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Abstract: This study evaluates the effect of the statistical bias correction techniques of distribution
mapping and linear scaling on climate change signals and extreme rainfall indices under different
climate change scenarios in the Jemma sub-basin of the Upper Blue Nile Basin. The mean, cumulative
distribution function (CDF), mean absolute error (MAE), probability of wet days (Prwet (%)), and
90th percentile (X90 (mm)) of observed rainfall and the regional climate model (RCM) simulations
of rainfall with and without statistical bias correction were compared with the historical climate
(1981–2005). For future (2071–2100) climate scenarios, the change in climate signal and extreme
rainfall indices in the RCM simulations with and without bias correction were also evaluated using
different statistical metrics. The result showed that the statistical bias correction techniques effectively
adjusted the mean annual and monthly RCM simulations of rainfall to the observed rainfall. However,
distribution mapping is effective and better than linear scaling for adjusting the probability of wet
days and the 90th percentile of RCM simulations. In future climate scenarios, RCM simulations
showed an increase in rainfall. However, the statistically bias-adjusted RCM outputs revealed a
decrease in rainfall, which indicated that the statistical bias correction techniques triggered a change in
climate signal. Statistical bias correction methods also result in changes in the extreme rainfall indices,
such as frequency of wet days (R1mm), number of heavy precipitation days (R10mm), number of
very heavy rainfall days (R20mm), and other intensity and frequency indices.

Keywords: statistical bias correction; climate change signal; extreme indices; regional climate models;
Blue Nile Basin

1. Introduction

Climate models are essential to investigate the relative effect of human-induced emis-
sions of greenhouse gases, such as carbon dioxide, methane, and nitrous oxide, on the
climate system of the Earth [1,2]. Additionally, climate models are essential for studying
the effects of climate change on the biophysical environment using different environmental
models [3,4]. Over the past decade, various improvements have been observed in the
science of climate modeling. For instance, the spatial resolution of climate models, par-
ticularly global climate models (GCMs), showed significant improvement from 1960 to
the 2010s [1,5]. The commencement of Earth system models (ESMs), which integrate
the biogeochemical cycle, aerosols, and anthropogenic sulfur dioxide emissions into the
atmosphere–ocean GCMs, is another key proliferation in the evolution of climate mod-
eling [6,7]). Despite several improvements, uncertainties remain in GCMs’ simulations
of the climate at the regional and basin scales, mainly due to coarse spatial resolutions
and parameterization schemes [8,9]. As a result, downscaling GCM simulations and using
regional climate model (RCM) simulations is recommended in order to obtain better climate
information for regional- and local-scale climate impact studies [2,7].
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Regional climate models have different added values compared to the GCMs. For
instance, RCMs are better at simulating the climates of regional and local spatial scales,
the climates of coastal and mountainous regions, and the parametrization of small-scale
processes like convective precipitation [2,10,11]. Furthermore, RCMs generate detailed re-
gional climate information and are superior to GCMs in capturing seasonal, short-duration,
and extreme climate events [12]. However, the application of RCMs is still challenging
since they use the GCMs’ outer boundary conditions, and thus the driving GCM matters in
the performance of the RCMs [13]. In the RCM simulations, systematic biases persist, and
performance is inconsistent across regions and seasons [14–17]. This warrants using robust
statistical bias correction techniques to adjust RCM simulations and study climate change
in a particular region and/or season [18,19].

Statistical bias correction requires scaling climate model simulations to reproduce the
observed climate [20–22]. Bias correction techniques adjust systematic biases of climate
model simulations to reproduce observed climate values [23]. Bias correction also includes
adjusting the systematic bias in the RCM model simulations using a transfer function to
capture the statistical properties of observed climates, such as mean, variance, or distribu-
tion of observed values [14,20]. The fundamental idea of bias correction is developing a
function that adjusts the climate model’s simulation with observed counterparts [18,19].
Several bias correction methods, such as delta change [24] and linear scaling [25], only
adjust the means of climate model simulations. Other methods, like distribution mapping,
correct the means and frequencies of climate model simulation values [14,26,27].

The skill of different statistical bias correction techniques in correcting the mean,
extremes, and frequency distribution of values of climate variables are different [23,27–29].
The distribution-based bias correction methods, such as distribution mapping and power
transformation, are best at correcting frequency-based indices, and mean-based methods,
such as linear and local intensity scaling, are best for mean and time-series-based indices
in arid areas [28]. Similarly, the distribution-based method was superior to the mean-
based bias correction method in correcting the magnitude of precipitation and wet-day
frequencies over topographically structured terrain [30]. Most bias correction techniques
show comparable performance in reproducing mean values [23,28,29].

On the other hand, bias correction methods may trigger biases [31–33]. For instance,
the bias-corrected Weather Research and Forecasting (WRF) RCM resulted in a larger
wet bias than the non-bias-corrected WRF simulation over Canada and Central North
America [33]. In the southeastern USA, bias correction increased the difference between
observed and simulated annual precipitation and overestimated the annual R-factor by an
average of 137%. In contrast, non-bias-corrected data underestimated the R-factor by an
average of 62% compared to the observed annual R-factor [32]. Statistical bias correction
methods also have a limitation where there is high dependence on the quality of the
observational data used to develop scale and shape parameters during bias correction [34].
Another limitation is that bias correction methods consider biases, and bias correction
algorithms are stationary over time [20,32]. The stationarity and non-stationarity of the bias-
adjusting algorithms are to be evaluated in different climate conditions using differential
split-sample testing (DSST) and split-sample testing (SST) [35,36] before their use for climate
change scenario development and climate change impact assessment. This is because the
non-stationarity of the climate model simulations may reduce the effectiveness of bias
correction methods, which further affects the output and thereby reduces weather and
climate forecast and projection quality.

Bias correction techniques may also have limitations in terms of preserving the change
signal, extremes, and quantiles of GCM and RCM simulations, thereby causing another
chain of uncertainty in climate change scenario development [31,37,38]. In the Senegal
River Basin, bias correction of raw RCM simulations causes a general dampening of the
climate change signals and changes in heavy precipitation events [37]. The choice of
statistical bias correction and downscaling techniques caused a change in climate signals,
and even a reverse change signal, in the south-central region of the USA [38]. Similarly, it
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was investigated that bias correction and spatial downscaling affect the heatwave frequency
and reduce the temporal variability of most extreme indices in China [39]. On the other
hand, a strong effect of observation data compared to the downscaling and bias correction
techniques was investigated in different regions of the world [15,40].

Thus, it is essential to evaluate the effect of statistical bias correction techniques on
climate change signals and the frequency of extreme values using different statistical metrics
before using bias-corrected climate models’ outputs for climate change impact assessment
and adaptation-making systems. This promotes identifying statistical bias correction
methods that preserve quantile changes and extremes. Even though the distribution-
based method effectively captures the extreme distribution of different values, the quantile
mapping method overestimates the precipitation extreme of the raw GCM simulations
of the 2080s [14]. On the other hand, the detrended quantile mapping and quantile delta
mapping techniques were effective and outperformed the standard quantile mapping
technique in terms of preserving precipitation extremes projected by raw climate models in
the Blue Nile River Basin [41]. Other studies have investigated the differences in statistical
bias correction techniques regarding the preservation of quantiles and extremes of raw
climate model outputs [23,42,43].

This study was conducted in the Jemma sub-basin of the Blue Nile Basin and focused
on the following questions: (1) how are statistical bias correction techniques effective in
adjusting the RCM simulations with observed data during the historical period? (2) what
is the effect of statistical bias correction techniques on climate change signals and extreme
rainfall events in the future period? Therefore, this study examined the bias-corrected and
non-bias-corrected outputs of RCM simulations in the Jemma sub-basin in the historical
climate scenario. We also compared the climate change signal and extreme rainfall values
before and after bias correction in future climate scenarios, which were developed from
multi-model simulations and emission scenarios of RCP4.5 and RCP8.5. This study is
essential to determine the specific strengths and limitations of statistical bias correction
techniques and to identify climate signals and extremes preserving statistical bias correction
techniques. This study is also important for identifying possible uncertainties stemming
from statistical bias correction during climate change projection, impact assessment, and
adaptation decision analysis.

2. Materials and Methods
2.1. Study Area

The Jemma sub-basin is one of the sub-basins of the Upper Blue Nile Basin. This sub-
basin has an area of about 15,000 km2 and is located in the eastern part of the Upper Blue
Nile Basin (Figure 1). The main river of the sub-basin is Jemma, while there are tributary
rivers such as Beressa, Chacha, Robi-Gumero, and Moferwuha. The climate, particularly
the rainfall of the sub-basin, is controlled by the transport of moisture from the equatorial
East Pacific, the Indian Ocean, and the Arabian Peninsula [44]. The mean annual rainfall
(1981 to 2014) ranges from 700 mm to 1500 mm, where the western and eastern parts of the
sub-basin receive high rainfall while the northern part of the sub-basin receives low rainfall.
From 1981–2014, the Jemma sub-basin showed an increasing trend in mean annual rainfall
as well as extreme rainfall and temperature events [45]. The mean annual temperature is
9 ◦C in the northern and eastern parts and 24 ◦C in the western and central parts of the
sub-basin.

The Jemma sub-basin contributes a significant amount of streamflow (14%) and sedi-
ment to the Upper Blue Nile River. The annual streamflow in 1996 and 1997 was 5844 mil-
lion cubic meters and 2560 million cubic meters, respectively [46]. In this sub-basin, an
annual sediment load of 21.2 million tons was measured from 1970–2010, which is the
highest of all the sub-basins of the Upper Blue Nile Basin [47]. There are different and
varied agroecological zones. The afro-alpine and sub-afro-alpine ecosystems are dominant
in the eastern region. However, the central part of the sub-basin is characterized by cool
sub-moist and temperate sub-moist highlands, while the western part of the sub-basin is
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mainly under warm moist, temperate moist, and cool moist agroecologies. The elevation
ranges from 1040–3840 m above sea level. The southern part is characterized by a plain
with uniform topography and a gentle slope, while the central and eastern parts of the
sub-basin are located at high elevation (≥3000 m.a.s.l) and have dissected terrains.
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2.2. In Situ Climate Data

Historical (1981–2005) daily rainfall data was obtained from the National Meteorologi-
cal Agency of Ethiopia. Nine out of thirteen climatic stations, with lower missing values
(2–17%), were considered for this study. The climatic stations considered in this study repre-
sent the diverse topographic and agroecological zones that range from cold, moist sub-afro
alpine to warm, sub-moist lowlands. In addition, the missing rainfall values of climatic
stations were imputed using the multivariate imputation by chained equations (MICE)
package, built into the R statistical software version R 3.2.3 [48]. The MICE package inputs
the missing value of a single climate station by using the recorded values of other stations
as predictors. This indicates that the MICE package creates multiple predictions to input
each missing value. There was a need to prepare the data of all climatic stations, install the
MICE and related packages in R, and input the missing values using the MICE package.

Quality control of the climate data, which includes managing errors and outliers,
was carried out using the RClimDex [49]. Errors in the climate data, such as negative
rainfall values and maximum temperatures less than minimum temperatures and outliers,
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were corrected using the nearby stations. Besides outliers, values ± 4 times the standard
deviation [50] were replaced by average values of the days before and after the outlier day.

2.3. Regional Climate Model Simulations Data

This study used historical and future RCM simulations of the Coordinated Regional
Climate Downscaling Experiment (CORDEX) [51] driven by MPI-ESM-LR (ESM of the
Max-Planck-Institut für Meteorologie ESM) GCM. The CCLM4 (COnsortium for Small-
scale MOdeling (COSMO) Climate Limited-Area Model (CCLM) and REMO (Max Planck
Institute Regional Model), which dynamically downscaled the MPI-ESM-LR, were con-
sidered in this study. These RCM simulations of CORDEX were selected because GCMs
downscaled by CCLM4 and REMO were better at reproducing the mean and frequency
of the Jemma sub-basin rainfall events than the Rossby Centre Regional Atmospheric
Model fourth version (RCA4) [16]. The RCMs have spatial resolutions of 0.44◦ × 0.44◦.
Thus, historical (1981–2005) and future (2071–2100) raw simulations and the first ensemble
member (r1) of these RCMs were used in this study.

2.4. Statistical Bias Correction Techniques

Linear scaling and distribution mapping statistical bias correction techniques were
used to correct biases in historical and future (under RCP4.5 and RCP8.5) rainfall simula-
tions of CCLM4 (MPI-ESM-LR) and REMO (MPI-ESM-LR). The linear scaling technique
was selected because it is a mean-based statistical bias correction method. The distribution
mapping method was selected because it adjusts the cumulative distribution function of
climate model simulations toward the cumulative distribution function of observed values.
This study considered the characteristics of statistical bias correction techniques, which are
quite different and represent various mean-based and distribution-based bias correction
techniques. For instance, the distribution mapping technique represents other methods,
such as quantile–quantile mapping, probability mapping, and statistical downscaling [27].
Both statistical bias corection techniques determine a transfer function h used to bias correct
the RCM simulation Vm such that the bias-corrected values equaled the observed values
Vo [18,19]. This function can be expressed as:

Vo = h(Vm) (1)

The linear scaling technique bias corrects the biases of RCM simulations regarding
rainfall using a multiplicative factor [25]. In linear scaling, the change factor that fits the
RCM simulations to the observed counterparts is developed by comparing the observed
rainfall with the corresponding historical RCM simulations. This statistical bias correction
technique adjusts biases in the mean, but has limitations in terms of correcting biases in the
frequency and intensity of rainfall.

The distribution mapping method adjusts the mean and cumulative distribution
function (CDF) of RCM rainfall simulations toward the mean and CDF of observed rainfall
using a transfer function that fits the occurrence of different rainfall values. The frequency
of different rainfall values, variance, standard deviation, and extreme values of RCM
simulations are corrected through the distribution mapping technique [20,27,52]. This bias
correction technique applies Gamma distribution to adjust the CDF of rainfall of RCM
simulations with the CDF of observational rainfall [19]. Distribution mapping uses an RCM-
specific rainfall threshold [27] to adjust the frequencies of rainfall days. In this technique,
the function which adjusts the RCM simulations of rainfall based on the observed rainfall
is given as:

Vo = Fo − 1(Fm(Vm)) (2)

where

Vo is an observed variable;
Vm is modeled variable;
Fm is the CDF related to Vm;
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Fo
−1 is the inverse CDF of Vo [19].

2.5. Future Rainfall and Temperature Extremes Analysis

The Expert Team on Climate Change Detection and Indices (ETCCDI) has developed
27 rainfall and extreme temperature indices, which measure the intensity, frequency, and
duration of rainfall and temperature extremes [50]. This study used the ETCCDI indices
to measure the trend of rainfall extremes in historical and future climate scenarios. The
indices included in this study measure the intensity, frequency, and duration of rainfall
extremes. Daily observed (1981–2005), raw, and bias-corrected RCM simulations of histori-
cal (1981–2005) and future (2071–2100) rainfall were used to calculate the extreme rainfall
indices. The R built-in interface, i.e., the RClimDex 1.1 [49], was used to detect indices of
rainfall and temperature extremes. Eventually, we analyzed the change in extreme rainfall
indices with and without bias correction in the historical and future RCM simulations.

2.6. Evaluation Techniques

The cumulative distribution function (CDF) of the observed RCM simulations and
the bias-corrected RCM output were compared for the historical period. Besides the
90th percentile (X90 (mm)) and wet-day probability (Prwet (%)) of raw and bias-corrected
RCMs, rainfall was compared against the observed historical rainfall counterparts. The box
plots were used to analyze the median, maximum, minimum, 25th, and 75th percentiles
and outliers in the observed, raw, and bias-adjusted RCM rainfall simulations. The mean
absolute error (MAE) was also used to analyze the RCM rainfall simulation before and after
statistical adjustment at the monthly scale; this comprised the wet and dry seasons. The
spatial pattern of observed, raw, and bias-adjusted RCM outputs were compared to analyze
the effect of bias-adjusting methods on the spatial variation of rainfall in the sub-basin.

In both the baseline and future climate change scenarios, we compared the change
signals, frequency, and intensity of extreme rainfall events in the raw and bias-corrected
RCM simulations. The change signal, which is the difference between the rainfall of future
raw and bias-corrected RCMs output (2071–2100), was computed from the observed his-
torical rainfall (1981–2005). Similarly, the change in extreme rainfall events was computed
using the extreme values of future raw and bias-corrected RCM output and the observed
historical extreme rainfall values.

3. Results and Discussion
3.1. Evaluation of Bias Correction Techniques

Figures 2 and 3 show that distribution mapping and linear scaling bias correction tech-
niques can effectively adjust the mean annual and monthly rainfall of raw RCM simulations
to the observed rainfall. The CCLM4 (MPI-ESM-LR) and REMO (MPI-ESM-LR) models
overestimated the mean annual rainfall by 64 mm and 91 mm, respectively. Furthermore,
the median, 25th, and 75th percentiles, as well as the maximum mean annual rainfall in the
raw RCM simulations, were higher than the observed rainfall. The performance of RCM
simulations was also found to be elevation-dependent, where there is underestimation and
overestimation following the variation in elevation. The CCLM4 (MPI-ESM-LR) overes-
timated and underestimated the mean annual rainfall of higher-elevation (northern and
eastern part of the sub-basin (Figure 1)) and lower-elevation (western) areas of the Jemma
sub-basin, respectively. On the other hand, the REMO (MPI-ESM-LR) underestimated the
annual rainfall of the eastern part of the sub-basin and overestimated the mean annual
rainfall of the central part of the Jemma sub-basin. Such elevation-dependent biases of
RCM simulations may be attributed to the driving GCM being used as a boundary con-
dition or the RCM parametrizations of clouds in the higher- and lower-elevation areas.
Concurrently, the limitations of RCMs in simulating drizzle rainfall events (<1 mm) and
heavy rainfall events (>10 mm), as well as biases mainly regarding variations in elevation,
were investigated in the Upper Blue Nile Basin [53] and the Ethiopian highlands [54].
Thus, statistical pre-processing techniques table to adjust elevation-dependent under- and
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overestimation of precipitation by the RCM simulations should be considered before using
RCM simulations for further applications.
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Figure 2. Mean annual rainfall of observed and RCM simulations before and after statistical
bias correction for the historical period (1981–2005). (a) Observed, (b) CCLM4 (MPI-ESM-LR),
(c) REMO (MPI-ESM-LR), (d) CCLM4 (MPI-ESM-LR)-DM, (e) CCLM4 (MPI-ESM-LR)-LS, (f) REMO
(MPI-ESM-LR)-DM, (g) REMO (MPI-ESM-LR)-LS. The DM and LS represent distribution mapping
and linear scaling bias correction methods, respectively.

The spatial distribution of mean annual rainfall of RCM simulations was adjusted,
and the observed mean annual rainfall was reproduced. The overestimation and under-
estimation of rainfall by the RCM simulations in different areas of the sub-basin were
corrected and the observed rainfall was adequately captured. The statistical bias correc-
tion techniques were efficient and revealed comparable skills in preserving the spatial
distribution of mean annual rainfall of the sub-basin (Figure 2). The boxplots show that
the median values were improved and able to reproduce the observed median rainfall
after the RCM simulations were bias-adjusted. The statistical bias correction methods
trigger a change in the minimum, maximum, 25th, and 75th percentiles of the mean annual
rainfall (Supplementary Figure S1). For instance, the higher 25th percentile in the raw RCM
simulations was reduced, and fell even lower than its observed counterparts after bias
correction. This indicates that statistical bias correction techniques effectively correct mean
values and capture the spatial distribution of the observed rainfall. On the other hand, this
also implies that statistical bias correction may strongly change the raw RCM simulations
and trigger a change in the frequency of high- and low-rainfall events.
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Figure 3. Mean monthly rainfall and mean absolute error (MAE) of RCM simulations before and after
statistical bias correction for the historical period (1981–2005). The DM and LS represent distribution
mapping and linear scaling bias correction methods, respectively.

The mean monthly rainfall of RCM simulations in different months reveals that
linear scaling and distribution mapping techniques are effective and show comparable
performance in adjusting the biases of the RCM simulations (Figure 3). The raw RCM
simulations were characterized by overestimating and underestimating observed rainfall in
different months. The CCLM4 (MPI-ESM-LR) simulated higher rainfall in the April–June
and September–November months. However, this RCM underestimated the main rainy
season’s (July–August) rainfall. The REMO (MPI-ESM-LR) performed better in simulating
the monthly rainfall. However, REMO (MPI-ESM-LR) also overestimated the May–June
rainfall and underestimated the July–September rainfall. Both RCM simulations had
limitations in terms of reproducing the rainfall of the main rainfall season (June–September).
This corroborates that the RCM simulations have limitations in adequately simulating the
seasonal variation of rainfall. Like elevation-dependent biases (Figure 2), the limitations of
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RCM simulations in simulating the seasonal variation of rainfall may be attributed to the
RCMs’ failure to parametrize local topography or GCMs with lower spatial resolution.

Concurrently with the mean annual and monthly simulations, the raw RCM are char-
acterized by higher MAE (up to 4.78 mm/day) in some months. In the RCM simulations,
higher MAE (0.56 to 4.78) is detected during the main rainfall seasons (June to September)
than during dry seasons. The RCM simulations after statistical bias correction showed
lower MAE in the wet and dry months of the sub-basin (Figure 3). The outputs after bias
correction had MAE values of less than 0.14 mm/day for all months. Particularly, the
linear scaling method had high skill in MAE (MAE ≤ 0.001) compared to the distribution
mapping method. This indicates the significant contribution of statistical bias correction
techniques to reducing uncertainties related to monthly rainfall simulation. The differ-
ence in MAE between raw and bias-adjusted RCM outputs was higher and statistically
significant (≤0.01) than the difference between RCM types.

Unlike the mean-based metrics, the statistical bias correction methods showed differ-
ences of skill in distribution and frequency-based metrics such as CDF, wet-day probability
(a), and 90th percentile (X90). The CDF of the observed rainfall and RCM simulations
(before and after bias correction) corroborated the added value of statistical bias correction
techniques for adjusting the distribution of RCM simulations to the observed counterparts
(Figure 4a,b). The bias-adjusted RCM outputs captured the CDF of observed rainfall more
effectively than the raw RCM simulations. The RCM type also influenced CDF fitting
through bias correction methods. For instance, the linear scaling method reduced the
proportion of high-rainfall events from 19% to 13% in the CCLM4 (MPI-ESM-LR) model
(Figure 4b). The CDF of REMO (MPI-ESM-LR) simulation was better at reproducing the
CDF of observed rainfall than the CCLM4(MPI-ESM-LR) model. However, the RCM simu-
lations both underestimated and overestimated the CDF of the observed rainfall. On the
other hand, the REMO (MPI-ESM-LR) RCM bias, adjusted using the distribution mapping
method, showed a superior performance in capturing the CDF of the observed rainfall.
According to the raw and distribution mapping output of REMO (MPI-ESM-LR), the pro-
portion of high rainfall (≥10 mm/day) was about 15% of the total rainfall (Figure 4b).
For the observed, raw, and bias-corrected outputs, the proportion of dry days and drizzle
rainfall events was 42%, while the proportion of high rainfall (≥10 mm/day) was 20%
(Figure 4a,b).

The skill of bias correction techniques in correcting the wet-day probability and
90th percentile indicates the effect of these bias correction methods on the distribution
and extreme values of RCM simulations. The wet-day probability and 90th percentile in
Figure 5a,b reveal that statistical bias-adjusting methods added value in reducing the biases
of RCMs when simulating the wet-day probability and 90th percentile. The RCMs (REMO
(MPI-ESM-LR) and CCLM4 (MPI-ESM-LR)) overestimated the probability of wet days
(Figure 5a). The linear scaling method struggled to adjust the probability of wet days to
the observed counterparts. A high number of wet days were simulated in the raw and
bias-corrected outputs by linear scaling methods. This result specifies that mean-based bias
correction methods, like linear scaling, have limitations in terms of correcting low-rainfall
(drizzle) days. In contrast, the distribution mapping method effectively reproduced the
wet-day probability of observed rainfall from the RCM simulations. The RCM simulations
underestimated the 90th percentile of rainfall in the wet seasons of the sub-basin. The
distribution mapping method fit the 90th percentile of RCM simulations better than the
observed rainfall counterpart. The linear scaling method also improved the 90th percentile
simulation of the RCMs. However, this statistical post-processing technique showed a
lesser ability to fit the 90th percentile compared to the distribution mapping method.
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Figure 4. Cumulative distribution function (CDF) of observed and RCM simulations before and after
statistical bias correction in the historical period (1981–2005): (a) presents the CDF of rainfall amount
from 0 to 100 mm/day, while (b) shows the CDF of heavy rainfall (≥10–20 mm/day). The DM and
LS represent the distribution mapping and linear scaling bias correction methods, respectively.

The performance of statistical bias correction techniques in mean-based metrics, such
as in capturing the mean annual and monthly values and MAE and distribution-based
metrics, i.e., wet-day probability, the 90th percentile, and the CDF of observed rainfall, is
comparable with other studies. For instance, the added value of statistical bias correction
techniques was investigated by past studies [14,19,27,28]. Analogous to this study, there
are studies which found underestimation and overestimation of observed values due to
statistical bias correction [31–33,37]. For instance, there was a 19.2% difference between bias-
corrected climate model simulation and observed annual precipitation, while the difference
between raw climate model simulation and observed annual precipitation was 3.5% [32].
Such differences in the skill of bias correction techniques could be partly attributed to the
quality of the observed data.
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3.2. Effect of Bias Correction Techniques on Climate Change Signal

The RCM simulations of the future climate before and after bias correction were
compared to evaluate the effect of bias correction on climate change signals and extreme
indices. The raw RCM simulations consistently projected an increase in mean annual
rainfall for the future climate under both RCP4.5 and RCP8.5 emission scenarios (Figure 6).
With no difference in the RCPs, both CCLM4 (MPI-ESM-LR) and REMO (MPI-ESM-LR)
simulated an increase in the mean annual rainfall on the order of 3% to 35% (Table 1).
The REMO (MPI-ESM-LR) model projected higher rainfall for the future climate than
the observed and CCLM4 (MPI-ESM-LR) rainfall. However, the bias correction methods
triggered a reduction in future mean annual rainfall, but at different magnitudes. After
applying the distribution mapping technique, the mean annual rainfall of 1034 mm and
1240 mm, according to CCLM4 (MPI-ESM-LR) and REMO (MPI-ESM-LR), were reduced to
829 mm and 1166 mm, respectively.
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Figure 6. Mean annual of RCMs before and after statistical bias correction in 2071–2099.
(a) CCLM4(MPI-ESM-LR)RCP4.5, (b) CCLM4(MPI-ESM-LR)RCP8.5, (c) REMO(MPI-ESM-LR)-
RCP4.5, (d) REMO(MPI-ESM-LR)-RCP8.5, (e) CCLM4(MPI-ESM-LR)-RCP4.5-DM, (f) REMO(MPI-
ESM-LR)-RCP4.5-DM, (g) CCLM4(MPI-ESM-LR)-RCP4.5-LS, (h) REMO(MPI-ESM-LR)-RCP4.5-LS,
(i) CCLM4(MPI-ESM-LR)-RCP8.5-DM, (j) REMO(MPI-ESM-LR)-RCP8.5-DM, (k) CCLM4(MPI-ESM-
LR)-RCP8.5-LS, and (l) REMO(MPI-ESM-LR)-RCP8.5-LS. The DM and LS represent the distribution
mapping and linear scaling bias correction methods, respectively.

Table 1. Future (2071–2100) mean annual rainfall (mm) of RCMs before and after statistical bias
correction. The bracket is the change signal (%) in mean annual rainfall between the future (2071–2100)
and observed rainfall (1981–2005). DM and LS represent the distribution mapping and linear scaling
bias correction methods, respectively.

Emission
Scenario RCMs Mean Annual Rainfall (mm)

RCP4.5

Observed 1001 (-)
CCLM4(MPI-ESM-LR) 1034 (3)
REMO(MPI-ESM-LR) 1240 (24)

CCLM4(MPI-ESM-LR)-DM 829 (−17)
REMO(MPI-ESM-LR)-DM 1166 (16)
CCLM4(MPI-ESM-LR)-LS 875 (−13)
REMO(MPI-ESM-LR)-LS 967 (−3)



Sustainability 2023, 15, 10513 13 of 20

Table 1. Cont.

Emission
Scenario RCMs Mean Annual Rainfall (mm)

RCP8.5

CCLM4(MPI-ESM-LR) 1035 (3)
REMO(MPI-ESM-LR) 1348 (35)

CCLM4(MPI-ESM-LR)-DM 858 (−14)
REMO(MPI-ESM-LR)-DM 1344 (34)
CCLM4(MPI-ESM-LR)-LS 879 (−12)
REMO(MPI-ESM-LR)-LS 1078 (8)

Statistical bias correction techniques resulted in changes in climate signals, and even
reverse climate signals, in some RCM simulations (Table 1 and Figure 7). For instance, the
distribution mapping bias correction method changed the positive rainfall signal in CCLM4
(MPI-ESM-LR) to a negative rainfall change signal under the RCP4.5 and RCP8.5 emission
scenarios. Better than linear scaling, the distribution mapping at least preserved the sign of
the climate change signal in REMO (MPI-ESM-LR) under the RCP4.5 and RCP8.5 emission
scenarios. The linear scaling technique triggered a change in the positive climate change
signal in the CCLM4 (MPI-ESM-LR) and REMO (MPI-ESM-LR) RCMs into a negative
rainfall change signal under RCP4.5. The linear scaling and distribution mapping tech-
niques revealed a comparable effect on climate change signals under RCP8.5. However,
the distribution mapping method was found to be slightly better at preserving the climate
change signal of the RCM simulations than the linear scaling method. In most cases, the
positive rainfall signal in the REMO (MPI-ESM-LR) model was not changed into a negative
rainfall signal (Table 1 and Figure 7). This reveals that the climate change signal is sensitive
not only to the choice of bias correction techniques, but also to the type of RCM simulations.
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Figure 7. Boxplots and climate change signals of the annual rainfall of RCM simulations with
and without statistical bias correction for 2071–2099. The DM and LS represent the distribution
mapping and linear scaling bias correction methods, respectively. In the boxplots, the whiskers
indicate the minimum and maximum of rainfall; the horizontal lines represent the 25th percentile,
the median, and the 75th percentile from the bottom to the top of each box plot, and the diamond
sign indicates outliers.
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The result of this study corroborates that statistical bias correction is not the only
source of uncertainty in climate change projection. RCM and driving GCM are other
sources of variation. Similarly, other studies have explored a change in the climate change
signal after applying statistical bias correction. For instance, the statistical bias correction
of RCM simulations triggers a general dampening of the climate change signals in the
Senegal River Basin [37], and a modification of climate change signal owing to bias correc-
tion was investigated in Swiss climate stations [55]. Other studies [14,15,41] identified a
difference among the statistical bias-adjusting techniques in terms of preserving climate
change signals.

3.3. Effect of Bias Correction Techniques on Rainfall Extreme Indices

In the historical climate, statistical bias correction techniques had a divergent effect on
the frequency of wet days (R1mm), the number of heavy precipitation days (R10mm), and
the number of very heavy precipitation days (R20mm) (Figure 8). The RCM simulations
showed a high frequency of R1mm compared to the observed and bias-corrected RCM
outputs. The distribution mapping method corrected the overestimation of R1mm in
the RCM simulations. The R1mm days in the RCMs, bias-adjusted by the distribution
mapping method, showed better agreement with the observed R1mm days (Figure 8).
There were 111 and 109 R1mm days/year in the observed and CCLM4 (MPI-ESM) models,
bias-adjusted by the distribution mapping method, respectively. This indicates that the
scaling parameters used for the distribution mapping method were effective in fitting low-
intensity rainfall values of RCM simulation. However, the linear scaling showed a higher
number of R1mm days than were observed, and there were comparable numbers of R1mm
days in the linear scaling outputs and RCM simulations. There were 121 and 123 R1mm
days in the CCLM4 (MPI-ESM-LR) and REMO (MPI-ESM-LR) models, bias-corrected by
the linear scaling method. Both statistical bias correction techniques added value in terms
of adjusting the frequency of R1mm. However, the distribution mapping method was
superior for adjusting R1mm days. This indicates that the linear scaling and distribution
mapping techniques apply different factors to remove drizzle rainfall values. It is also
noteworthy to remember that only the distribution mapping method used an RCM-specific
precipitation threshold to adjust the frequency of wet days.

The CCLM4 (MPI-ESM) and REMO (MPI-ESM-LR) models showed a lower and
higher number of R10mm days than the observed rainfall, respectively. In the historical
climate, there were 38, 34, and 44 R10mm days/year in the observed, CCLM4 (MPI-ESM),
and REMO (MPI-ESM-LR) models. Bias correction techniques triggered a reduction in
R10mm days from the raw RCM simulations. Both distribution mapping and linear scaling
techniques reduced the R10mm days identified by the RCM simulations. The only exception
was distribution mapping which increased the minimum, maximum, and percentiles of
the R20mm days compared to the RCM simulations. Unlike R10mm, the distribution
mapping method increased the number of R20mm days compared to the RCM simulations.
There were 15, 13, 13, 14, 14, 12, and 11 R20mm days/year in the observed, CCLM4 (MPI-
ESM-LR), REMO (MPI-ESM-LR), CCLM4 (MPI-ESM-LR)-DM, REMO (MPI-ESM-LR)-DM,
CCLM4 (MPI-ESM-LR)-LS, and REMO (MPI-ESM-LR)-LS simulations, respectively. This
also indicates that the type of RCM was another factor determining the number of extreme
rainfall values before and after bias adjustment. However, the significant difference (≤0.05)
in the number of R20mm days was due to the choice of a bias correction method over
the RCM types, where the distribution mapping technique was characterized by a high
frequency of very heavy rainfall days [14], also investigated the quantile delta mapping
technique and how it has estimated the frequency of extreme precipitation events to be far
higher than the raw GCM simulation.



Sustainability 2023, 15, 10513 15 of 20

Sustainability 2023, 15, x FOR PEER REVIEW 15 of 21 
 

(MPI-ESM-LR)-DM, CCLM4 (MPI-ESM-LR)-LS, and REMO (MPI-ESM-LR)-LS simula-

tions, respectively. This also indicates that the type of RCM was another factor determin-

ing the number of extreme rainfall values before and after bias adjustment. However, the 

significant difference (≤0.05) in the number of R20mm days was due to the choice of a bias 

correction method over the RCM types, where the distribution mapping technique was 

characterized by a high frequency of very heavy rainfall days. [14], also investigated the 

quantile delta mapping technique and how it has estimated the frequency of extreme pre-

cipitation events to be far higher than the raw GCM simulation.  

 

Figure 8. Boxplots of rainfall extremes of observed and RCM simulations, with and without bias 

correction, during the historical period (1981–2005). The DM and LS represent the distribution map-

ping and linear scaling bias correction methods, respectively. In the boxplots, the whiskers indicate 

the minimum and maximum of rainfall; the horizontal lines represent the 25th percentile, the me-

dian, and the 75th percentile from the bottom to the top of each box plot, and the diamond sign 

indicates outliers. 

In the future climate change scenarios, the statistical bias correction methods trig-

gered a change in the rainfall extremes of the RCM simulations (Figure 9). The distribution 

mapping method significantly reduced R1mm days compared to the RCM simulations 

under both the RCP4.5 and RCP8.5 emission scenarios. There were 117 and 115 R1mm 

days/year in the CCLM4 (MPI-ESM-LR) and REMO (MPI-ESM-LR) simulations under 

RCP4.5, respectively. However, the frequency of R1mm was reduced to 63 and 92 

days/year in the CCLM4 (MPI-ESM-LR) and REMO (MPI-ESM-LR) simulations bias-cor-

rected by the distribution mapping method and under RCP4.5. The linear scaling method 

preserved the RCM simulations of wet days.  

Both bias correction techniques resulted in a dampening of R10mm days in the future 

period. However, the distribution mapping technique better preserved the R10mm days 

simulated by the RCMs. The frequency of R10mm was 30 and 46 days/year according to 

Figure 8. Boxplots of rainfall extremes of observed and RCM simulations, with and without bias
correction, during the historical period (1981–2005). The DM and LS represent the distribution
mapping and linear scaling bias correction methods, respectively. In the boxplots, the whiskers
indicate the minimum and maximum of rainfall; the horizontal lines represent the 25th percentile,
the median, and the 75th percentile from the bottom to the top of each box plot, and the diamond
sign indicates outliers.

In the future climate change scenarios, the statistical bias correction methods triggered
a change in the rainfall extremes of the RCM simulations (Figure 9). The distribution
mapping method significantly reduced R1mm days compared to the RCM simulations
under both the RCP4.5 and RCP8.5 emission scenarios. There were 117 and 115 R1mm
days/year in the CCLM4 (MPI-ESM-LR) and REMO (MPI-ESM-LR) simulations under
RCP4.5, respectively. However, the frequency of R1mm was reduced to 63 and 92 days/year
in the CCLM4 (MPI-ESM-LR) and REMO (MPI-ESM-LR) simulations bias-corrected by the
distribution mapping method and under RCP4.5. The linear scaling method preserved the
RCM simulations of wet days.

Both bias correction techniques resulted in a dampening of R10mm days in the future
period. However, the distribution mapping technique better preserved the R10mm days
simulated by the RCMs. The frequency of R10mm was 30 and 46 days/year according to
the CCLM4 (MPI-ESM-LR) and REMO (MPI-ESM-LR) simulations under RCP4.5, respec-
tively. On the other hand, under a similar emission scenario (RCP4.5), the frequency of
R10mm was 27 days and 41 days/year according to the CCLM4 (MPI-ESM-LR) and REMO
(MPI-ESM-LR) simulations bias-corrected by the distribution mapping method. The linear
scaling technique resulted in a higher reduction in R10mm days. The frequency of R10mm
days decreased to 24 and 33 days/year according to the CCLM4 (MPI-ESM-LR) and REMO
(MPI-ESM-LR) simulations bias-corrected by the linear scaling method and under RCP4.5.
The distribution mapping technique also better preserved the R20mm days simulated by
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the RCMs than the linear scaling. Like R10mm, linear scaling triggered a higher reduction
in R20mm days. In general, the impact of bias correction on R10mm and R20mm days was
more pronounced than the difference in RCM types and emission scenarios. A change in the
frequency of projected extreme events has also been identified in other studies [14,37,38].
This indicates to what degree bias correction techniques modify extreme events in climate
change projection, which further post-impact assessment and adaptation decisions, such as
designing hydraulic structures to buffer the impact of climate extremes.
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Figure 9. Boxplots of rainfall extremes of RCM simulations, with and without statistical bias correc-
tion, for the future period (2071–2100). The DM and LS represent the distribution mapping and linear
scaling bias correction methods, respectively. In the boxplots, the whiskers indicate the minimum
and maximum of rainfall; the horizontal lines represent the 25th percentile, the median, and the
75th percentile from the bottom to the top of each box plot, and the diamond sign indicates outliers.

The bias correction techniques also caused a change in the frequency of the consec-
utive dry days (CDD) and consecutive wet days (CWD) simulations by the RCMs. The
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distribution mapping technique increased the CDD of the RCM simulations without ex-
cluding the RCMs and emission scenarios. However, the linear scaling reduced the CDD
simulated by CCLM4 (MPI-ESM-LR) under the RCP4.5 and RCP8.5 emission scenarios.
There were 162 and 88 CDDs/year in the CCLM4 (MPI-ESM-LR) and REMO (MPI-ESM-LR)
simulations bias-corrected by the distribution mapping method under RCP4.5 emission
scenarios. In contrast, there were 94 and 73 CDDs/year in the CCLM4 (MPI-ESM-LR) and
REMO (MPI-ESM-LR) simulations bias-corrected by the linear scaling technique and under
RCP4.5 emission scenarios. Conversely, the distribution mapping triggered a significant
reduction in CWD of RCM simulations under both emission scenarios. This indicates
that the distribution mapping method applies scale parameters that remove low-intensity
rainfall days, which further results in a reduction in CWD and an increase in the frequency
of CDD. The linear scaling technique preserves the CWD of RCM simulations under both
emission scenarios.

4. Conclusions

This study evaluates the effect of mean-based and distribution-based statistical bias
correction techniques on climate change signals as well as the frequency and intensity of
extreme rainfall events in the historical and future periods in the Jemma sub-basin of the
upper Blue Nile Basin. The RCMs are characterized by overestimation and underestimation
in different sub-basin areas. Furthermore, a difference in terms of simulating rainfall at
different elevations of the sub-basin among the RCMs was identified. The RCMs also
struggle to reproduce the seasonal variation of rainfall of the sub-basin. This could be
associated with uncertainties derived from the initial boundary condition (GCMs) or the
difference among the RCMs in parameterizing convective clouds at different elevation
classes of the studied sub-basin. Convective-permitting modeling schemes may capture
such biases by effectively characterizing clouds and convective processes in high-elevation
areas. In addition, further improvements to the spatial resolution of regional climate models
may reduce elevation-dependent biases and simulate the seasonal variation of rainfall.

It has been revealed that linear scaling and distribution mapping statistical bias-
adjusting techniques effectively adjust the mean monthly and annual rainfall of RCMs.
However, the mean-based bias-adjusting technique (linear scaling) method struggled to
improve the distribution and extreme rainfall values of the RCM simulations to the observed
extreme rainfall values. The distribution mapping method was effective and superior in
correcting the wet-day probabilities and the 90th percentile of rainfall of RCMs to the
observed rainfall. This corroborates that the distribution mapping technique has scale and
shape parameters at all quantiles that can adjust the RCM simulations to observed values.
However, the RCM and driving GCM types also resulted in variations in the simulation
of rainfall and the models’ effectiveness to reproduce the CDF, wet-day probability, and
90th percentile of the observed rainfall.

The distribution mapping method was relatively superior to the linear scaling method
in preserving the climate change signal of the RCMs. This indicates higher dependence
of the distribution mapping method on future RCM simulations and the bias correction
functions. On the other hand, the linear scaling method strongly depended on the observed
data in order to develop a scaling factor and adjust future RCM simulations. The climate
change signal was also found to be dependent on the type of RCM simulations and less
sensitive to emission scenarios. The REMO (MPI-ESM-LR) simulation, before and after bias
adjustment, showed a positive climate change signal, preserving future RCM simulation.

The statistical bias correction techniques had different effects on extreme rainfall events.
The distribution mapping method strongly affected the frequency of R1mm, R10mm,
R20mm, CDD, and CWD. This could be attributed to the model-based thresholds, which
adjust the frequency of wet days of climate model simulations by distribution-based bias
correction methods [27]. In addition, the low frequency of R1mm days in the distribu-
tion mapping method could be due to the removal of low-intensity and drizzle rainfall
events. However, the distribution mapping method showed a high frequency of R10mm
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and R20mm days. This demonstrates the effect of the distribution mapping method on
preserving extreme values in high quantiles. The high frequency of wet days in the linear
scaling confirmed a higher number of wet days in the historical rainfall data, since the
observed data highly influenced this method to generate scaling factors. There was a
significant difference (≤0.05) in the number of R1mm days, R10mm, R20mm days, and
CDDs according to the statistical bias correction techniques and the type of RCMs.

This study concludes that statistical bias correction methods significantly affect climate
change signals and extreme rainfall values. The study has limitations, considering more
RCM simulations and bias correction techniques based on spatial disaggregation. For
climate change impact assessment and climate adaptation decision analysis, this study
recommends using statistically bias-adjusted multi-model (E-RCMs) simulations, which
show better performance in reproducing the observed climate under different robust
metrics. Future research focusing on different distribution-based and spatial disaggregation
bias correction techniques is essential to develop a robust climate information system for
the sub-basin. The performance of bias correction techniques also needs to be evaluated
using differential split sampling techniques to identify the skills of statistical bias adjusting
functions under changing climate conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su151310513/s1, Figure S1. Boxplots (b) of mean annual rainfall of
observed and RCM simulations before and after statistical bias correction in the historical period (1981–
2005). The DM and LS represent distribution mapping and linear scaling bias correction methods.
In the boxplots, the whiskers indicate the minimum and maximum of rainfall; the horizontal lines
represent the 25th percentile, the median, and the 75th percentile from the bottom to the top of each
box plot, and the diamond sign indicates outliers.
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