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Abstract: Achieving improvement in the resilience of road transport networks by ensuring their
smooth functioning and prompt recovery in the event of damage is crucial. This study focused
on optimal measures and compared the effect of improvement measures on the resilience of road
transport networks. A meta-analysis was performed to assess whether and to what degree the
resilience of road transport networks was improved with different categories of measures. The
articles were divided based on improvement measures, such as infrastructure investment, structure
and planning, traffic signal management, and recovery schedule. The methodology of how to define
and measure the resilience of road transport networks is considerably diverse, and most definitions
are based on basic infrastructure structures. The efficiency of four types of improvement methods
was grouped: structure and planning, infrastructure investment, recovery schedule, and traffic
signal management. This study supports the use of structure and planning as a promising way for
improving the resilience of road transport networks. Increasing comparability in studies and finally
developing effective improvement measures in transport planning and decision making require more
precise conceptual and methodological standardization in road transport network resilience.

Keywords: infrastructure investment; structure and planning; traffic signal management; recovery
schedule

1. Introduction

As the link between various districts, a resilient road transport network (RTN) is
a crucial piece of infrastructure that supports the daily operation of a city in an orderly
manner. The structure of RTNs has recently become more complex because of the expansion
of cities. In addition, the adverse impact of unexpected events, e.g., natural disasters [1–3],
terrorist attacks [4], severe climates [5], the COVID-19 pandemic, and major accidents [6],
on RTNs is also becoming increasingly serious. Damaged RTNs decrease travel efficiency
and result in significant societal economic losses during grid disturbances [7]. The capacity
of RTNs to actively adapt in response to these unexpected events is called resilience [8].
Research (e.g., [9,10]) has shown that if an RTN is more resilient, it will recover faster and
cause less economic damage after a major incident, such as a bank robbery or a car skidding
on wet roads. Therefore, how to improve the resilience of RTNs is of utmost relevance.

The resilience of RTNs must be accurately defined and assessed to develop effective
measures for improving the resilience of RTNs. Historically, the resilience of an RTN
has been defined as its ability to mitigate the effects of a disaster and maintain its own
function [11,12]. However, concerns have been raised about the validity of the current
approach due to the overlooked temporal aspects of resilient coping and the failure to

Sustainability 2023, 15, 10544. https://doi.org/10.3390/su151310544 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151310544
https://doi.org/10.3390/su151310544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-5108-1993
https://doi.org/10.3390/su151310544
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151310544?type=check_update&version=2


Sustainability 2023, 15, 10544 2 of 17

consider the flexibility of an RTN’s functioning, as well as its potential to improve re-
silience [13,14].According to current theoretical frameworks, the resilience of Current
theoretical frameworks posits that the resilience of RTNs is characterized by their ability to
withstand and adapt to challenging circumstances over time. “Resistance” means that the
RTN can remain resilient even in the face of disturbances, as it has the capacity to counteract
the negative effects of these disturbances. This capacity to mitigate disruptions ensures
that the RTN can continue to operate normally despite external challenges, safeguarding
its core functionality [15]. “Recovery” means that, after a disturbance, such as a disaster,
the RTN can quickly recover and return its damaged parts to the desired initial state or a
new state [16]. “Adaptation” is the ability of an RTN to dynamically modify its structure
via active or passive learning mechanisms, enabling it to effectively navigate forthcoming
uncertainties by making adjustments [17].

Numerous studies (e.g., [18,19]) have examined the concept of resilience in RTNs
from various perspectives, including trait-based assessments of network topology, process-
oriented evaluations of dynamic evolution, and outcome-focused investigations of traveler
characteristics. This range of conceptualizations has played a crucial role in developing a
multi-dimensional comprehension of the resilience of the RTN.

Recent studies (e.g., [20–22]) have identified the resilience of RTNs as a moldable
element that could be improved by tailored measures or strategies. This issue illuminates
an RTN’s capacity to deal with unforeseen events and explains how an RTN recovers or
bounces back from these unexpected events. Previous research has suggested improvement
measures that focus on improving some specific dimensions of RTN resilience [23]. Given
the predominant focus of the current literature (e.g., [24,25]) on network topology, it
is unsurprising that this phenomenon has emerged. Furthermore, despite the existing
research, such as Huang et al. [25], McPhearson et al. [26], and Vercruysse et al. [27], which
all acknowledge the multifaceted nature of the resilience of RTNs, a definitive consensus
on its definition and a universally accepted “gold standard” for improving the resilience of
RTNs remain elusive.

As a multisystem, the resilience of an RTN is influenced by numerous domains
according to the current theory [16,28]. Most of the available RTN-based resilience measures
involve different approaches: infrastructure investment (II), structure and planning (SP),
traffic signal management (TSM), and recovery scheduling (RS).

II aims to improve the resilience of RTNs through greater investment or a rational
allocation of funds. Hu et al. [29] proposed that roadside tree retrofit investments increase
the resilience and anticipated recovery effectiveness of a road network while also dramati-
cally reducing the estimated economic losses of roadside tree blowdowns. The research by
Guo et al. [30] provided theoretical justification for location choices and facilities. In order to
accommodate the needs of many parties, this arrangement of emergency rescue facilities in
a multimodal transport network struck a compromise between cost, complete coverage, and
rescue time. There are also studies that address both; Colon et al. [31] held two viewpoints
in their research: one is that disaster losses can be reduced by strengthening infrastructure
assets; additionally, enhancing infrastructure asset maintenance and speeding up repairs
can potentially deliver resilience at significantly lower costs.

SP aims to improve the resilience of RTNs through improved redundancy, thus protect-
ing critical nodes and links or optimizing network structures. Assigning options to users
to reduce the effects of disruptions and strengthen RTN resilience against the disruptive
events of a disaster helps increase network resilience. Developing an emergency reaction
and recovery strategy has been supported by several scholars (e.g., [6,32,33]). Protecting
critical nodes and links also has a positive effect on improving the resilience of RTNs, but
various researchers have different definitions of “critical”, including vulnerability [34], ro-
bustness [1], reliability [35], road intersections [29], and so on. Therefore, power-law-based
structural relationships in a road network [36] or topology [37] can also contribute to the
improvement of the resilience of an RTN. Hong et al. [38] defined resilience as variations
in resident mobility patterns. The prioritization of equitable resource distribution at the
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local government level has also been proposed, including measures such as optimizing the
locations of shelters and evacuation routes, directing outreach efforts toward vulnerable
populations, and providing support to disadvantaged neighborhoods.

TSM aims to improve the resilience of RTNs by establishing equitable and sustainable
traffic signal settings. A flexible signal control was proposed by Chiou [39], who also
confirmed that it might be more resilient than the existing ones in the face of the significant
consequences of exposure risk when hazardous transportation is present. The findings of
Shang et al. [40] demonstrated that, in most circumstances, especially in cases of moderate
and severe disruptions, the adaptive signal control they proposed in the study, based on
deep reinforcement learning, can achieve superior resilience.

RS aims to improve the resilience of RTNs by optimizing recovery activities and form-
ing their priorities. In order to examine the optimization of a road network recovery method
under uncertainty, with the goal of maximizing network resilience, Li et al. [41] developed
a resilience-based bilevel programming model. Li et al. [42] also modeled the dynamic
resilience and sequential repair actions of road networks under extreme environments and
proposed a time-dependent resilience analysis framework. Three optimization strategies
were created based on the study findings to increase the network’s resilience to failures.
According to the optimal restoration strategy reference, Mao et al. [43] determined the ideal
time sequence for priority recovery segments and recovery tasks to enable transportation
authorities to plan operations for disaster rehabilitation.

Bešinović [44] prepared a special field definition of resilience in rail transport and
a comprehensive and up-to-date review of railway resilience articles. The study, which
classified resilience measures and approaches, showed that system-based measures had
better effects on transport services. Furthermore, Li et al. [45] conducted a systematic
review focusing on novel governance, engineering, and existing technologies aimed at
enhancing urban ecological infrastructure. The findings of their review were utilized to
support the implementation of newly developed and improved urban ecological theories.
Their study provided a solid and inspiring new foundation for accelerating more envi-
ronmentally sustainable urbanization. Other studies (e.g., [34,44,45]) found evidence that
these resilience-based improvement measures had positive effects on the resilience of RTNs.
Additionally, these conceptualizations may target distinct aspects of RTN resilience, be
executed in isolation, adopt varying theoretical frameworks, and yield differing levels of
efficacy. Given this diversity of characteristics, it is very timely to analyze the impact of
improvement measures on RTN resilience, which can provide more convincing evidence
and connections. There is a research vacuum in the absence of a comprehensive study
or meta-analysis of the impact of improvement approaches on RTN resilience. Thus, the
quantitative effect of various improvement measures on the resilience of RTNs has not been
evaluated on the global level. As a result, this study’s innovation is to analyze, compare,
and integrate current data on effective measures of RTN resilience based on a systematic
review and meta-analysis. Therefore, this study has the potential to make valuable contri-
butions to the sustainable development of RTNs by employing integrated socio-economic
approaches. These approaches encompass various aspects such as investments, planning,
management, and scheduling, which can collectively influence the resilience of RTNs. The
aims of this study are as follows:

(1) Systematically reviewing the literature related to RTN resilience improvement mea-
sures and providing an overview of different types of improvement measures, method-
ological features, analytical approaches, and their effectiveness;

(2) Investigating the improvement of RTN resilience through different types of improve-
ment measures.

Finally, this study could be used to address the following question: Which types of
measures are most effective in improving RTN resilience?

This paper is organized into four main sections. The “Materials and Methods” section
describes seven subsections regarding the search strategy, the study selection, eligibility
criteria, inclusion studies, quality assessment, the coding procedure, and data analysis.
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The “Results and Discussion” section analyzes the interpreted results, comprising study
characteristics, risk of bias assessment, and a meta-analysis. Finally, “Conclusions” are
discussed in the last section.

2. Materials and Methods

This study is a systematic review and meta-analysis that used the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) standards [46].

2.1. Search Strategy

This study conducted a comprehensive keyword search to gather all relevant studies
in Science Direct, Springer, Worldlib, Web of Science, Wiley, Scopus, CKNI, Incopat, and Ire-
searchbook for English and Chinese language publications up to 31 December 2022. Critical
search terms included “RTN”, “urban”, “transportation”, “traffic” and “resilience”, “road
performance”, “improve”, “enhancement”, “adapt”, “measure”, “assess”, and “model”.
The searches encompassed a wide range of parameters, with no limitations imposed on
date, publication status, or publication format. Subsequently, the records retrieved were
systematically imported into a Reference Manager tool and rigorously screened against
predetermined inclusion and exclusion criteria. If there are any future publications, it is
important to note that this study conducted a thorough examination of the reference lists
of pertinent articles that were identified during the search process, along with articles
that satisfied the predetermined inclusion criteria. This meticulous approach ensured a
comprehensive and thorough examination of all the relevant literature.

2.2. Study Selection

In accordance with PRISMA guidelines, a meticulous study selection process was
carried out by two independent reviewers. The initial search was conducted by the first
author using the predefined search terms and criteria mentioned above. The obtained
results were then imported into the Endnote Desktop Software, where duplicates were
systematically removed. Subsequently, to ensure that all studies met the eligibility criteria,
two independent reviewers meticulously reviewed the titles and abstracts of potentially
relevant studies. Full texts of the criteria-compliant studies were downloaded and imported
into Covalence, along with the full texts of studies for which a definitive decision could not
be made solely based on the title and abstract. Title, abstract, and full-text screening were
carried out independently by two reviewers utilizing a structured preform. In cases of any
discrepancies, a third researcher was consulted for resolution. This approach was adopted
to maintain rigor and accuracy in the study selection process. The PRISMA flow diagram
below (Figure 1) shows the outcomes of the search process and provides an overview of
the total number of studies that were included or excluded.
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2.3. Eligibility Criteria

In order to be considered for inclusion, studies had to meet the following criteria:
(1) focusing on improving the resilience of RTNs through one or more improvement
measures; (2) providing a clear definition and measurement of the resilience of RTNs;
(3) reporting quantitative results that assess the effectiveness of the improvement measures;
and (4) having been published in peer-reviewed journals in English or Chinese prior to
31 December 2022.

The selected studies were deemed ineligible for inclusion if they met any of the
following criteria: (1) containing conspicuous errors such as statistical inaccuracies or data
plagiarism; (2) utilizing qualitative methods without measuring the resilience of RTNs;
(3) using qualitative analysis without measuring the effect of improvement measures on the
resilience of RTNs; (4) being based on the same dataset, in which case, only the earliest study
was retained, and all subsequent studies were excluded; and (5) having been published
both as a journal article and as a dissertation, in which case, the earlier study was included,
while the later study was omitted to ensure no data duplication.

2.4. Inclusion Studies

A preliminary screening was carried out to eliminate duplicate or irrelevant studies,
resulting in a total of 514 studies. Next, the abstracts of these studies were carefully re-
viewed, and 286 were excluded, as they primarily focused on robustness, rapidity, railways,
or logistics, which were not related to the resilience of RTNs. After thoroughly review-
ing the full texts of the 228 remaining studies, this study determined that an additional
144 studies needed to be excluded; these only contained a framework for assessing the
resilience of RTNs and did not propose improvement measures. After the above screening,
only 84 papers entered the next round of selection. However, 68 studies were excluded that
only proposed improvement measures and did not quantify their effect on the resilience of
RTNs. Finally, the remaining 16 studies met the eligibility criteria and were included in the
meta-analysis.

In this set of meta-analyses, this study distinguished four categories of improvement
measures for RTN resilience: (a) II; (b) SP; (c) TSM; and (d) RS. Figure 1 shows the flowchart
of the study.

2.5. Quality Assessment

Using the Review Manager Software, two reviewers independently assessed the
quality of the literature using the Cochrane Collaboration’s risk of bias method [47]. Dis-
crepancies were addressed through discussion with a third reviewer. The following six
factors were examined for bias risk: (1) creation of random sequences (bias in selection);
(2) allocation concealment (selection bias); (3) blinding of participants and personnel (per-
formance bias); (4) blinding of outcome assessment (detection bias); (5) incomplete outcome
data (attrition bias); and (6) selective reporting (reporting bias). The risk of bias in all studies
was classified as high (+), low (−), or unclear (?).

2.6. Coding Procedure

This study retrieved the improvement measures in the studies and the particular
values of RTN resilience before and after the application of an improvement measure from
each study to perform the meta-analysis. Table 1 shows the elements that were extracted
from each included study. These elements include (1) authors and year of publication;
(2) study area; (3) type of improvement measure; (4) RTN measuring instrument flexibility
type; (5) specific measures to improve the resilience of RTNs; and (6) RTN resilience
improvement values after implementation of improvement measures.

2.7. Data Analysis

The Review Manager software (version 5.3) was used to conduct the meta-analysis.
This study determined the impact value, the mean difference before and after the installation
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of an improvement method, and 95% confidence intervals (CI) for RTN resilience. It is
considered to be statistically significant when p < 0.05. To assess statistical heterogeneity,
both p-value and I2 tests were used. Heterogeneity was considered heterogeneous if p ≤ 0.05
or I2 ≥ 50%, and in such cases, random effects models were employed. Conversely, if
p ≥ 0.05 and I2 ≤ 50%, the data were considered not heterogeneous, and fixed effects models
were used. Additionally, a sensitivity analysis was performed to assess the reliability and
stability of the results. To ensure a comprehensive analysis of the results in accordance with
established research practices, each study was excluded individually, and the cumulative
effects were recalibrated based on the remaining studies. This rigorous approach helped to
maintain the integrity of the analysis.

3. Results and Discussion

The RTN resilience results are discussed in detail in three subsections, including study
characteristics, risk of bias assessment, and meta-analysis, as follows.

3.1. Study Characteristics

Table 1 shows the characteristics of the 16 studies in this meta-analysis. Two studies
were published in 2020 [6,29,40,48,49] and 2021 [35,50,51], and three studies were published
in 2018 [39,52,53]. Three other studies were published in 2022 [54], 2019 [55], and 2016 [53].

Nine studies were carried out in China; two in the USA; and one each in The Netherlands,
Nepal, Japan, and the UK. There was also a study that was conducted on a global scale.

Table 1. Characteristics of the studies included in the meta-analysis.

Reference Country Category Evaluation Indicator Measure Data Result

Koks et al. [56] Global II Risk of road
exposure to flooding

Increasing flood
protection

60% Improving road designs by
investing a mere 2% of their
total value into upgrading

drainage and flood defenses
could yield favorable returns
for a substantial 60% of roads
that face the risk of flooding.

Gao et al. [35] China II Critical link
reliability

Repair of 73% of
total links by using

105 units of cost

91.7% Network resilience increased
by 91.7%.

Hu and Yang
[29]

China II Expected recovery
efficiency

Increase in budget 8.87% The budget has been
increased from USD

25 million to USD 75 million,
anticipating an 8.87%

improvement in
recovery efficiency.

Zheng et al.
[49]

China II Network capacity
flexibility

Multimodal
subsidy design

18.5% Compared to the no-subsidy
scheme, the comprehensive
subsidy scheme increases

network capacity flexibility
from 427 to 506 under the
total flexibility model, an

increase of 18.5%.

Yap et al. [55] The
Netherlands

SP The social cost of
disruption

Additional
temporary stations

8% An 8% reduction in
social costs.

Liu et al. [51] China SP Failure rate of station
networks

Improving the
tolerance

coefficient of the
station

67.2% A 67.2% reduction in the peak
failure rate (0.198–0.065)

when increasing the station
tolerance coefficient

(ε ≥ 0.45).
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Table 1. Cont.

Reference Country Category Evaluation Indicator Measure Data Result

Zhang and
Wang [53]

USA SP Novel metric based
on system reliability

and network
connectivity (WIPW)

Changing the
network topology

through new
construction

72.3% Improved network resilience
by replacing network

topology with new
construction: WIPW

increased from 0.61 to 1.05,
a 72.3% increase.

Yadav et al. [6] USA RS Prioritizing a
recovery sequence

based on predefined
metrics

Network-centricity-
based recovery

methods

7% Recovery based on node
betweenness, outperforming
the GA approach by nearly

7% in one scenario.

Zhang and
Wang [53]

China RS Global efficiency of
the network (E) after

removing some
nodes

EWM-TOPSIS 8% With regards to pre-flooding
targeted attacks, the total loss
of E is found to be reduced by

8% compared with when
flooding occurs first.

Aydin et al.
[54]

Nepal RS Recovery times Dynamically
simulating a

sequence based on
the time variable

84.11% Average road recovery time
25%.Segments recovered

dropped from 251.73 to 40.04.

Ishibashi et al.
[48]

Japan RS Post-disaster
functionality of road

networks

Retrofitting
prioritization for

structures

3.58% In Owase, Rmax improved
from 81.0 to 83.9 after
prioritizing different

retrofitting structures.

Yanni et al. [52] China RS The level of node
connectivity after a
system outage and

the ability to restore
node connectivity to
an acceptable level

through appropriate
remediation

measures

Optimal recovery
strategy based on
system resilience

5.2% In cases of multiple
interchange failures, the

optimal recovery strategy had
5.2% greater system resilience

than the worst recovery
strategy.

Shang et al.
[40]

China TSM Relative area index Adaptive signal
control based on

deep reinforcement

4.65% Relative area index increases
from 0.25 to 4.65 at a 75%

capacity reduction.

Chiou et al.
[39]

China TSM The model benefit of
resilient linked

signals (MB)

Flexible signal
control

4.5% Flexible signal control
achieves the highest resilience

in an MB of nearly 4.5%.

Abudayyeh
et al. [50]

UK TSM Travel time Adopting a bilevel
optimization

framework using
the CE algorithm

6% Applying signal optimization
reduces

travel time by almost 6%.

Tao et al. [57] China TSM Resilience loss (RL) Designed a
two-level algorithm
based on a greedy

strategy and
gradient descent to
solve the proposed

network-wide
traffic signal

optimization model

1.4% The proposed
resilience-based traffic signal

optimization model
improved the system

resilience under different
conditions. The resilience loss
is reduced by a maximum of

1.4%.
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3.2. Risk of Bias Assessment

Figure 2 presents the risk of bias assessment for 16 studies. Most of the studies were
found to have a high risk of bias in at least one aspect, resulting in an overall bias assessment
of unclear or high risk. As each study included a single sample, all studies were rated
as having a high risk of random sequence generation. As the aims of the studies were
to evaluate the effect of improvement measures on the resilience of RTNs, ensuring the
blinding of participants and personnel was challenging. Therefore, this domain was always
rated as having an unclear or high risk. Fourteen studies overcame the detection bias
(87.5%). The outcomes of these studies were assessed via quantitative measures; therefore,
they were blinded. Most of the studies were rated as having a low risk of attrition bias, as
they effectively addressed incomplete outcome data issues. Additionally, since all studies
compared the resilience of an RTN before and after implementing an improvement measure,
the risk of selective reporting bias was found to be low.
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3.3. Meta-Analysis

The meta-analysis presented a resilience perspective that, although preliminary and
conceptual, has the potential for broad application in establishing connections between
RTN stability and sustainability. A range of relevant contexts may be studied, such as RTNs
focusing on a certain mode of transportation [58], improving the resilience of a specific
route [59], quantifying the impact of a particular disaster [60], the ratio of RTN resilience
improvement degrees and the cost of various measures [61], and changes in harmful gas
emissions before and after the implementation of various measures [50]. This highlights
the broad application potential of meta-analysis in RTN resilience studies, including not
only transport aspects but also, for instance, economic, environmental, and city planning
issues, as well as meta-analysis research more generally. Several measures for improving
RTN resilience were discussed, and tools for quantitative analyses were presented.

II: Four studies reported II measures that could be used for meta-analysis [29,35,49,56].
Koks et al. [56] defined the resilience of RTNs as the risk of road exposure to flooding, and
they suggested that resilience could be improved by increasing flood protection. They
concluded that improving road designs by investing a mere 2% of their total value into
upgrading drainage and flood defenses could yield favorable returns for a substantial 60%
of roads that face a risk of flooding. Gao et al. [35] considered resilience the reliability of
critical links in RTNs, and they increased 91.7% of the network’s resilience by repairing
73% of the total links using 105 units of cost. Hu et al. [29] defined resilience in terms of
the expected recovery efficiency of an RTN, and their study found that, when the budget
increases from USD 25 million to USD 75 million, the expected recovery efficiency increases
by a total of 8.87%. Zheng et al. [49] focused on network capacity elasticity by using
a multi-modal subsidy design approach to improve the resilience of an RTN, and their
results showed that, compared with a no-subsidy scheme, a comprehensive subsidy scheme
increases network capacity flexibility from 427 to 506 under a total flexibility model, an
increase of 18.5%.

Figure 3 shows the effect of the II measures on promoting the resilience of RTNs. The
result of the meta-analysis showed a statistically significant difference in the improvement
of RTN resilience through the use of II. However, there was a high degree of heterogeneity in
the studies (I2 = 99.4%, p = 0.000). The overall effect of II on the RTN resilience improvement
was 0.45 (95% CI: 0.01–0.88) after combining based on the random effects model. A
sensitivity analysis revealed that no study was able to influence the outcomes.
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SP: Figure 4 analyzes measurements of the effects of SP on RTN resilience improvement
reported in three studies [50,53,55]. Yap et al. [55] used the social cost of disruption to
evaluate the resilience of RTNs, and their approach was applied to a case study in The
Netherlands, which resulted in an 8% social cost reduction for the two additional temporary
stations. This may demonstrate a different result in other regions. The research perspective
of Liu et al. [50] was the station network; they considered resilience the failure rate of the
station network, and they improved resilience by increasing the fault tolerance coefficient of
the station. The results calculated, with a real case, showed that the peak failure rate can be
reduced by 67.2% (0.198–0.065) when the station fault tolerance factor is increased (ε≥ 0.45).
The authors of [54] used a metric based on system reliability and network connectivity
(WIPW) to calculate the resilience of RTNs, and they found that new constructions that
change the network topology can improve the resilience of RTNs. Their results showed
that the WIPW increased from 0.61 to 1.05, an increase of 72.3%.
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For SP measures, there was a statistically significant difference with high heterogeneity
(I2 = 99.1%, p = 0.000). Based on the combined random effects model, the total effect value
is 0.49, i.e., 95% CI (0.03–0.95). Since only three papers were available, this study used a
switching effects model (random effects model/fixed effects model) approach to perform
sensitivity analysis. The results were demonstrated to be stable.

RS: Five of the studies demonstrated the effects of RS on improving the resilience
of RTN [6,48,52–54]. Yadav et al. [6] prioritized recovery sequences based on predefined
metrics; they used network centrality-based recovery methods and found that recovery
approaches based on network centrality demonstrated similar effectiveness when compared
with the optimization-based GA approach in terms of performance. However, there was
one scenario where the recovery approach based on node connectedness outshone the GA
approach by nearly 7%. Zhang and Ng [54] expressed the resilience of an RTN in terms
of the global efficiency of the network (E) after removing some nodes, and they found
that, with regard to pre-flooding targeted attacks, the total loss of E (83%) was reduced
by 8% compared with when flooding occurs first after using the entropy weight method
(EWM)–technique for order preference by the similarity to ideal solution (TOPSIS) method.
Aydin et al. [54] defined the resilience of RTNs as the recovery time of a road network. By
dynamically modeling a sequence based on the time variable to improve resilience, they
found that the mean recovery time of 25% of recovered road segments dropped from 251.73
to 40.04. Ishibashi et al. [48] used the post-disaster function of RTNs as their resilience
definition and expressed it in terms of Rmax. They prioritized the retrofitting of structures
and increased the Rmax of Owase from 81.0 to 83.9. Yanni et al. [52] considered resilience
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to be the level of node connectivity after a system outage and the ability to restore node
connectivity to an acceptable level through appropriate restoration measures. They used
an optimal recovery strategy based on system resilience to improve the resilience of an
RTN. In cases of multiple interchange failures, the system resilience of the optimal recovery
strategy was 5.2% greater than that of the worst recovery strategy.

The combined effects reflected that the effect value was 0.21, i.e., 95% CI (−0.01, 0.44),
which implied that RS could increase the resilience of RTNs to a certain extent (Figure 5).
However, the collected research showed statistically significant heterogeneity (I2 = 99.1%).
The sensitivity analysis identified Aydin et al.’s [54] study as an outlier that could have
potentially influenced the size of the effect and the heterogeneity of the findings. As a result,
additional analysis was conducted after excluding this outlier, and the results showed
minimal heterogeneity (effect size: 0.06, i.e., 95% CI (0.03–0.08), I2 = 11.6%, and p = 0.323).
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TSM: Four studies reported TSM measures that could be used for integrated analy-
sis [39,40,50,57]. Shang et al. [40] used the relative area index to represent resilience in their
paper, and they applied a method based on adaptive signal control with depth reinforce-
ment to improve the resilience of RTNs, and this can increase the relative area index from
0.25 to 4.65 at a 75% capacity reduction in the affected section. Chiou [39] found the model
benefit of a resilient linked signal (MB) and used flexible signaling control to improve the
resilience of an RTN. This approach could achieve the highest level of resilience (nearly
4.5%) compared with others using MB. Dana Abudayyeh et al. [50] defined travel time as
resilience in their study, and they adopted a bilevel optimization framework using the CE
algorithm to draw the conclusion that applying signal optimization can reduce travel time
by almost 6%. To solve the suggested network-wide traffic signal optimization model, Tao
et al. [57] devised a two-level method based on the greedy approach and gradient descent,
and the resilience of RTNs was characterized as resilience loss (RL). The findings showed
that the suggested model might increase system resilience under various scenarios. The
maximum resilience loss was lowered by 1.4%.

The meta-analysis revealed that there was no statistically significant difference between
TSM measures in terms of improving the resilience of RTNs, and there was less heterogeneity
in several studies (I2 = 34.5%, p = 0.205). Using the random effects model and combining the
four studies, the total effect size was 0.04, i.e., 95% CI (0.01–0.06) (Figure 6). This study, after
performing sensitivity analysis, found that the study by Tao et al. [57] is an anomaly whose
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presence may bias the effect size and heterogeneity. When this study excluded it, the results
showed no heterogeneity in several of the other studies (I2 = 0, p = 0.877).
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As the systematic review shows, resilience-focused improvement measures can be di-
vided into four categories: (a) II; (b) SP; (c) TSM; and (d) RS. All the included studies were
independent, with considerable inter-study heterogeneity. Some of the studies (e.g., [52,53,57])
showed an unclear-to-high risk of bias. Considering the broad range of improvement mea-
sures that have been demonstrated to be related to the resilience of RTNs, it is worth noting
that these measures all improved the resilience of RTNs in all the studies. There is considerable
variability in how the resilience of RTNs is measured and which categories of improvement
measures are implemented. Where meta-analysis was possible, SP measures showed the
highest effect on the improvement of the resilience of RTNs (0.49 improved; 95% CI: 0.03–0.95).
In addition, II also has a significant effect on improving the resilience of RTNs (0.45 improved;
95% CI: 0.01–0.88). RS has a moderate effect on improving the resilience of RTNs (0.21 im-
proved; 95% CI: 0.01–0.44), while TSM showed the lowest effect, which did not significantly
improve the resilience of RTNs (0.04 improved; 95% CI: 0.01–0.06). Considering the significant
heterogeneity between studies, these results hold valuable information as they compare and
rank the effects of various categories of improvement measures on the resilience of RTNs.
Despite the notable variations among the studies, the findings provide meaningful insights
into how different types of improvement measures impact the resilience of RTNs. In addition,
SP is a promising approach to improving the resilience of RTNs.

With this systematic review, our study recognizes that the effect of improvement
measures on the resilience of RTNs may be subject to different definitions and measurement
indicators. This supports the notion that the definition of the resilience of RTNs results from
complex associations in many aspects, such as resistance, recovery, and adaptation [62,63].
The measurement of the resilience of RTNs may also be carried out from a multilevel
perspective, such as trait (network topology) [64,65], process (dynamic evolution), and
outcome perspectives (traveler characteristics) [66].

The importance of various measures relative to improving the resilience of RTNs was
identified in this meta-analysis. This review identified all categories of improvement mea-
sures, such as SP, II, RS, and TSM. The findings indicate that all four types of improvement
strategies have the potential to increase RTN resilience.

II is a key factor in RTN resilience improvement. It aims to increase investment in the
construction, maintenance, and upgrading of infrastructure to improve the resilience of
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RTNs. Such measures focus on the resistance aspect, fundamentally improving the strength
of RTNs to increase their resilience in the face of disasters or accidents. In this study,
measures to subsidize and charge for road access were categorized as II as well because
such measures also fall under the area of enhancing resilience through the distribution of
program funds or costs. SP is a class of measures that has received the most attention from
scholars. It is the same as II, which improves the resilience of RTNs from the perspective
of pre-disaster resistance. In addition, there is much evidence that it is relatively effec-
tive. Improving redundancy, protecting critical nodes and links, and optimizing network
structures are the main means of implementing this type of measure. RS includes methods
for optimizing recovery strategies and determining recovery sequences, which emphasize
the recovery and adaptation processes after a disruption. As for TSM, most of the related
studies were conducted by establishing equitable and sustainable traffic signal settings that
improve the resilience of RTNs by directly or indirectly influencing travelers’ travel choices
and behavioral patterns.

None of these can serve as a “gold standard” [67,68] for measuring the resilience
of RTNs. Inaccurate assessments have the potential to yield misleading information,
thereby compromising the effectiveness of improvement measures [69,70]. These findings
underscore the lack of consistency in the approaches employed in the field, underscoring
the need for standardized definitions, conceptual frameworks, and measurement tools.
There are other potentially important improvement measures that were not included in
this paper, such as information provision. Providing clearer, more timely information to
passengers and management can help improve the resilience of RTNs during disasters and
the speed of recovery afterward. Yap et al. [55] and Wang et al. [57] also agreed with this
view. The resilience of RTNs can also be improved by enhancing communication between
operators and users [71].

This systematic review and meta-analysis provides an overview of existing resilience-
focused improvement measures for the resilience of RTNs and provides quantitative data
on their effectiveness. The findings may offer guidance for future measures and strategies
aimed at improving the resilience of RTN. It has been well proven that SP has the highest
effect on the improvement of RTN resilience. In addition, the results showed that II also has
a significant effect, and RS has a moderate effect, while TSM did not significantly improve
the resilience of RTN. By implementing such improvement measures with significant
effectiveness as early as possible, the resilience of RTNs is not only improved in its ability to
cope with and recover from damage events or natural disasters but also indicates directions
for future practice and research on the development of targeted measures to improve the
resilience of RTN.

Similar to other studies, this systematic review and meta-analysis has some limitations.
Firstly, aiming to provide a contemporary understanding of the topic, this study limited
the search to articles published within the past two decades. This study conducted an
extensive search only across nine databases, restrictively focusing on articles written in
English or Chinese. It should be acknowledged that some relevant studies may be missing.
Literature research may be able to minimize the impact of this constraint by encompassing
diverse countries and geographical regions. Secondly, the limitations identified in this study
shed light on the inconsistencies associated with defining, conceptualizing, and measuring
the resilience of RTNs; that is, this study examined the effect of different categories of
improvement measures on the resilience of RTNs, which may vary depending on how
the resilience of an RTN is measured. Thirdly, the lack of sufficient quantitative data
undermines the support for the practice of meta-analysis, indicating that the improvement
measures examined in previous quantitative studies, including those analyzed in this meta-
analysis, might not cover all possible categories. Finally, the majority of the included studies
were rated as having an unclear or high overall risk of bias. However, this heightened risk
of bias appears to be a consistent finding in systematic reviews evaluating the effectiveness
of resilience-focused improvement measures.
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4. Conclusions

The present study contributes to establishing a body of evidence for improving the
RTN resilience measures and reveals their effectiveness in improving the resilience of RTNs
based on meta-analyses. Therefore, the novelty of this study is to evaluate, compare, and
integrate the current evidence on the effective measures of the resilience of RTNs based on a
systematic review. This study highlighted limitations in prevailing ways of conceptualizing
and evaluating the resilience of RTNs, which may prevent policymakers from judging how
and which measures to select and improve. This means that, on the one hand, the present
study has the advantage of identifying and evaluating a set of approaches (i.e., II, SP, TSM,
and RS) affecting the resilience of RTN, but, on the other hand, it has the limitation of
prioritizing these approaches. An RTN is the result of a dynamic evolutionary process,
characterized by a continuous cycle of resistance, recovery, and adaptation. To capture the
complexity of such a network, it is essential to conceptualize and measure its resilience. This
involves considering trait perspectives related to network topology, process perspectives
that encompass the dynamic evolution of the network, and outcome perspectives that take
into account the characteristics of travelers. By incorporating a broader range of system
and contextual determinants, a more comprehensive understanding of RTN resilience can
be achieved. Additionally, improvement measures were divided into four categories, that
is, SP, II, RS, and TSM, and their positive effects on the resilience of RTNs are shown in the
meta-analysis. To address the research question, it should be noted that the efficacies of the
four kinds of improvement measures, SP, II, RS, and TSM, were organized in that order.
This study recommends in-depth research to observe the changing process of the resilience
of RTNs after improvement measures are implemented. It is also important to analyze the
combined effects of multiple systems and contextual determinants on the improvement of
RTN resilience in order to further bolster the growing body of evidence in this field and
facilitate the development of increasingly efficacious approaches. The implications of RTN
resilience can be considered integral in the disruption of transport networks. If transport
networks are not resilient, or, in other words, the transport network cannot recover quickly
from disruptions, unpredictable events can lead to significant transport delays that may
result in higher lost time costs than the number of disruption costs in the transport network.

Based on this study, further studies on improvement measures for the resilience of
RTNs can take the following recommendations into account: First, by considering the
resilience of RTNs as a dynamic process, it is desirable to measure it separately at different
time points. Further longitudinal research is required to fully capture the changing process
of the resilience of RTNs after improvement measures are implemented. Second, as the
data presented in this paper are insufficient to demonstrate the long-term effect of the
implemented improvement measures on ATTN AE, it is advisable to extend the duration
of future investigations to comprehensively evaluate their long-term effects. Third, recent
theories on improving the resilience of RTNs indicate that it is a complex interaction
between multiple systems and contextual determinants. Further studies could investigate
the combined effect of these multiple systems and contextual determinants such as SP, II,
RS, and TSM.
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