, the design
process develops directly proportionate to the available data. This progress also allows for
analysis and evaluation of the historical building’s development process. Depending on the
use of all this available data, on the other hand, the restoration phase may explicitly utilize
the data acquired from the documenting procedure of the building in its original form.
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5. Okuyucu, Ş.; Çoban, G. Afyonkarahisar Dinar Bademli Köyü Cami Röleve Projesinin Lazer Tarama Yöntemiyle Hazırlanması.

Turk. Online J. Des. Art Commun. 2019, 9, 249–262. Available online: https://dergipark.org.tr/tr/pub/tojdac/issue/44330/547817
(accessed on 1 April 2019). [CrossRef]

6. Pepe, M.; Costantino, D.; Restuccia Garofalo, A. An efficient pipeline to obtain 3D model for H-BIM and structural analysis
purposes from 3D point clouds. Appl. Sci. 2020, 10, 1235. [CrossRef]

7. Solla, M.; Gonçalves, L.M.S.; Gonçalves, G.; Francisco, C.; Puente, I.; Providência, P.; Gaspar, F.; Rodrigues, H. A Building
Information Modeling Approach to Integrate Geomatic Data for the Documentation and Preservation of Cultural Heritage.
Remote Sens. 2020, 12, 4028. [CrossRef]

8. Aburamadan, R.; Trillo, C.; Udeaja, C.; Moustaka, A.; Awuah, K.G.; Makore, B.C. Heritage conservation and digital technologies
in Jordan. Digit. Appl. Archaeol. Cult. Herit. 2021, 22, e00197. [CrossRef]

9. Baik, A. From point cloud to jeddah heritage BIM nasif historical house—Case study. Digit. Appl. Archaeol. Cult. Herit. 2017, 4,
1–18. [CrossRef]

10. Moyano, J.; León, J.; Nieto-Julián, J.E.; Bruno, S. Semantic interpretation of architectural and archaeological geometries: Point
cloud segmentation for H-BIM parameterisation. Autom. Constr. 2021, 130, 103856. [CrossRef]
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Ph.D. Thesis, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Turkey, 2021.
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54. Rebec, K.M.; Deanovič, B.; Oostwegel, L. Old buildings need new ideas: Holistic integration of conservation-restoration process

data using Heritage Building Information Modelling. J. Cult. Herit. 2022, 55, 30–42. [CrossRef]
55. Ochmann, S.; Vock, R.; Klein, R. Automatic reconstruction of fully volumetric 3D building models from oriented point clouds.

ISPRS J. Photogramm. Remote Sens. 2019, 151, 251–262. [CrossRef]
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