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Abstract: Customer-centric service innovation performance has become a common businesses goal to
pursue, particularly for service-oriented manufacturing companies. However, the continuous focus on
the impact of enterprise resources and capabilities in service innovation fails to truly consider market
orientation and customer capabilities as core influencing factors of service innovation performance at
an individual level. This article explores new service behaviors driven by market orientation and
customer predictive abilities, revealing the process of customer-driven value creation for sustainable
innovation within enterprises. Ships are typical representatives of customized enterprises. This study
examines the role of customer predictive capabilities in the sustainable innovation of shipbuilding
companies, starting from a 20-year historical analysis of the global shipping and shipbuilding
markets. By exploring the market orientation characteristics of the shipbuilding and shipping
markets, this study investigates the behavioral impact of customer predictive abilities on sustainable
innovation within shipbuilding enterprises. Employing time series and panel data in machine
learning algorithms, specifically the random forest model, reveals a strong and statistically significant
correlation between new ship deliveries and the Baltic dry index (BDI), with larger value ships
having a more pronounced impact on the consumer market. The correlation analysis confirms that
these two variables, in combination, can comprehensively reflect customer predictive ability and
serve as crucial decision criteria for customer investment in new ship production. Furthermore,
based on the principal component analysis of customer predictive ability and ship innovation levels
Granger causality tests, this study demonstrates that customer predictive ability is a Granger cause of
sustainable innovation in customized production. Customer predictive ability influences sustainable
innovation in customized enterprises to varying degrees. This research provides valuable insights for
shipbuilding companies regarding engaging in sustainable innovation in international markets and
understanding the value of international market customers.

Keywords: customer predictive ability; shipping market; customized enterprises; Baltic dry index
(BDI); sustainable innovation

1. Introduction

With the advent of the on-demand economy driven by digital technology, customers
are exhibiting new behavioral patterns, indicating that the provision of new services to
meet diverse customer needs has become a crucial path for the survival and development
of businesses. The theory of service innovation has transformed thinking patterns. Scholars
have constructed the theory of service innovation from an empirical perspective, mainly fo-
cusing on internal perspectives of the enterprise, such as the resource-based view, dynamic
capability view, absorptive capability view, knowledge-based view, relationship networks,
and service-dominant logic. Some studies have also considered the external environment
faced by the enterprise, such as market orientation and open innovation, emphasizing
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the ability of enterprises to integrate market orientation and customer resources to gain
sustainable innovation advantages.

The market orientation perspective explicitly emphasizes that service innovation
places greater emphasis on market-driven initiatives, customer relationships, and value
creation. The market and customers play a catalytic role in the service innovation process,
including the impact of service innovation performance, including product innovation
capabilities. This perspective has been widely used in the context of service innovation.
Although scholars have conducted extensive research on the drivers and inhibiting factors
of service innovation, there is still insufficient research on the effects of service innovation,
particularly the role of customer predictive capabilities in driving sustainable innovation
development for enterprises.

Existing research not only overlooks the role of customer prediction and its impact on
the service interaction process between the customer and the enterprise but also fails to
consider the influence of the interaction-oriented market and customer prediction. Since
service innovation involves multiple groups, its impact effects are also multi-level. From
the perspective of sustainable innovation, especially in providing customized products and
services to customers and in the context of ongoing digital transformation for continuous
value creation, service innovation will have a certain degree of influence on employees,
customers, and even competitors [1]. Therefore, future research on service innovation
should pay more attention to the effects at the individual level.

Although research has found that customization strategies can enhance service in-
novation performance by meeting customer needs [2], whether it is the third industrial
revolution or the widely discussed German Industry 4.0 strategy, customization strategies
have been identified as an essential trend for the future development of service-oriented
manufacturing companies, especially in terms of their impact on sustainability develop-
ment [3].

Unfortunately, it is rare to find research that thoroughly explores and integrates
how customer predictive ability affects the process of sustainable innovation practices in
customized enterprises, hereafter referred to as innovation. In an era where the role of
customer participation in innovation is becoming increasingly important and urgent [4], it is
necessary to analyze and explore the relationship between customer predictive ability and
innovation in customized production, as well as systematically discuss the mechanism and
process by which customer predictive ability affects a company’s customized innovation.

Based on existing research on customer-oriented customized production, the focus has
been on customer participation [5], customer value [6], and factors influencing customer
acceptance of customization [7]. Few studies involve the influence of customer ability
on the customized production process, especially from the market-oriented perspective;
impact on innovation has not been sufficiently qualitatively studied. If such an influence
exists, a company’s in-depth and leading understanding of customer ability can not only
help the company determine the scope and advantages of new technologies earlier but also
test the commercial value of the technology earlier [8].

It is widely recognized that customer orientation is not a new concept [9]. Customer
engagement significantly impacts brand management and sustainable behavior [10]. As
a result, companies focus on meeting customers’ needs; providing products/services to
customers is a complex decision-making process, which must fully consider the preferences
and non-preferences of customers to achieve customer satisfaction and the optimization
of company resources [11]. However, Lengnick-Hall broke the narrow boundaries of
solely relying on customers and believed expanding the customer role was the first step to-
wards developing sustainable competitive quality [12]. Subsequent research supplemented
customer capabilities, such as customers’ strong service recovery ability in self-service
technology environments [13]. In participating in production services, customer loyalty,
customer expertise, customer communication skills, customer emotional commitment,
and interaction became factors that could potentially improve the level of joint produc-
tion [14]. As the role of customers in different services is dynamic, Chervonnaya proposed
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the “chameleon” characteristic of customers and built a framework for customer capability
resources by seeking objective rules through the trajectory of customer roles and skills [15].

This study links customer predictive ability to innovation. Previous scholars have
explained the value of customer predictive ability. De Haan systematically compared dif-
ferent customer feedback indicators to test customers’ predictive ability for companies and
industries [16]. The test results showed that customers who ranked higher performed better
in predictive ability, and focusing on extreme cases was better than using the full-scale pre-
dictive ability. Based on similar studies, understanding the impact of customer predictive
ability on corporate innovation research has important strategic value, especially when
leading customer predictive ability provides useful information as a strategic management
reference tool for industry managers.

In the context of the digital transformation and innovation of the manufacturing indus-
try, it is crucial to maintain a balance between the shipping industry (a consumer market)
and the shipbuilding industry (a production market). Stopford believes that the chal-
lenge facing the shipping industry concerning future demand is to find a strategic way to
retain the best and most effective shipbuilding capabilities while promoting a global trans-
portation system that meets regulatory, environmental, and shipowner requirements [17].
Therefore, unlike other traditional industries, the shipbuilding industry continues to focus
on providing more differentiated customized products and services for shipping.

The shipbuilding industry is a typical representative of the manufacturing indus-
try centered on customized production, emphasizing the personalized development of
customers. The design, supervision, and acceptance of ship products are based on the
requirements of ship owners. In the late 1980s, customer demands for various products
led to the development of “customized production” [18]. Due to the short history of the
development of customized production and the lack of typical research objects, there are
few studies on innovation in customized production. The significant characteristics of
small-batch customization, high unit value, and long construction cycles inherent in the
shipbuilding industry determine the connotation of “service-oriented manufacturing” in
the shipbuilding industry.

Moreover, the shipbuilding industry relies heavily on the operating environment of
the shipping market. Customers care about product quality and hope to have products
and put them into operation promptly [19]. Therefore, this study excavates the innovation
problem of customer predictive ability (ship owners) in customized production through
the historical laws of shipbuilding and shipping. This study addresses the following two
questions:

Question 1: Does customer predictive capability have an impact on the sustainable
innovation of customized enterprises?

Question 2: How does customer predictive capability influence the sustainable inno-
vation of customized enterprises?

To address the issues mentioned above, we utilized panel data from 1999 to 2019,
including new ship deliveries, the BDI, and the number of patents. A random forest model,
an algorithm from machine learning, was employed to investigate the impact of customer
forecasting ability on the sustainable innovation of customizing firms. Principal component
analysis (PCA) and the Granger causality test were employed to identify the behavioral
role of customer forecasting ability on sustainable innovation in customizing firms.

2. Literature Review
2.1. Service Innovation

The concept of service innovation originated from Barras, and through the critical ex-
amination and development of the research paradigm on the integration of manufacturing
and service industries, scholars generally believe that service innovation has become an
important point of convergence between the service and manufacturing industries and a
key driving force for high-quality development. Service innovation involves continuously
changing the new concepts of existing products and services and focuses on improving
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customer experience management through continuous production technology, investment,
and operational improvements [20]. The groups that influence service innovation include
customers, competitors, producers, etc., with customers being considered the most impor-
tant driving factor for enterprise service innovation, driven by customer demands [21]. It
is far from being as simple as previous innovation research has revealed, as it includes
the development of new services and the innovation of customer roles in the service de-
livery process [22]. It constantly blurs the boundaries of productization while expanding
resources for customers and other stakeholders, pushing internal innovation activities into
the market [23].

It is worth noting that regardless of how companies emphasize the novelty of new
technologies and products in their services, customers innovation service still can adopt or
reject innovation [24]. Therefore, it is necessary to introduce market sensing capabilities
and customer linking capabilities into the service innovation performance model [25].
Meng Pei’s research on 30 years of foreign service innovation studies found that service
innovation focuses no longer on product and process innovation but on customer involve-
ment [26]. Identifying and managing the role of customers in the service innovation process,
considering customers as active participants and co-creators of value in innovation [27],
aligns more with the changing patterns of complex networks and digital ecosystems in the
digital age. In future research on innovation implementation, it is crucial to study how
customer and market individual factors interact with innovation implementation and the
process and outcomes of mutually satisfactory interactions, which are key to sustainable
innovation.

2.2. Predictive Ability

Executives consider some form of prediction with almost every decision they make.
Prediction is no longer a luxury but a necessity [28]. Therefore, making as detailed predic-
tions as possible about various possible development paths and events is beneficial and
essential. Boucher was the first to conduct predictive analysis research and found that
100 organizations engaged in long-term forecasting activities, with more than 60% be-
longing to industrial enterprises [29]. Rexer believes that one-third of predictive analytics
applications focus on customer targeting and segmentation, customer acquisition, cus-
tomer churn, and customer lifetime value management [30]. It is known that predictive
technology has become commonplace in industrial enterprises, especially for customer
prediction.

Chamlibers believes that the first task of prediction is to carefully select the appropriate
correct prediction method. The wider the range of known predictive possibilities, the more
significant the predictive outcome will be [31]. It depends on the characteristics and types of
applications. Three basic methods are proposed for prediction: qualitative techniques, time-
series analysis and speculation, and causal relationship methods. Among them, the second
method mainly relies on historical data, focusing on development and trend changes to
achieve the prediction purpose. Time-series analysis is a more descriptive and purposeful
prediction activity aimed at effectively utilizing past data (especially for more than five
years) to seek to understand potential stochastic processes and patterns to predict future
values [32].

2.3. Innovation in Manufacturing

To measure the innovation performance of manufacturing, it is essential to understand
innovation in manufacturing. Tidd and Bessant defined manufacturing innovation as
something that neither changes the product nor the basic process but only changes some
elements, trying to identify the factors that affect innovation [33]. At the same time, the
scope of manufacturing innovation covers the entire product life cycle, and manufactur-
ing innovation has diversity and dynamics [34]. Based on this, Roger believes that the
standard for manufacturing innovation should focus on the number and types of new
ideas that manufacturing attempts [35]. Therefore, innovation has been identified as a
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key research issue in production [36]. Innovation research is still a manufacturing focus
in most developed and developing economies but is poorly understood [37,38]. Many
manufacturing companies are more customer-oriented and use innovation research, such
as mass customization, to meet customers’ special customization needs [39].

Currently, the escalating pressures of technological change and global challenges [40]
have driven the high-level integration of technology with increasingly complex customer
demands [41]. Successful companies respond to current customer or organizational needs
and their own needs and must predict future trends. The ability to predict through the
development of ideas, products, or services to quickly and effectively meet future needs
is a necessary condition for development and can maintain a competitive advantage [42].
Therefore, the ability to predict innovation and increase the ability of companies to enter or
create new markets becomes the key factor that ultimately affects success [43].

In the late 1980s, customer demands for various products led to the development of
“mass customization” [27]. We are experiencing the fourth industrial revolution (known as
“Industry 4.0”), in which new technologies and innovative ideas are emerging and being
widely used to meet growing consumer demand. The contradiction between customer
demand for personalized products and the relative scarcity of such products is becoming
increasingly prominent [44], and customized production has become an important means
for enterprise digital transformation and upgrading. Blecker believes that customization
is the future paradigm, and the goal is to provide personalized products and services
for customers, involving systemic customization in marketing, design, manufacturing,
after-sales, and so on [45]. In other words, a customized production strategy is a customer-
oriented and innovative value-creation process.

2.4. The Impact of Customers on Innovation

Through investigating the main subjective and environmental factors affecting cus-
tomer participation in corporate innovation, Wang proposed that active participation can
increase a company’s knowledge storage and improve the efficiency of enterprise innova-
tion [46]. Analysis of the past literature on customer participation in innovation shows that
the situational conditions for customer participation in innovation have not been clearly
defined, but some of the literature has studied the impact of customer ability on innovation;
customers prefer the value of integration with digital capabilities, which gives them many
choices in digital innovation [47]. We expect that in the rapidly developing on-demand
economy (in which organizations are particularly prone to the capability trap), obtaining
customers with diverse experiences is particularly valuable. And the effect of organiza-
tional learning on performance depends on variations in the customer-focused strategy [48].
Based on earlier research on customer experience diversity, actively participating customers
are an important driving force for the production process. They can greatly enhance a
company’s innovation ability but with strict limitations. Only “lead users” can be the
object of cooperation with enterprises [49]. Those with more diverse product experiences
and more related technical knowledge are known as lead users [50]. Based on this, most
researchers believe working with “lead users” can encourage companies to discover and
innovate [51]. Other studies have found that clients or consultants from international
markets are crucial to innovation [52]. On the contrary, customers’ short-term perspectives
may mean a disaster for a company’s innovation ability [53].

Therefore, a key challenge businesses face is prediction, and innovation must be based
on a more forward-looking understanding of demand prospects [54]. In this study, the
scholars developed and tested theories about customer types that help organizations obtain
timely and preferential access to information about customers’ changing preferences and
adjust their market positioning accordingly to enhance their innovation capability [55].
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3. Empirical Study
3.1. Research Background

This passage discusses the relationship between customer prediction ability and
innovation in customized production. The research examines whether this relationship
is causal and uses the shipping industry as an example to demonstrate the theme. The
decision-making process of shipowners in investing in new ships involves a significant
amount of capital investment, and they are primarily interested in economic advantages
that can be generated by using new or improved methods and technology in new ships. In
the shipping market structure, the dry bulk cargo market accounted for 44.8% of the global
shipping structure in 2021, and its prosperity is highly correlated with global economic
development. The dry bulk cargo market fees are the “barometer” of the entire market.
Hughes proposed that shipowners believe profits are determined by how much income the
ship can earn, and transportation costs are constant. Therefore, freight is called the “profit
potential” of shipping [56]. The BDI is a robust indicator of the shipping market situation,
which displays the demand for freight capacity and the supply of dry bulk ships. When
supply exceeds demand, shipowners may decide to increase new ship orders to seek more
profits, leading to an oversupply of capacity, breaking market equilibrium, and causing
the BDI to decline. Conversely, when demand exceeds supply, shipowners may build new
ships to increase capacity and improve earnings, causing the BDI to rise.

Therefore, we believe that the shipping market can provide good information for
shipowners when deciding to customize the production of new ships. The BDI has been
widely used as a world trade economic indicator. Many stakeholders try to predict accu-
rately to make wise investments and trading decisions. Most customers will take similar
ship investment behaviors, namely the investment selection of new ships, representing
the size of customer prediction ability. Therefore, the collective investment behavior of
customers is a true reflection of the shipbuilding market, and the size of customer pre-
diction ability largely affects the shipbuilding market. Therefore, the BDI and new ship
delivery volume can reflect customer prediction ability well. Of course, shipowners typi-
cally consider many issues when making investment decisions about ships, such as ship
speed, hull strength, ship design styles, seaworthiness, etc. They also consider whether
it meets common interests, whether future sustainability meets environmental require-
ments, and, most importantly, whether the ship’s stable reliability and service life can
create economic benefits, that is, the economic profit brought by the ship entering the
market. Gu Jianzhou, Vice Chairman of the Hong Kong Shipowners Association, pointed
out that quality, technology, and service are particularly important factors in the eyes of
shipowners [57].

Therefore, shipowners pay close attention to the value advantages brought by new
methods and technological innovations in the new ship production process, that is, the
innovation value in the ship production process. When shipowners predict that the mar-
ket is good, they will pay more attention to innovative production factors. Conversely,
shipowner behavior will be more conservative, and innovative enthusiasm will be affected.

In customized production, researchers often use patents to measure the innovation
level for the innovation variable. Much research has found a positive correlation between
patents and innovation [58–60], using patent data to evaluate the source of breakthrough
innovation. Therefore, using patents to analyze innovation performance has become a
recognized method, and here innovation is measured by the number of ship patents.

Due to the time required for information flow between markets and the construc-
tion time of ships, there is a time lag relationship between the shipping market and the
shipbuilding market, manifested very subtly. This article identifies three key variables,
freight rates, new ship delivery volume, and the number of patents, and Figure 1 shows
the dynamic relationship between the three, which is the research model of this article.
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Based on the above analysis, this paper uses the BDI and new ship delivery volume to
reflect customer forecasting ability and the number of ship patents to reflect innovation in
customized production, proposing two research hypotheses:

H1: New ship delivery volume has a certain degree of impact on freight rates.

H2: There is a causal relationship between customer forecasting ability and innovation in customized
production.

3.2. Data Source

The dry bulk shipping market is generally considered a close-to-perfectly competitive
market with intense competition, so the study focuses on the dry bulk market. The BDI is an
indicator of the dry bulk shipping market. It comprises four freight rate indices (Capesize
BCI, Panamax BPI, Supramax BSI, and Handysize) according to their importance and
weight in the shipping market. Considering the nature and scale factors of the BDI itself, dry
bulk carriers with a DWT of over 20,000 tons were selected as the research sample, Capesize
bulk carriers (over 100,000 tons), Panamax bulk carriers (60,000–75,000 tons), Handymax
bulk carriers (40,000–59,000 tons), and Handysize bulk carriers (20,000–50,000 tons), to
analyze the relationship between the delivery volume of these four types of new ships and
freight rates. For this study, we selected the BDI and delivery volume data for the four
types of new ships from 1999 to 2019 as the sample for econometric analysis. All data were
obtained from the UK Clarkson database with no missing values. In addition, we chose
ship patent data to reflect the innovation level in customized production. Patent data were
obtained from the US Patent Database, using “ship/shipping/shipbuilding” as the search
keywords, removing duplicate data, and obtaining the number of patents for each keyword
from 1999 to 2019, represented by SP1, SP2, and SP3, respectively.

3.3. Method

This paper explores the relationship between shipping and shipbuilding in time series
analysis, so the widely used machine learning algorithm, the random forest model, is
employed. Random forest is an ensemble learning algorithm proposed by Breiman in 2001
and is considered a typical success story in ensemble learning algorithms.

The random forest model constructed in this paper focuses on the correlation between
variables. The model selects or averages the classification results of several weak learners to
form a strong classifier, thereby improving the prediction accuracy by aggregating multiple
models while preventing overfitting and ensuring the high accuracy and generalization
performance of the overall model. At the same time, it has good adaptability to data. It
can provide a ranking of the importance of each independent variable to the dependent
variable, which has a high reference value for subsequent statistical regression analysis and
provides statistical test efficiency.

This paper uses the BDI value as the sample label, and four categories of new ships
are used as sample features. A random forest model is constructed using Python language
for empirical analysis, which can effectively reflect the relationship between the two, and
the importance of the delivery volume of new ships to freight rates (BDI) is obtained.
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At the same time, the SHapley Additive ExPlanations (SHAP) value is introduced
to explain the model. The Shapley value is a game theory concept proposed by the
economist Lloyd Shapley. It clearly shows how much each feature contributes to the
model’s prediction, and this method can help us explain the model. By calculating the
SHAP value of each feature for each of the four samples in the random forest model and
performing this operation for each subset of features, the absolute average value of all
samples on different features can be obtained, which calculates the marginal contribution
of adding the feature to the model and then considers the average marginal contribution of
the feature under different feature sequences. This is the Shapley value of the feature.

After determining the relationship between the BDI and delivery volume of new ships,
it is necessary to further study whether there is a causal relationship between the two and
innovation in customized production. First, we use principal component analysis to reduce
the dimensionality of the BDI and delivery volume of new ships, and we determine the
variance contribution rate by selecting two principal components. Then, the two principal
components are tested for unit root and Granger causality with the four categories of ship
patent values to determine whether there is a causal relationship between the variables,
“which causes the change of whom.” The Granger causality test formula is as follows:

Yt = C2 +
p

∑
j=1

rjYt−j +
q

∑
j=1

δjXt−j + µ2t (1)

Granger causality test formula.

4. Results

The experiment of this study was divided into two parts. The first experiment analyzed
the relationship between H1: the impact of new ship delivery on freight rates using the
random forest model with machine learning algorithms. The second experiment used
principal component analysis and the Granger causality test to analyze H2: whether a
causal relationship exists between customer prediction ability and innovation in customized
production.

4.1. Random Forest Experiment
4.1.1. Descriptive Statistical Analysis

The BDI is an authoritative index that measures the international shipping situation
and is a leading indicator reflecting international trade conditions. Figure 2 shows the
time series of the BDI, indicating that the BDI began to show a growth trend in 2003 and
broke through 6000 points in 2007, reaching its historical high point in freight rates. At the
same time, global new ship orders began to grow in 2003. They reached a historical high of
270 million DWT in 2007, indicating that speculative capital flooded into the capacity of the
shipbuilding and downstream shipping industry.

Shipbuilding differs from other manufacturing industries due to its long cycle and
complex influencing factors. This study focuses on large bulk carrier cargo, which takes
about 3–5 years from order to delivering new ships. Figure 3 shows that the delivery of
new ships for the four ship types began to increase sharply in 2008, reached the highest
value in 2011, and then began to decline but remained higher than the level before 2008,
which is consistent with the trend of the growth in new ship orders since 2003. Under
this circumstance, the shipping industry’s capacity level performed well. However, the
outbreak of the subprime mortgage crisis 2008 led to a decline in demand, gradually
forming a mismatch with the abundant supply side (new ship delivery volume), resulting
in a large amount of idle shipping capacity in the shipping industry. The excess production
capacity of shipbuilding brought about supply pressure, which entered a period of capacity
adjustment. Therefore, the BDI plummeted in 2009 and remained low, causing a long period
of low freight rates in the shipping industry. The shipbuilding industry went through deep
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integration, and overall production capacity remained surplus. It can be seen that there is a
significant relationship between the BDI and new ship delivery volume.
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4.1.2. Building A Random Forest Model

Based on the data in Figures 2 and 3, it was found that there is a significant relationship
between freight rates and the delivery volume of the four types of new dry bulk carriers.
As it is difficult to discover linear correlations, this paper uses a random forest model to
analyze the relationship between freight rates and the delivery volume of the four types of
new dry bulk carriers. The experiment used the Python toolkit scikit learn (sklearn). The
number of decision trees and the number of variables in the binary tree involved in this
toolkit are the most important parameters affecting the model-fitting effect. After parameter
optimization, the main parameter values are the number of decision trees, Nestimators
= 100, and the maximum tree depth, MaxDepth = 5. Since the data used in this paper
span 21 years, and the focus is on explaining the model itself, only the performance of the
constructed model on the training set is considered. When constructing the model, the
features of the four types of new ship delivery volume are renamed, and the renaming
results are shown in Table 1.
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Table 1. Renaming table.

Rename Variable

DWT1 Capesize Bulkcarrier Deliveries
DWT2 Panamax Bulkcarrier Deliveries
DWT3 Handymax Bulkcarrier Deliveries
DWT4 Handysize Bulkcarrier Deliveries

The prediction and visualization results of the actual situation obtained by the random
forest prediction model calculation are shown in Figure 4. After training, the model’s
prediction accuracy on the training set is 89%, and the accuracy is high. The predicted
freight rate is roughly the same as the actual freight rate, which can be considered relatively
accurate for constructing the relationship model between freight rates and the delivery
volume of the four types of new dry bulk carriers. Therefore, hypothesis 1 is validated, and
there is a correlation between the delivery volume of new ships and freight rates.
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4.1.3. SHAP Values for Model Interpretation
Global SHAP Interpretation

SHAP values are an effective method for interpreting predictions from machine learn-
ing models. As shown in the importance ranking of SHAP values in Figure 5, DWT2 has
the highest importance for the model prediction, followed by DWT1, DWT4, and DWT3.
The impact rankings are in the order of Panamax type > Capsize type > Handysiz type
> Handymax type, indicating that different ship types impact the BDI differently. This
suggests that the mutual impact of freight rates among large dry bulk carriers is smaller
than that of small dry bulk carriers. This has a very important role in enabling shipowners
to analyze the relationships between various sub-markets in the dry bulk shipping market,
as well as to make investment and shipbuilding decisions by configuring the capacity
of each market with new ship deliveries, guiding fluctuations in the BDI, and enjoying
premiums from the shipbuilding and shipping markets.
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Individual SHAP Explanation

Figure 6 shows that an increase in DWT1 leads to a decrease in the BDI, and the effect
of DWT1 on the BDI tends to stabilize when DWT1 is greater than 15,000. The impact
trajectory of DWT2 on the BDI (Figure 7) is similar to that of DWT1. An increase in DWT2
leads to a decrease in the BDI, and the effect of DWT2 on the BDI tends to stabilize when
DWT2 is greater than 10,000. The impact of DWT3 on the BDI is overall a reverse U-shape
(Figure 8); that is, when DWT3 is less than 7500, an increase in DWT3 leads to an increase
in the BDI. When DWT exceeds 7500, an increase in DWT3 leads to a decrease in the BDI.
Figure 9 shows that DWT4 has a positive correlation with the BDI. An increase in DWT4
leads to an increase in the BDI, and the effect of DWT4 on the BDI becomes more volatile
when DWT4 is greater than 4000.
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Therefore, the random forest experiment proves a correlation between new ship
deliveries and the BDI, and different ship types influence the BDI differently. Large dry
bulk carriers have a greater impact on the BDI than small dry bulk carriers.

4.2. Granger Causality Experiment
4.2.1. Principal Component Analysis

Due to the large number of variables, analyzing causality is cumbersome. Therefore,
principal component analysis is first used to reduce the dimensionality of the five variables.
The scree plot is obtained using SPSS analysis.

Based on Figure 10, the cumulative variance contribution rate reaches 94.16%. Two
principal components are extracted, which can explain most of the information in the
original data. Figure 11 shows that the first principal component mainly consists of four
types of new ship deliveries, while the second principal component represents the BDI. The
line chart of standardized values for the first and second principal components is shown
in Figure 12.
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4.2.2. Granger Causality Test

To ensure the stationarity of the time series, the ADF unit root test is first performed
on two principal components and four patent quantities. Still, as they failed to pass the
unit root test, they must be first-order differenced. After first-order differencing, all data
can pass the unit root test (Table 2), indicating that the differenced data are a stationary
sequence and can be subjected to regression analysis.

Table 2. Unit root test.

Variables Level 1st Differenced ADF

PC1 −1.311 −2.608 ** YES
PC2 −1.792 −4.298 *** YES
SP1 1.770 −2.514 ** YES
SP2 0.332 −5.156 *** YES
SP3 1.081 −3.25 *** YES

SP4(SP1 + SP2 + SP3) 1.362 −2.958 *** YES
**. Significant at the 0.01 level (two-tailed); ***. Significant at the 0.001 level (two-tailed).
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We used Stata14.0 software to conduct Granger causality test experiments, regressing
variables at lag one, lag two, etc., and determining the optimal lag period based on the AIC
and BIC values. We found that when p = q = 3, the AIC and BIC values were the smallest
in our study. Therefore, we determined the lag period to be three and analyzed the causal
relationships between PC1 and PC2 and SP1, SP2, SP3, and SP4 separately. The results of
the lag three regression are shown in Table 3.

Table 3. Granger causality test.

Serial
Number Null Hypothesis chi-Square Test p

1 PC1 is the Granger cause of SP4 1016.68 0
2 PC2 is the Granger cause of SP4 21.24 0.0007
3 PC1 is the Granger cause of SP3 1003.02 0
4 PC2 is the Granger cause of SP3 373.69 0
5 PC1 is the Granger cause of SP1 2.30 × 105 0
6 PC2 is the Granger cause of SP1 26.18 0.0001
7 PC1 is the Granger cause of SP2 463.86 0
8 PC2 is the Granger cause of SP2 20.64 0.0009
9 SP4 is the Granger cause of PC1 5.91 0.3154
10 SP3 is the Granger cause of PC1 4.1 0.5352
11 SP1 is the Granger cause of PC1 2.97 0.7039
12 SP2 is the Granger cause of PC1 8.97 0.1103
13 SP4 is the Granger cause of PC2 37.94 0
14 SP3 is the Granger cause of PC2 989.9 0
15 SP1 is the Granger cause of PC2 70 0
16 SP2 is the Granger cause of PC2 28.81 0

According to Table 3, hypotheses 1–8 all have p-values less than 0.01, indicating their
significance at the 99% confidence level. Therefore, the original hypothesis is accepted,
and PC1 is the Granger cause of SP1-SP4, while PC2 is also the Granger cause of SP1-SP4.
New ship delivery and freight rates cause changes in innovation to varying degrees. From
the data, the larger the chi-square value, the smaller the p-value and the stronger the
significance. Therefore, PC1 has a larger chi-square value than PC2, indicating that new
ship delivery has a greater impact on innovation. In addition, for hypotheses 13–16, SP1-
SP4 are the Granger causes of PC2, and innovation has a certain impact on the fluctuation
in freight rates. However, for hypotheses 9–12, the p-value is greater than 0.1, indicating
a lack of significance. The original hypothesis is rejected, and SP1-SP4 is not the Granger
cause of PC1, indicating that innovation does not impact new ship delivery.

5. Conclusions

Research has found that customers, by observing the market trends reflected in the
rise or fall of the Baltic dry index (BDI), tend to adopt similar ship investment behaviors,
specifically in the decision-making process regarding the successful delivery and operation
of new ships. Therefore, the collective investment behavior of customers serves as a
true reflection of the shipbuilding market conditions. The influx of new ship deliveries
contributes to fluctuations in the BDI, indicating a clear correlation between the two,
demonstrating the development of customers’ predictive abilities. Customers’ predictive
abilities are sensitive to environmental and market factors, focusing primarily on how to
obtain returns through ship operations in the freight market. Customers make choices
regarding ship investments by analyzing and predicting changes in specific attribute values
within a certain range.

This study empirically examines the relationship between market-oriented antecedents
and customer predictive abilities. It adopts a customer-firm dyadic perspective to highlight
the value of customer predictive abilities. Previous research has predominantly focused on
identifying customers’ perceived value from the firm’s perspective, considering customer
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satisfaction and loyalty as important influencing factors of customer value. However, the
generation of customer value expectations, satisfaction, and loyalty through customer value
predictive abilities remains unclear, lacking consideration of the dynamism of customer
value. This study proposes a new research perspective that focuses on the impact of
customer predictive abilities on customer value. It highlights the dynamic capability that
reflects the utilization of composite operational resources. Developing customer predictive
abilities enables firms to identify customer value effectively, and this exceptional customer
linking capability is considered a key source of competitive advantage [25]. This capability
is derived from an overall understanding and anticipation of market demand potential.

In addition, the study made another important finding: customer predictive abilities
are a crucial driver of innovation in customized production. Customer predictive abilities
can influence innovation in customized production, and the ability of customers to predict
based on market conditions greatly impacts the product innovation and scale of enterprises.
This conclusion effectively validates the new connotation of service innovation, where
innovation is a core concept, referring to introducing new products, processes, or services
that are technologically driven and significantly different from previous offerings. These
new services bring about transformative changes for enterprises or customers, with a
heightened emphasis on the central role of customers. Consequently, they are launched
into the market and form new value co-creation models.

Furthermore, innovation has a certain impact on market price fluctuations. Service
companies must design resource integration mechanisms to support customers and enhance
sustainable innovation. They should leverage their perception of customer innovation
value to create driving forces or constraints for innovation. At the same time, companies
must simultaneously optimize their value creation and customer-perceived value creation.
Therefore, the effectiveness of innovation largely depends on the implementation and
sustained efficiency of customer service innovation. Establishing new market sensing
and customer value prediction capabilities is crucial for the long-term benefits of service
innovation.

In future research on sustainable innovation implementation, attention should be paid
to the potential changes that may occur during the innovation implementation process. Cur-
rently, research on dynamic capabilities focuses on developing new services by enterprises
and transforming service ecosystems. In the future, the dynamic capabilities theory should
be further applied to deepen our understanding of service innovation implementation. For
example, it can help explore dynamic capabilities, such as customer predictive abilities,
required for enterprises to implement a sustained series of incremental innovations and
breakthrough innovations in the long term. This will provide solid theoretical guidance
and scientific decision support for improving service innovation capabilities.
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