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Abstract: Solar irradiation (Rs) is the electromagnetic radiation energy emitted by the Sun. It
plays a crucial role in sustaining life on Earth by providing light, heat, and energy. Furthermore,
it serves as a key driver of Earth’s climate and weather systems, influencing the distribution of
heat across the planet, shaping global air and ocean currents, and determining weather patterns.
Variations in Rs levels have significant implications for climate change and long-term climate trends.
Moreover, Rs represents an abundant and renewable energy resource, offering a clean and sustainable
alternative to fossil fuels. By harnessing solar energy, we can actively reduce greenhouse gas
emissions. However, the utilization of Rs comes with its own challenges that must be addressed.
One problem is its variability, which makes it difficult to predict and plan for consistent solar energy
generation. Its intermittent nature also poses difficulties in meeting continuous energy demand
unless appropriate energy storage or backup systems are in place. Integrating large-scale solar energy
systems into existing power grids can present technical challenges. Rs levels are influenced by various
factors; understanding these factors is crucial for various applications, such as renewable energy
planning, climate modeling, and environmental studies. Overcoming the associated challenges
requires advancements in technology and innovative solutions. Measuring and harnessing Rs for
various applications can be achieved using various devices; however, the expense and scarcity of
measuring equipment pose challenges in accurately assessing and monitoring Rs levels. In order
to address this, alternative methods have been developed with which to estimate Rs, including
artificial intelligence and machine learning (ML) models, like neural networks, kernel algorithms,
tree-based models, and ensemble methods. To demonstrate the impact of feature selection methods
on Rs predictions, we propose a Multivariate Time Series (MVTS) model using Recursive Feature
Elimination (RFE) with a decision tree (DT), Pearson correlation (Pr), logistic regression (LR), Gradient
Boosting Models (GBM), and a random forest (RF). Our article introduces a novel framework that
integrates various models and incorporates overlooked factors. This framework offers a more
comprehensive understanding of Recursive Feature Elimination and its integrations with different
models in multivariate solar radiation forecasting. Our research delves into unexplored aspects
and challenges existing theories related to solar radiation forecasting. Our results show reliable
predictions based on essential criteria. The feature ranking may vary depending on the model
used, with the RF Regressor algorithm selecting features such as maximum temperature, minimum
temperature, precipitation, wind speed, and relative humidity for specific months. The DT algorithm
may yield a slightly different set of selected features. Despite the variations, all of the models exhibit
impressive performance, with the LR model demonstrating outstanding performance with low RMSE
(0.003) and the highest R2 score (0.002). The other models also show promising results, with RMSE
scores ranging from 0.006 to 0.007 and a consistent R2 score of 0.999.
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1. Introduction

Rs refers to the energy that is emitted by the Sun and travels through space to reach
the Earth. It consists of electromagnetic waves, including visible light, ultraviolet (UV)
rays, and infrared (IR) radiation. The Sun emits solar radiation in all directions, and a
small fraction of it reaches the Earth’s atmosphere. As the radiation passes through the
atmosphere, it may be absorbed, scattered, or reflected via gases, particles, and clouds.
Eventually, a portion of the solar radiation reaches the Earth’s surface.

All life is powered by the Sun. It keeps the thermal energy and power equilibrium in
the Earth’s atmospheric conditions and ecological systems. Even a minor fluctuation in
the Sun’s radiation emission would have a notable effect on the climate of the Earth [1]. It
influences Earth’s climate system, influencing temperature variations, atmospheric circula-
tion, and weather system formation, through heating of the atmosphere, oceans, and land.
Its distribution across the globe contributes to regional climate differences and temperature
gradients between the equator and poles. In the Earth’s water cycle, solar radiation plays a
crucial role, in providing the energy needed for processes like evaporation, condensation,
and precipitation, which, in turn, affect mean sea level fluctuations. It also fuels atmospheric
instability, which leads to the formation of severe weather phenomena such as storms,
hurricanes, and extreme weather events, through the heating of the Earth’s surface and the
creation of pressure differences. Moreover, solar radiation stands as the most abundant and
readily available energy source on Earth, serving as the primary energy source for natural
processes and ecosystems, as well as representing the most environmentally friendly and
sustainable form of energy [2]. It is also non-polluting, highly accessible, safe, and has
the potential to slow the intensification of greenhouse effects [3,4]. Through harnessing
solar radiation through technologies like solar panels and solar thermal systems, it can
be converted and used in many ways, such as generating electricity, pumping water, and
heating and purifying air and water [5]. Solar radiation at the planet’s surface consists of
three main components: direct radiation, which is sunlight that reaches Earth’s surface
without scattering or absorption; diffuse radiation, which is sunlight that has been scattered
by the atmosphere and arrives from different directions; and additional radiation, resulting
from the reflection and scattering of sunlight by the surrounding environment. Understand-
ing these components is crucial for optimizing solar energy systems, designing efficient
lighting in buildings, and studying microclimates. Insolation refers to the total ground ra-
diation [6]. The world is dealing with serious issues such as industrial air pollution, global
warming, and environmental destruction. Due to the detrimental environmental impact
of using non-renewable resources derived from ancient organisms, such as coal, oil, and
natural gas, which have harmed the environment, it has become crucial to seek alternative
solutions. Thankfully, clean energy, such as solar energy, offers a pathway through which
to address these issues effectively and create a more sustainable future. By transitioning to
clean energy sources, we can mitigate climate change, improve air quality, enhance energy
security, preserve ecosystems, alleviate energy poverty, and promote sustainable economic
growth. Embracing clean energy technologies is crucial in tackling these pressing global
problems and fostering a more resilient and environmentally friendly world [7]. Rs data
must be available to assess the solar energy capacity of a specific area and integrate it
into an electrical network [4]. Unfortunately, assessing the potential of Rs as a renewable
energy source can be challenging for most weather stations worldwide. This is primarily
due to the fluctuating and intermittent nature of the Rs resource and its lack of steadiness
and non-controllability, which limits access to reliable data. Also, expensive equipment
is required in order to measure it. These characteristics aggravate the situation. It makes
the management of the grid more intricate, disturbs the balance between production and
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consumption, causes variations in voltage, and raises concerns about quality and stability.
The initial cost of installing solar power systems, although decreasing, can still be relatively
high, posing a financial barrier for some individuals or businesses. Therefore, it is essential
to evaluate Rs effectively using other meteorological factors, including relative humidity,
ambient temperature, wind velocity, cloud cover, and other parameters [4,8]. For the
purpose of estimating Rs from these readily available weather data, quite a few methods
have been proposed, such as physical models, with complex structures due to complex
conditions of the environment [9]. Empirical models generate a regression-based formula,
either linear or not, that is simple with limited precision [10]. Statistical models, built on
statistical correlation, are more accurate, but cannot fully express the nonlinear association
between Rs and other factors [11,12]. ML models are of great interest to researchers world-
wide because they can solve highly nonlinear problems with high accuracy compared to
the other models [13–15]. All ML methods, mainly supervised models, typically require a
compromise between model accuracy and complexity [16,17]. Accordingly, determining
the optimum input aggregation for prediction models is indispensable. It avoids imper-
tinent or extra information, while exclusively keeping the most required features. This
mechanism is known as Feature Selection (FS) [8]. It lowers computational costs, improves
performance and over-fitting issues, and enhances multicollinearity problems and model
complexity [8,18,19]. The instructions for the FS technique include generating subsets,
evaluating them, setting stopping criteria, and validating results [20]. Pertaining to this
article, we propose a framework for feature selection (FS) aimed at categorizing different
lag values. Our objective is to investigate how FS models can enhance forecasting quality
in the field of Rs. Our research comprises two significant contributions:

• We employ an FS method with which to pick out essential feature sets from the initial
feature sets using various models;

• We measure each model’s feature importance score, RMSE, and R2 against the others
by assessing their performance on an NCEP (National Centers for Environmental
Prediction) dataset.

The choice of MVTS is driven by its ability to handle multiple variables and their
complex relationships, capturing their interdependencies and improving accuracy. By
leveraging MVTS analysis, we aim to contribute to the existing research and demonstrate
its effectiveness in accurately estimating solar radiation.

The subsequent sections of this paper are structured as follows: Section 2 provides an
overview of the field’s historical background and its current state. Section 3 elucidates the
methodology used in this research and presents the introduced model. Section 4 outlines the
working environment, presents the findings, and engages in a thorough discussion. Lastly,
Section 5 accentuates the key findings and outlines potential avenues for future research.

2. Related Works

Many researchers have proposed and published research studies on Rs estimation
using ML models. However, only some studies have comprehensively examined the
complete procedure of developing ML models. In particular articles, the discussion on FS
methods was limited to a brief overview [1,8,16,21–28].

In their study, Diagne et al. [19] explored an approach that combined statistical,
satellite-based, and numerical weather prediction (NWP) techniques. They also analyzed
the proposed techniques’ application conditions and spatial/temporal resolution ranges.
Yadav and Chandel [20] presented forecasting models for different time horizons (short-
term, medium-term, and long-term) of solar irradiation (Rs). They also evaluated methods
used for selecting input parameters in these forecasting models. Kumar et al. [21] sum-
marized widely utilized empirical regression models and the ANN model. Their findings
unequivocally demonstrated that ANN defeated empirical regression models. Meenal,
Selvakumar, and Pang et al. analyzed diverse ML models. They discovered that, although
the ANN did not exhibit high predictive accuracy, it did propose a means for enhancing
algorithm quality [16,22]. Voyant et al. examined the performance of ANN, SVM, and
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tree-based models, noted that they produced comparable accuracy, and recommended
using combined models [8]. In separate studies, both Chen et al. and Olatomiwa et al. used
SVM for their research. The results indicated that its accuracy varied depending on the
kernel functions used, and the optimized SVM demonstrated successful outcomes [23,29].
Mohanty et al. [26] conducted a study on the strengths and weaknesses of three models: an
Adaptive Network-based Fuzzy Inference System (ANFIS), a radial basis function neural
network (RBF-NN), and a multi-layer perception (MLP) model [30,31]. The ANFIS model
was the focal point of discussion among the researchers, who emphasized its distinctive
attributes as a hybrid intelligent model. The research team showcased its integration of
conventional mathematical approaches, underscoring its uniqueness. It combines fuzzy
logic and neural networks and improves learning and adaptability capabilities, yielding
better results. Hedar et al. created an entirely new hybrid ML model that employs an
auxiliary numerical data model with which to assess the accuracy of GHI predictions.
The suggested hybrid approaches employ FS, classification, regression ML paradigms,
and NWP models. Upon implementation on a dataset, the hybrid model lessened the
RMSE [25]. Guermoui et al. [24] thoroughly investigated hybrid machine-learning tech-
niques and defined five classifications: generalized, cluster-based, decomposition-based,
decomposition-clustering-based, and ensemble learning methods incorporating evolution-
ary techniques. In their study, Ağbulut, Gürel, and Biçen [32] conducted a comparison of
four ML algorithms (SVM, k-NN, DL, ANN) for predicting daily global solar radiation.
The findings revealed that, in general, ANN outperformed DL, SVM, and k-NN in terms
of prediction accuracy, while k-NN exhibited the least favorable performance among the
algorithms assessed. Huang et al. developed a comprehensive ensemble of twelve ML
methods, including a stacking model that combines the strengths of various algorithms in
order to predict and compare daily and monthly Rs measurements accurately. According to
the results, the XGBoost and stacking models, which combine RF, Gaussian Process Regres-
sion (GPR), GBRT, and XGBoost, exhibited superior predictive performance [1]. Guermoui,
Bouchouicha, Bailek, and Boland [32] introduced a novel integrated model that combines a
decomposition technique with an Extreme Learning Machine for predicting photovoltaic
power generation. The performance of the proposed model was assessed using data from
three distinct solar photovoltaic power plants situated in different locations with varying
climatic conditions. The results indicated that the normalized error consistently remained
below 10%, and the correlation coefficient exceeded 99% across the forecasting horizons.
These findings demonstrate the effectiveness and accuracy of the proposed integrated
model in forecasting photovoltaic power generation.

The following diagram (Figure 1) depicts the categorization of generalized models
employed in forecasting Rs, while the Table 1 examines and assesses recent studies on Rs
prediction utilizing machine learning techniques.

Table 1. Categorization of contemporary research pertaining to the prediction of Rs through the
utilization of machine learning techniques.

Contribution Date Forecasting Model Geographical
Position

Optimal
Model Findings

[33] 2022

The hybrid CXGBRFR
framework integrates deep

learning CNN, XGB (Extreme
Gradient Boosting) + RF, and

bird-inspired models like
HHD-BN (Harris Hawks Deep
Belief Network), DNN (Deep
Neural Network), ANN, ELM
(Extreme Learning Machine),

and MARS (Multivariate
Auto-Regressive Spline models)

Australia
daily

deep hybrid
CXGBRFR

Correlation coefficient (r):
deep hybrid CXGBRFR: 0.941–0.962

ANN/ELM: 0.934–0.956/0.954
DBN: 0.495–0.911
DNN: 0.922–0.941

MARS: 0.928–0.935
Legate’s and McCabe’s Index:

deep hybrid CXGBRFR: 0.943–0.962,
ANN: 0.933–0.958
ELM: 0.931–0.955
DBN: 0.493–0.911
DNN: 0.922–0.941

MARS: 0.928–0.942
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Table 1. Cont.

Contribution Date Forecasting Model Geographical
Position

Optimal
Model Findings

[34] 2022

Seasonal Auto-Regressive
Integrated Moving Average

(SARIMA), K-Nearest
Neighbors (KNN)
Recursive Neural

Network-Long Short-Term
Memory (RNN-LSTM)

UAE
daily

RNN-LSTM
and KNN

RNN-LSTM and KNN
outperform SARIMA.

RNN-LSTM and KNN perform similarly
RNN-LSTM slightly outperforms KNN

[27] 2022 SVM and Corrected-SVM Ghardaia, Algeria C-SVM

RMSE = 11.35%
rRMSE = 1.713 MJ/m2,
MABE = 1.623 MJ/m2

r = 12.61%

[28] 2022 LM, SCG, and RP 6 locations from
Tamil Nadu, India LM

LM:
R = 0.9376 for training data,

0.9340 For testing data.

[35] 2022

ANN, CNN,
RNN, SVR,

PR
RF

4
locations

in
Nigeria

RNN

Deep learning outperforms
RNN:

r = 0.9546, RMSE= 82.22 W/m2,
MAE = 36.52 W/m2

[36] 2022 DL, SMGRT,
and ANFIS Isparta, Turkey SMGRT

SMGRT is the best
MSE = 1.878 R2 = 0.960 MBE = 0.156

RMSE = 1.371

[37] 2022 RNN, LSTM,
and GRU

5 cities
Bangladesh GRU MAPE = 19.28%

[1] 2021 GPR, RF GBRT, XGBoost
{RF, GPR, XGBoost, GBRT} 12 sites in China

{GBRT,
XGBoost, GPR,

RF}
XGBoost

Daily predictions:
Stacking model outperforms

Monthly predictions:
Comparable performance

[5] 2021

MLP (XE MLP)
SVR
MLR

LightGBM

Fez,
Morocco

LightGBM
SVR

LightGBM:
Coefficient of determination R2 = 0.9377,

RMSE = 0.4827 kWh/m2

MAE = 0.3614 kWh/m2

[38] 2021
22 empirical models

RF, MLP, bagged trees,
boosted trees

5 locations in
Morocco. RF

r ranges from 0.8753 to 0.9620, normalized
mean absolute error (nMAE) ranges from
5.84 to 11.81%, negative root mean square
error (nRMSE) ranges from 7.85 to 15.33%.

[39] 2021 SVM
RF India RF RF: MSE = 0.750 R2 = 0.97

SVM: MSE = 0.867—R2 = 0.9385

[4] 2021 K-Nearest Neighbors (k-NN)
ANN, DL, SVM

4 Turkish
stations ANN

MBE = 0.195 MJ/m2

RMSE = 2.157 MJ/m2—rRMSE = 14.10%
T statistic = 1.280 MJ/m2—Mape = 15.92%

MABE = 1.597—R2 = 0.9320%

[22] 2020 ANN, RNN
Tuscaloosa,

Alabama in the
USA

RNN with
higher

computational
costs than

ANN.

RNN: better prediction results
Cloud cover impacts GSR prediction.

RMSE = 7.64%, Normalized Mean Bias
Error (NMBE) = 0.2%

[40] 2020 MLPd and RBF Ghardaia in
Algeria MLP MLP demonstrates slightly superior

performance.

[41] 2020 ANN

Sapporo, Tateno,
Fukuoka,

Ishigakijima, and
Minamitorishima

in
Japan

NA
Monthly diffuse, direct, and GRS forecasts

are extremely accurate.
All locations have a R2 of 0.988 or higher.
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Table 1. Cont.

Contribution Date Forecasting Model Geographical
Position

Optimal
Model Findings

[42] 2020

M5Tree,
CatBoost, and

XGBoost
SVM, RF

15 provinces
in China SVM CatBoost outperforms.

[43] 2019
Naive Bayes

2 days ahead global horizontal
irradiance

Austin, TX in USA Naive Bayes

Various weather type:
MBE = 2.73%, r = 86.33%

Clear days:
RMBE = 1.49%, r = 99.85%.

[44] 2019
RF, M5,
MARS,
CART

India
(Gorakhpur side) RF RF: highest accuracy,

CART: lowest accuracy.

[45] 2019 SVR, ANN,
and DT

4 provinces in
turkey NA

Boosting improves prediction
performance

RMSE between 4.6 and 14.6%

[46] 2019

SVR, GPR,
MLP, and

Extreme Learning Machines
(ELM)

Toledo in Spain ELM

Satellite measurements improved
predictability by increasing input

parameters.
ELM: RMSE = 60.60 W/m2, r2 = 96%

[47] 2019 SP, ANN, and
R Odeillo in France RF

nRMSE:
19.65% (GHI—first hour ahead),
27.78% (GHI—sixth hour ahead),

34.11% (Beam Normal
Irradiation—first hour ahead),

49.08% (Beam Normal
Irradiation—sixth hour ahead),

35.08% (Diffuse Horizontal
Irradiation—first hour ahead)

49.14% (Diffuse Horizontal
Irradiation—sixth hour ahead).

[48] 2019 SVR Gurugram in India NA

Performance SVR is influenced by the air
temperature (the most
significant parameter)
RMSE = 14.3 MJ/m2

[49] 2019 ANN, k-NN, empirical models Fez -Morocco KNN
Hybrid model

k-NN: rRMSE = 0.2027 R2 = 0.9663.
Hybrid model (k-NN—ANN):
rRMSE = 0.1785, R2 = 0.9750.

[50] 2018
Radial basis function (RBF)

MLP
GPR

Ghardaïa—Algeria.
Daily GPR

MBE = 0.1861 kWh/m2

nRMSE = 5.2%,
r = 0.9842

RMSE = 0.3194 kWh/m2,

[51] 2018 ANN
Regression Analysis

4 stations in Turkey
Monthly ANN ANN:

R2 = 0.961, RMSE =0.14

[52] 2018 SVM
XGBoost

China
Daily XGBoost

RMSE = 0.9238 kWh/m2 R2 = 0.7530,
XGBoost

MAE = 0.6925 kWh/m2—training
phase = 3.02 s—testing phase = 0.05 s

[2] 2018 GPR Mashha Iran
Daily, Monthly NA Daily: RMSE = 0.16 MAPE = 1.97%,

Model Efficiency (EF) = 0.99

[16] 2018 SVM ANN India Monthly SVM

SVM > ANN
ANN: more accurate with long training

time for large dataset.
R2(ANN) = 0.9968 R2 (SVM) = 0.9912

[53] 2017 ANFIS, SVM, ANN
6 provinces in

Mexico
daily

SVM RMSE = 2.578, R2 = 0.689
MAE = 1.97

[54] 2017 ANN 13 different stations ANN rMBE < 4% R2 = 0.64 r = 0.800
rRMSE = 13%
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Table 1. Cont.

Contribution Date Forecasting Model Geographical
Position

Optimal
Model Findings

[55] 2017 MLP ANFIS SVM DT Egypt
Daily MLP MLP > ANFIS > SVM > DT

[56] 2016 ANN Italy
Monthly ANN MAPE = 1.67% to 4.25%

based on the type and number of inputs

[57] 2016

Generalized Regression Neural
Network (GRNN)

Radial Basis Neural Network
(RBNN) MLP

12 Sites (China)
Daily MLP

RBNN > GRNN > MLP
R2 = 0.86

MAE = 0.425 kWh/m2

RMSE = 0.5388 kWh/m2

[58] 2016
ANN, ANFIS

Gene Expression Programming
(GEP)

Karmen, Iran
Daily ANN R2 = 0.935

[7] 2015 SVR,
Empirical 2 provinces (Iran) SVR RMSE = 0.4515 kWh/m2

R2 = 0.9330

[21] 2015 Regression models.
ANN (1 month) ANN ANN > Regression models.

[59] 2015 Linear techniques
SVM

Italy
1 Day SVM SVM > linear model

[60] 2015 k-NN USA
30 min K-NN

k-NN > persistence
Enhancements in the forecast between

10% and 25%

[61] 2015
ANN—k-NN—SVR

Autoregressive models
persistence

Italia
hourly SVR SVR > ANN > AR > k-NN > persistence
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Figure 1. Categorization of the generalized models employed in predicting Rs.

Finally, the comparison of various models reveals interesting insights into their per-
formance. The deep hybrid CXGBRFR model consistently demonstrates high correlation
coefficients, ranging from 0.941 to 0.962, outperforming other models such as ANN/ELM
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(0.934–0.956/0.954), DBN (0.495–0.911), DNN (0.922–0.941), and MARS (0.928–0.935). RNN-
LSTM and KNN exhibit comparable performance, with RNN-LSTM slightly outperforming
KNN. Corrected SVM shows accurate predictions, with an RMSE of 11.35% and rRMSE of
1.713 MJ/m2, while LM exhibits a correlation coefficient (R) of 0.9376 for training data and
0.9340 for testing data. Deep learning models, particularly RNN, outperform others, with
an RMSE of 82.22 W/m2 and an MAE of 36.52 W/m2. Additionally, other models, such as
SMGRT, GRU, LightGBM, RF, SVM, MLP, GPR, XGBoost, GHI, ANFIS, SVR, and Naive
Bayes, show varying levels of performance across different evaluation metrics. While the
accuracy of the ANN and ARIMA approaches is nearly equal, ANN has the advantage of
being more flexible. Merged and generalized models surpassed conventional empirical
models. Additionally, combined models tended to be more accurate than generalized
models, using the same input parameters. Single-stochastic algorithm methods, such as
ANN and ARIMA, are progressively becoming less relevant. Because the accuracy of the
predictions is contingent on the integrity of the training data, choosing the best input is
critical for FS. Through removing unnecessary or redundant information and retaining only
the most important features, FS reduces computing costs and solves overfitting problems.
It also aids in multicollinearity problems. There are three FS methods: filter, wrapped,
and embedded [15,62]. Overall, this comparative analysis of the models highlights their
strengths and weaknesses, providing valuable insights for understanding their capabilities
in analyzing the given data, as well as for future model selection and application.

3. Our Proposed Approach

In this section, we will introduce the proposed model, as depicted in Figure 2, and an
overview of the methodology used in this study.

We begin by identifying the data requirements and collecting the data. We analyze the
information for both quantity and quality. Second, we standardize the data from different
formats, correct errors, and expand it, adding more dimensions if necessary. We reduce
noise and ambiguities, sample from large databases, select attributes that identify the
most significant attributes, and reduce dimensions by implementing various strategies
(feature engineering). As we possess a model based on time series, the initial step in
transforming the data involves framing it as a supervised learning problem using the
sliding window technique.

The steps for processing in our study are described as follows and shown in the
flowchart in Figure 2:

1. Import records from CSV files;
2. To ascertain the crucial correlation among all the features employed in the training

process, we first need to determine the number of features in the training set;
3. After determining the number of features in the previous step, the Recursive Feature

Elimination (RFE) technique is applied to identify the features from the CSV files that
exhibit the strongest correlation;

4. In order to divide the dataset into distinct folds for training and testing, we must
indicate the number of folds (in this case, ten folds are chosen);

5. Divide the dataset into numerous folds, with one allocated for testing and the remain-
der for training, through k-fold cross-validation;

6. Train the data using various algorithms (RF, DT, LR, Pr, GBM) to then train the
model using the created training dataset. It is then used to test the rest of the dataset
compared to the randomly selected feature;

7. In the next step, the trained model is applied to the test dataset, and various metrics
are computed in order to assess the accuracy and efficacy of the model;

8. After calculating the scoring metrics, the final results are displayed and graphed.
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Figure 2. Our proposed model.

4. Experimental Study and Results

The proposed ML approach focuses on identifying the most relevant features that
contribute significantly to solar radiation estimation. Through iteratively eliminating less
informative features, the RFE algorithm helps in building a more accurate predictive model.
Through utilizing only the most influential features, the model can better capture the
underlying patterns and relationships in the data, leading to improved accuracy com-
pared to traditional methods that may consider all features. It helps in mitigating the
risk of overfitting, which occurs when a model performs well on the training data but
fails to generalize to new, unseen data. Through eliminating less informative features,
RFE prevents the model from being overly complex and overly sensitive to noise in the
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training data. This reduction in overfitting enhances the model’s ability to provide accurate
estimations on unseen data, improving its overall reliability. The reduction in the number
of features not only simplifies the modeling process, but also improves computational
efficiency. With a smaller feature space, the model requires fewer computational resources
and less training time, making it more efficient compared to other methods that consider
all available features. This provides transparency and interpretability in the Rs estimation
process. In identifying the subset of features that contribute most to the prediction, it helps
in understanding the key factors driving the solar radiation patterns. This interpretability
allows domain experts to gain insights and make informed decisions based on the selected
features. These advantages make it a promising approach when compared to existing
methods, leading to more accurate and efficient predictions of Rs.

The conversion from time series to lag values, as employed in our research, offers
several advantages over existing methods. It helps capture temporal dependencies and
patterns in the data, incorporating past observations as predictors. This enables the model
to better capture the historical context and temporal dynamics of the data, leading to
improved prediction accuracy compared to methods that do not consider lag values.
Additionally, the conversion to lag values facilitates feature engineering through creating
additional informative variables. By including lagged features as predictors, we provide
the model with a richer set of inputs, capturing the relationship between current and past
observations and enabling more accurate predictions. Furthermore, the conversion to lag
values can enhance computational efficiency through reducing the dimensionality of the
data. Transforming the time series into a matrix of lagged features streamlines the modeling
process and reduces computational complexity, leading to improved efficiency compared
to methods that consider the entire time series. This approach also provides flexibility in
handling various time series data. It allows for the incorporation of different lag lengths or
time intervals, enabling the model to capture different time dependencies present in the
data. This adaptability enables us to tailor the lagged feature representation to different
temporal patterns and achieve more accurate predictions for specific time series datasets.
Moreover, the conversion to lag values enhances the interpretability of the model. By
analyzing the importance and influence of past observations on current predictions, we
gain insights into the temporal dynamics and relationships within the time series. This
interpretability enables better understanding and interpretation of the model’s predictions.

The model parameters are carefully selected and tuned in order to achieve the best
performance in estimating solar radiation. We employ a systematic approach where we
define a list of hyperparameter values and test them one by one. The model is trained
and evaluated using the chosen evaluation metric for each hyperparameter value. The
hyperparameter configuration that yields the best performance metric is selected as the
optimal choice. This iterative process of parameter tuning and evaluation allows us to
optimize the model and ensure accurate and reliable predictions. We place great importance
on this step, in order to enhance the overall effectiveness of our developed model.

4.1. Environment Description

For this ongoing investigation, we performed examinations utilizing data compiled
over a period of 36 years (1979–2014), sourced from The National Centers for Environmental
Prediction. This dataset encompasses 12,988 entries of daily humidity, minimum and
maximum temperatures, longitude, latitude, elevation, wind, precipitation, and sunlight.
Our investigation was conducted and completed on a portable computer, provided with a
Core-i5 3437U CPU (2.4 GHz)—DDR3 memory capacity of 16 GB; the operating system
employed during the experiment was Windows 10 Professional (64-bit), and the model
was trained using Python version 3.9.7. In order to evaluate it, k-fold was repeated three
times, with ten folds across all repetitions; cross-validation, a statistical technique, employs
limited samples for resampling purposes. The k-fold cross-validation procedure blindly
divides the dataset into k non-overlapping folds, as shown in Figure 3. The held-back test
set ensures that each fold is used only once. At the same time, the remaining sections are



Sustainability 2023, 15, 10609 11 of 21

continuously merged to compose the training set. Performance metrics are computed and
preserved on the test set. At the same time, the remaining folds are repeatedly joined to
form the training set. Performance metrics are calculated and saved on the test set.
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Performing the method several times for the designated number of folds is essential
in k-fold cross-validation. The average performance metrics are provided after fitting and
evaluating k models on the corresponding hold-out test sets. This technique offers the
benefit of minimizing common mistakes and enhancing the anticipated model performance.

The MAE is a metric that quantifies the difference in inaccuracies between two in-
stances of an identical event taking place. It compares the anticipated outcome with the
observed outcome, denoted as X vs. Y, where the values of X and Y are identical. The
computation of MAE is as follows:

MAE =
∑n

i=1|yi − xi|
n

=
∑n

i=1|ei|
n

(1)

It computes the average absolute deviation observed between anticipated and tar-
get values. An upward pattern implies a reduction in the measure. The feedback data
substantially vary from the training data. A decreasing trend indicates an increase in the
metric. This indicates that the model’s training is efficient. The importance of the feature
assigns a rating to each feature in the dataset according to its significance. The ratings
explain the “importance” of each feature. A better score signifies that the characteristic
holds greater significance and will exert a more potent influence on the model. There
are multiple methods with which to calculate the importance of features. This write-up
presents an outline of the Gini importance technique utilized in Scikit-learn for evaluating
the impurity of nodes. The weight of a node is determined using the proportion of samples
that arrive at it relative to the total number of samples. The reduction in the impurity of a
node is known as feature importance, which is equivalent to the probability of the node.
When a decision tree has two child nodes, the formula is as follows:

nij = wjCj −wleft(j)Cleft(j) −wright(j)Cright(j) (2)

where:
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nij represents the importance of node j, wj is the weighted count of samples reaching
node j, Cj measures the impurity measure at node j, left(j) signifies the left child node of
node j, and right(j) the right child node of node j.

Formula (2) evaluates the feature importance for every DT through considering the
significance of the node j (nj). An exclusive attribute can be utilized in every branch of the
tree. Hence, we assess the importance of features by making use of Equation (3).

f ii =
∑j:node j splits on f eature i nij

∑k∈all nodes nik
(3)

where:
fi_i: Importance of feature i
ni_j: Importance of node j
Through dividing each feature’s importance by the total importance value, these

values can be standardized to a numerical range that falls between 0 and 1. This can be
achieved by utilizing Equation (4).

norm f ii =
f ii

∑j∈all f eatures f ij
(4)

The Min–Max normalization technique is employed in order to avoid the negative
impact of heavy weights. This method is a linear approach that maintains the associations
among the initial data points. It recognizes the smallest and largest values of characteristic
X as (minX) and (maxX). The process involves calculating the value v’i of X within the range
[new_minX, new_maxX] through transforming the value vi using Equation (5). Equation (3)
demonstrates the normalization formula utilized for range transformation.

v′i =
vi −minX

maxX −minX
(new_maxX − new_minX) + new_minX (5)

If the normalization of a following input instance goes beyond the range of the
primary data for X, an “out-of-bounds” error is indicated [63]. The functioning of RFE
involves developing prediction models, evaluating features, eliminating those with minor
significance, and repeating this process until the desired number of features is attained. RFE
is a wrapper-based FS method that uses a filter-based FS method within its internal process.
Fundamentally, it utilizes unique ML algorithms. RFE encompasses and applies these
algorithms in order to aid in the feature selection process. The FS method based on filters
evaluates each characteristic and selects those with the most elevated (or lowest) ranking.

RFE employs a technique to choose a subset of features from the training set through
eliminating irrelevant features until the optimum number of features is obtained. This
involves the following steps [64]:

• Training the ML algorithm implemented in the heart of the model;
• Ranking the features based on their importance;
• Eliminating the insignificant features and providing the model with further training;
• Continuing the procedure until the intended quantity of features is chosen;
• Creating a metric of importance for variables that sorts the predictors according to

their relevance once the entire model has been built;
• In every cycle, the model is reconstructed after eliminating the least significant predictors.

4.2. Discussion of Results

As illustrated in the chart below, we are dealing with an MVTS model, where we can
observe periodicity in each parameter. A collection of datasets where two or more variables
are observed each time refers to an MVTS. While most time series analysis techniques focus
on univariate data, which is simpler to comprehend and handle, MVTS analysis, on the
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other hand, is often more challenging to manipulate and model. It concurrently deals with
multiple time series, typically more intricate than univariate analysis.

The initial data preprocessing phase involves understanding each column’s data type
and identifying missing values, duplicates, and errors. Several preprocessing steps can be
taken. Firstly, the missing values need to be identified and handled. Secondly, duplicates
should be identified and removed. Thirdly, it is crucial to identify and manage errors,
such as outliers, using statistical methods, and decide whether to replace or remove them.
Fourthly, data should be stored in the appropriate data type, and data types should be
converted if necessary. Fifthly, columns should be renamed with meaningful names to
facilitate analysis. Sixthly, irrelevant columns that are not necessary for analysis should be
removed. Finally, numeric variables are selected and standardized using the Standard Scaler
method from Scikit-learn. The selected columns include MaxTemperature, MinTemperature,
Precipitation, Wind, RelativeHumidity, and Solar. The appropriate transform method fits
the scaler to the data and transforms the numeric variables, ensuring the data are ready
for analysis.

Standardization is a data preprocessing technique that transforms data into a standard
format in order to allow for a fairer comparison between them. It is helpful for many
ML techniques, as it can improve model performance and reduce biases introduced by
variables with different scales. This technique involves centering the data around zero and
scaling them to the same range. Specifically, for each variable, Standardization includes
subtracting the mean of the variable from each observation and dividing the outcome by
the variable’s standard deviation. This process transforms the variable into a distribution
centered on 0 with a variance of 1 [65]. We used the Standard Scaler method from the
Sklearn preprocessing module to perform Standardization.

Seasonal adjustment is a common technique used in time series analysis in order to
remove the effects of seasonal patterns from a time series dataset. Seasonal patterns are
recurring patterns within a fixed period, such as a month, a quarter, or a year. By performing
a seasonal difference on the time series data, we can eliminate the seasonal pattern and
focus on the data’s underlying trends and irregular components. In this case, the code
uses a lag of 12 months or one year to perform the seasonal difference, subtracting each
value from the value 12 months prior. This will help to remove any recurring patterns that
occur yearly. Thereafter, we trim off the first year of empty data (since the first 12 months
of differenced data will be NaN) and save the differenced dataset. After performing the
seasonal difference, the differenced data for the variables from July 2013 to July 2014 is
plotted in the line graphs below (Figure 4). This allows us to inspect the data and see
the seasonal adjustment visually. Overall, seasonal adjustment is an essential step in time
series analysis, as it removes the effects of seasonal patterns from the time series data. This
enables us to gain a deeper insight into the fundamental trends and patterns within the
data, thereby enhancing the precision of our forecasts and predictions.

As we have an MVTS problem, transforming data involves converting a time series,
which follows a chronological order, into a supervised learning task that includes input
and output patterns (X, Y) using the sliding window method. This allows an algorithm to
understand how to anticipate the output based on the input patterns. The sliding window
technique involves utilizing the preceding to anticipate the succeeding time steps. It is
sometimes referred to as the window method in specific texts. In statistics, it is known as
a lag or lagging method. It proves to be beneficial in decreasing the time complexity of
particular issues. The approach applies to solving almost any problem that satisfies the
condition of being capable of adding items consecutively or simultaneously into a single
variable. The sliding window strategy is adaptable for both univariate and MVTS analysis
(Figure 5).
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Feature selection is an important process in preparing data. In this case, feature selec-
tion is performed using the RF Regressor algorithm. The selected features are as follows:

• MaxTemperature of months 12, 10, 4, and 1;
• MinTemperature of months 12, 11, 10, 6, 4, 3, 2, and 1;
• Precipitation of months 12, 11, 10, 7, and 1;
• Wind speed of months 12, 11, 7, 6, and 1;
• Relative humidity of months 11 and 3.

These features were selected using the RF Regressor algorithm, to build a model that
uses a set of DTs to predict continuous values. The algorithm analyzes feature importance
to evaluate the effect of each feature on the target variable and select the most critical
features for prediction. Feature importance ranking using RF is shown in Figure 6:
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The DT algorithm is an ML model that builds a tree-like structure in order to classify
or forecast a target variable based on input features. The algorithm recursively splits the
data based on the feature that results in the highest information gain, which measures the
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reduction in entropy after the split. The features with the highest information gain are
considered the most important for prediction. In this case, the DT algorithm was used for
FS, and the picked features are:

• MaxTemperature of months 12, 10, 4, and 1;
• MinTemperature of months 12, 10, 6, 5, 4, 3, 2, and 1;
• Precipitation of months 12, 9, 8, 6, and 1;
• Wind speed of months 12, 9, 6, and 1;
• Relative humidity of months 11, 9, 5, and 2.

It is interesting to note that some features picked with the DT algorithm differ from
those selected with the RF Regressor algorithm. In conclusion, the DT algorithm selected
essential features for predicting solar radiation based on their information gain. However,
the selected features may differ from those selected according to the algorithm used in
the core of RFE, and it is important to compare and assess the performance of different
techniques and FS methods.

In order to compare the lr, RF, DT, Pr, and GBM performance models, a box and
whisker plot is presented for the RMSE and R2 evaluation metrics (Figure 7).
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Based on the RMSE and R2 scores, the LR model appears to have the most outstand-
ing performance, of 0.003 (0.002). Nevertheless, the other models also show impressive
performance, with RMSE scores ranging from 0.006 to 0.007 and consistent R2 scores
of 0.999.

5. Conclusions

FS is a critical phase in preparing data for ML models; because selecting irrelevant or
redundant features can lead to overfitting or poor model performance, choosing the right
features is critical for building accurate and robust models.

Recursive Feature Elimination is used for FS. It recursively removes features from the
dataset and constructs a model using the remaining features until the desired number of
features is reached.

The approach used in our research work offers several advantages: It improves the
model interpretability and enhances model performance. It focuses on the most informative
features, leading to more accurate predictions, and takes into account feature interactions
and dependencies. It can handle multicollinearity issues through iteratively eliminating
redundant features, ensuring that the final feature set is independent and representative.

RFE offers flexibility in algorithm selection; it is a versatile technique that can be used
with different ML algorithms. It is not limited to a specific algorithm and can be applied
with various models, such as linear regression, support vector machines, or random forests.
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It also automates the FS process. It provides a ranking of the importance of each feature,
allowing researchers to gain insights into the relative significance of different variables
in the model’s performance. In this case, RFE is used in conjunction with the different
algorithms to identify the most essential features for prediction. The advantage of using
RFE is that it considers the interaction between features rather than simply evaluating each
feature in isolation.

The RF Regressor algorithm analyzes feature importance in order to evaluate the effect
of each feature on the target variable and select the most critical features for prediction. On
the other hand, the DT algorithm is a model that builds a tree-like structure in order to
classify or estimate a target variable derived from a set of input features. The features with
the highest information gain are considered the most important for prediction. As we can
see from the results, the two algorithms selected different sets of features, which may be
due to the different methods used for evaluating feature importance. However, we have
observed common patterns in the FS across different models, indicating their significance
in accurately estimating solar radiation. Some of the key features consistently identified as
important for accurate Rs estimation include:

• MaxTemperature of months 12, 10, 4, and 1: The maximum temperature during these
months likely captures seasonal variations and their impact on solar radiation levels;

• MinTemperature of months 12, 10, 6, 4, 3, 2, and 1: The minimum temperature during
these months provides insights into the daily temperature range, which can influence
solar radiation patterns;

• Precipitation of months 12 and 1: The amount of precipitation during these months
may affect cloud cover and atmospheric conditions, impacting solar radiation levels;

• Wind speed of months 12, 6, and 1: The wind speed during these months is an indicator
of atmospheric dynamics, which can influence the dispersion of clouds and affect solar
radiation availability;

• Relative humidity of month 11: The relative humidity in month 11 likely represents a
critical period for moisture content in the air, which can affect solar radiation absorp-
tion and scattering.

These features highlight the importance of considering meteorological factors, such
as temperature, precipitation, wind speed, and relative humidity, in accurately estimating
solar radiation. By incorporating these influential features, our approach captures the
relevant environmental dynamics and improves the precision of solar radiation estimation.

In order to assess and contrast the effectiveness of various models, the RMSE and R2
evaluation metrics were used, and a box and whisker plot was created to visualize the
results. LR had the top RMSE and R2 scores (0.003, 0.002), followed closely by other models,
such as RF, DT, Pr, and GBM (RMSE scores ranging from 0.006 to 0.007 and consistent R2
scores of 0.999). This suggests that an ensemble of regression models can help improve the
accuracy of predictions for complex problems. Compared to other research, Sivanandam
and Deepa discovered that an ensemble of regression models, including linear regression,
random forest, and Gradient Boosting, outperformed individual models in predicting
housing prices [66]. Additionally, Kumar and Singh compared machine learning models
for predicting stock prices and found that the Gradient Boosting and random forest models
outperformed other models [67].

The novelty of the proposed approach lies in several aspects. Firstly, it introduces a
novel framework that integrates various models, offers insights into previously unexplored
aspects, and challenges existing theories. It emphasizes the importance of feature selection
and model evaluation within the context of RFE, shedding light on the factors influencing
feature rankings and prediction performance. This contributes to a deeper understanding of
the underlying mechanisms of feature selection. Secondly, the study provides insights into
the suitability of LR, RF, DT, CART, and GBM models for MVTS analysis, which expands
the knowledge base for solving complex problems in this domain. Lastly, by showcasing
the effectiveness of RFE as a feature selection technique, the research offers a practical
approach to enhancing the performance of predictive models in complex problem domains.
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In conclusion, this study presents novel insights, contributes to existing knowledge in
feature selection and model evaluation, and provides a practical approach to addressing
challenges in MVTS analysis.

Our approach holds significant potential for real-world applications in various areas
related to solar energy systems. It can assist in the planning and design of solar energy
systems. Thus, the developers can optimize the placement and capacity of solar panels,
maximizing energy production and ensuring optimal system efficiency. This leads to more
cost-effective and sustainable solar energy installations. It can contribute to providing accu-
rate solar radiation forecasts at different spatial and temporal resolutions. This information
allows grid operators to balance the fluctuating solar energy supply with demand, optimize
grid stability, and reduce reliance on conventional energy sources. Understanding solar
radiation patterns and variability is essential for environmental impact studies. Reliable
solar radiation estimation enables both researchers and policymakers to assess the environ-
mental effects of solar energy systems, analyze their impact on ecosystems, and develop
mitigation strategies.

Before widely adopting our approach, it is important to consider its limitations and
potential drawbacks. These include the requirement for accurate and comprehensive input
data, sensitivity to the chosen model, potential limitations in generalization to different
geographical locations and climate conditions, the dynamic nature of solar radiation that
may not be fully captured, the trade-off between interpretability and accuracy, the need
for sufficient computational resources, and the necessity for validation and benchmarking
against existing methods. Addressing these limitations will contribute to the robustness
and suitability of our approach for real-world applications in solar radiation estimation.

To further enhance the validity and applicability of our findings, future research should
consider additional evaluation metrics, explore alternative feature selection techniques, and
investigate the generalizability of our approach to different datasets and problem contexts.
By continuing to advance the feature selection and model evaluation field, we can improve
the accuracy and robustness of ML models in solving real-world challenges.
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36. Üstün, İ.; Üneş, F.; Mert, İ.; Karakuş, C. A comparative study of estimating solar radiation using machine learning approaches:
DL, SMGRT, and ANFIS. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 10322–10345. [CrossRef]

37. Faisal, A.N.M.F.; Rahman, A.; Habib, M.T.M.; Siddique, A.H.; Hasan, M.; Khan, M.M. Neural networks based multivariate time
series forecasting of solar radiation using meteorological data of different cities of Bangladesh. Results Eng. 2022, 13, 100365.
[CrossRef]

38. Bounoua, Z.; Chahidi, L.O.; Mechaqrane, A. Estimation of daily global solar radiation using empirical and machine-learning
methods: A case study of five Moroccan locations. Sustain. Mater. Technol. 2021, 28, e00261. [CrossRef]

39. Meenal, R.; Michael, P.A.; Pamela, D.; Rajasekaran, E. Weather prediction using random forest machine learning model. Indones.
J. Electr. Eng. Comput. Sci. 2021, 22, 1208. [CrossRef]

40. Khelifi, R.; Guermoui, M.; Rabehi, A.; Lalmi, D. Multi-step-ahead forecasting of daily solar radiation components in the Saharan
climate. Int. J. Ambient. Energy 2020, 41, 707–715. [CrossRef]

41. Kurniawan, A.; Shintaku, E. Estimation of the Monthly Global, Direct, and Diffuse Solar Radiation in Japan Using Artificial
Neural Network. Int. J. Mach. Learn. Comput. 2020, 10, 253–258. [CrossRef]

42. Fan, J.; Wang, X.; Zhang, F.; Ma, X.; Wu, L. Predicting daily diffuse horizontal solar radiation in various climatic regions of China
using support vector machine and tree-based soft computing models with local and extrinsic climatic data. J. Clean. Prod. 2020,
248, 119264. [CrossRef]

43. Kwon, Y.; Kwasinski, A.; Kwasinski, A. Solar Irradiance Forecast Using Naïve Bayes Classifier Based on Publicly Available
Weather Forecasting Variables. Energies 2019, 12, 1529. [CrossRef]

44. Srivastava, R.; Tiwari, A.N.; Giri, V.K. Solar radiation forecasting using MARS, CART, M5, and random forest model: A case
study for India. Heliyon 2019, 5, e02692. [CrossRef]

45. Basaran, K.; Özçift, A.; Kılınç, D. A New Approach for Prediction of Solar Radiation with Using Ensemble Learning Algorithm.
Arab. J. Sci. Eng. 2019, 44, 7159–7171. [CrossRef]

46. Cornejo-Bueno, L.; Casanova-Mateo, C.; Sanz-Justo, J.; Salcedo-Sanz, S. Machine learning regressors for solar radiation estimation
from satellite data. Sol. Energy 2019, 183, 768–775. [CrossRef]

47. Benali, L.; Notton, G.; Fouilloy, A.; Voyant, C.; Dizene, R. Solar radiation forecasting using artificial neural network and random
forest methods: Application to normal beam, horizontal diffuse and global components. Renew. Energy 2019, 132, 871–884.
[CrossRef]

48. Bhola, P.; Bhardwaj, S. Estimation of solar radiation using support vector regression. J. Inf. Optim. Sci. 2019, 40, 339–350.
[CrossRef]

49. Marzouq, M.; Bounoua, Z.; El Fadili, H.; Mechaqrane, A.; Zenkouar, K.; Lakhliai, Z. New daily global solar irradiation estimation
model based on automatic selection of input parameters using evolutionary artificial neural networks. J. Clean. Prod. 2019, 209,
1105–1118. [CrossRef]

50. Guermoui, M.; Gairaa, K.; Rabehi, A.; Djafer, D.; Benkaciali, S. Estimation of the daily global solar radiation based on the Gaussian
process regression methodology in the Saharan climate. Eur. Phys. J. Plus 2018, 133, 211. [CrossRef]

51. Yıldırım, H.B.; Çelik, Ö.; Teke, A.; Barutçu, B. Estimating daily Global solar radiation with graphical user interface in Eastern
Mediterranean region of Turkey. Renew. Sustain. Energy Rev. 2018, 82, 1528–1537. [CrossRef]

52. Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Yu, X.; Lu, X.; Xiang, Y. Comparison of Support Vector Machine and Extreme
Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates:
A case study in China. Energy Convers. Manag. 2018, 164, 102–111. [CrossRef]

53. Quej, V.H.; Almorox, J.; Arnaldo, J.A.; Saito, L. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar
radiation in a warm sub-humid environment. J. Atmos. Sol.-Terr. Phys. 2017, 155, 62–70. [CrossRef]

54. Marzo, A.; Trigo-Gonzalez, M.; Alonso-Montesinos, J.; Martínez-Durbán, M.; López, G.; Ferrada, P.; Fuentealba, E.; Cortés, M.;
Batlles, F.J. Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation.
Renew. Energy 2017, 113, 303–311. [CrossRef]

55. Hassan, M.A.; Khalil, A.; Kaseb, S.; Kassem, M.A. Potential of four different machine-learning algorithms in modeling daily
global solar radiation. Renew. Energy 2017, 111, 52–62. [CrossRef]

56. Alsina, E.F.; Bortolini, M.; Gamberi, M.; Regattieri, A. Artificial neural network optimisation for monthly average daily global
solar radiation prediction. Energy Convers. Manag. 2016, 120, 320–329. [CrossRef]

57. Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Salazar, G.A.; Zhu, Z.; Gong, W. Solar radiation prediction using different techniques:
Model evaluation and comparison. Renew. Sustain. Energy Rev. 2016, 61, 384–397. [CrossRef]

58. Mehdizadeh, S.; Behmanesh, J.; Khalili, K. Comparison of artificial intelligence methods and empirical equations to estimate daily
solar radiation. J. Atmos. Sol.-Terr. Phys. 2016, 146, 215–227. [CrossRef]

59. De Felice, M.; Petitta, M.; Ruti, P.M. Short-term predictability of photovoltaic production over Italy. Renew. Energy 2015, 80,
197–204. [CrossRef]

https://doi.org/10.1016/j.esd.2022.02.002
https://doi.org/10.1002/er.6529
https://doi.org/10.1080/15567036.2020.1781301
https://doi.org/10.1016/j.rineng.2022.100365
https://doi.org/10.1016/j.susmat.2021.e00261
https://doi.org/10.11591/ijeecs.v22.i2.pp1208-1215
https://doi.org/10.1080/01430750.2018.1490349
https://doi.org/10.18178/ijmlc.2020.10.2.928
https://doi.org/10.1016/j.jclepro.2019.119264
https://doi.org/10.3390/en12081529
https://doi.org/10.1016/j.heliyon.2019.e02692
https://doi.org/10.1007/s13369-019-03841-7
https://doi.org/10.1016/j.solener.2019.03.079
https://doi.org/10.1016/j.renene.2018.08.044
https://doi.org/10.1080/02522667.2019.1578093
https://doi.org/10.1016/j.jclepro.2018.10.254
https://doi.org/10.1140/epjp/i2018-12029-7
https://doi.org/10.1016/j.rser.2017.06.030
https://doi.org/10.1016/j.enconman.2018.02.087
https://doi.org/10.1016/j.jastp.2017.02.002
https://doi.org/10.1016/j.renene.2017.01.061
https://doi.org/10.1016/j.renene.2017.03.083
https://doi.org/10.1016/j.enconman.2016.04.101
https://doi.org/10.1016/j.rser.2016.04.024
https://doi.org/10.1016/j.jastp.2016.06.006
https://doi.org/10.1016/j.renene.2015.02.010


Sustainability 2023, 15, 10609 21 of 21

60. Pedro, H.T.C.; Coimbra, C.F.M. Nearest-neighbor methodology for prediction of intra-hour global horizontal and direct normal
irradiances. Renew. Energy 2015, 80, 770–782. [CrossRef]

61. Lazzaroni, M.; Ferrari, S.; Piuri, V.; Salman, A.; Cristaldi, L.; Faifer, M. Models for solar radiation prediction based on different
measurement sites. Measurement 2015, 63, 346–363. [CrossRef]

62. Demirhan, H. The problem of multicollinearity in horizontal solar radiation estimation models and a new model for Turkey.
Energy Convers. Manag. 2014, 84, 334–345. [CrossRef]

63. Al Shalabi, L.; Shaaban, Z. Normalization as a Preprocessing Engine for Data Mining and the Approach of Preference Matrix. In
Proceedings of the 2006 International Conference on Dependability of Computer Systems, Szklarska Poreba, Poland, 25–27 May
2006; pp. 207–214. [CrossRef]

64. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013.
65. Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer

Series in Statistics; Springer: New York, NY, USA, 2009.
66. Sivanandam, S.N.; Deepa, S.N. Hybrid models using support vector regression for stock price prediction. J. Appl. Res. Technol.

2014, 12, 205–214.
67. Singh, S.; Madan, T.K.; Kumar, J.; Singh, A.K. Stock Market Forecasting using Machine Learning: Today and Tomorrow. In

Proceedings of the 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies
(ICICICT), Kannur, India, 5–6 July 2019; pp. 738–745. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.renene.2015.02.061
https://doi.org/10.1016/j.measurement.2014.11.037
https://doi.org/10.1016/j.enconman.2014.04.035
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.38
https://doi.org/10.1109/ICICICT46008.2019.8993160

	Introduction 
	Related Works 
	Our Proposed Approach 
	Experimental Study and Results 
	Environment Description 
	Discussion of Results 

	Conclusions 
	References

