Using Artificial Intelligence to Tackle Food Waste and Enhance the Circular Economy: Maximising Resource Efficiency and Minimising Environmental Impact: A Review
Abstract
:1. Introduction
2. Current State of Food Waste and the Circular Economy
2.1. The Circular Economy Concept and Its Potential for Reducing Waste and Increasing Resource Efficiency
2.2. The Role of AI in Addressing Food Waste and Supporting the Circular Economy
2.3. Using AI to Support Circular Economy Initiatives
2.3.1. Use of AI to Identify Opportunities for Waste Reduction and Recycling
2.3.2. Applications of Artificial Intelligence (AI) in Waste Management and Recycling
2.3.3. Potential Benefits of an AI-Supported Circular Economy Initiative
3. Using AI to Monitor and Optimise Food Production and Supply Chains
3.1. Using AI to Analyse Data on Factors Such as Weather Patterns, Crop Yield, and Consumer Demand to Optimise Pre- and Post-Harvest Food Production and Supply Chains
3.2. Examples of AI Applications in Agriculture, Food Processing, and Transportation
3.3. Potential Benefits of AI Optimisation, including Reduced Food Waste and Increased Resource Efficiency
3.4. Examples of AI Applications in Food Production
- IBM Food Trust: This blockchain-based platform uses AI and other technologies to track food products from farm to table, enabling suppliers and retailers to identify the source of any safety or quality issues quickly. By providing end-to-end traceability, IBM Food Trust can help to reduce waste caused by recalls and increase consumer trust in the food supply chain [98].
- Blue River Technology: This company uses computer vision and machine learning algorithms to identify and selectively spray weeds in agricultural fields. By targeting only weeds, Blue River Technology can reduce the use of herbicides and increase crop yield, thus improving efficiency and sustainability in agriculture [99].
- Brightloom: This company uses AI and predictive analytics to optimise menu offerings and pricing for food retailers. By analysing data on sales and customer preferences, Brightloom can help retailers to reduce waste caused by overproduction and ensure that their offerings are aligned with customer demand [100].
- AgShift: This company uses computer vision and AI to automate the process of quality inspection for commodities such as grains, fruits, and vegetables. By analysing images and other data, AgShift can quickly and accurately identify defects, reducing waste caused by human error [101].
- ImpactVision: This company uses hyperspectral imaging and machine learning to analyse the composition of food products, enabling suppliers and retailers to ensure that their products meet quality standards. By identifying quality issues early, ImpactVision can help to reduce waste caused by recalls and improve overall efficiency in the supply chain [102].
4. AI-Powered Food Redistribution Systems
4.1. Using AI to Match Food Donors with Food Banks and Other Organisations That Distribute Food to People in Need
4.2. Examples of AI-Powered Food Redistribution Systems
4.3. Connection between GIS and AI
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mganga, P.P.; Syafrudin, S.; Amirudin, A. Students’ Awareness on Food Waste Problems and their Behaviour towards Food Wastage: A Case Study of Diponegoro University (Undip)-Tembalang Campus. Master’s Thesis, School of Postgraduate Studies, Diponegoro University, Kota Semarang, Indonesia, 2021. [Google Scholar]
- Gustavsson, J.; Cederberg, C.; Sonesson, U. Global Food Losses and Food Waste: Extent, Causes, and Prevention. In Proceedings of the Study Conducted for the International Congress Save Food, at Interpack 2011, Düsseldorf, Germany, 16–17 May 2011; FAO: Rome, Italy, 2011. ISBN 978-92-5-107205-9. [Google Scholar]
- FAO. Global Food Losses and Food Waste—Extent, Causes and Prevention; FAO ONU: Roma, Italy, 2011. [Google Scholar]
- Kummu, M.; de Moel, H.; Porkka, M.; Siebert, S.; Varis, O.; Ward, P. Lost Food, Wasted Resources: Global food supply chain losses and their impacts on freshwater, cropland and fertilizer Use. Sci. Total Environ. 2012, 438, 477–489. [Google Scholar] [CrossRef] [PubMed]
- United Nations. UNEP Food Waste Index Report. 2021. Available online: http://www.unep.org/resources/report/unep-foodwaste-index-report-2021 (accessed on 27 March 2023).
- Delgado, L.; Schuster, M.; Torero, M. Reality of Food Losses: A New Measurement Methodology; IFPRI: Washington, DC, USA, 2017. [Google Scholar]
- Key Figures on Europe, Eurostat, Luxembourg: Publications Office of the European Union. 2017. Available online: https://ec.europa.eu/eurostat/documents/3217494/8309812/KS-EI-17-001-EN-N.pdf/b7df53f5-4faf-48a6-aca1-%20c650d40c9239 (accessed on 19 June 2023).
- Xiong, X.; Yu, I.K.M.; Tsang, D.C.W.; Bolan, N.S.; Ok, Y.S.; Igalavithana, A.D.; Kirkham, M.B.; Kim, K.-H.; Vikrant, K. Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chem. Eng. J. 2019, 375, 121983. [Google Scholar] [CrossRef]
- World Bank; Natural Resources Institute; FAO. Missing Food: The Case of Postharvest Grain Losses in SubSaharan Africa; Report N. 60371-AFR; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2011; p. 12. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/2824/603710SR0White0W110Missing0Food0web.pdf?sequence=1&isAllowed=y (accessed on 5 June 2023).
- Thyberg, K.L.; Tonjes, D.J.; Gurevitch, J. Quantification of food waste disposal in the 946 United States: A meta-analysis. Environ. Sci. Technol. 2015, 49, 13946–13953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koester, U.; Loy, J.-P.; Ren, Y. Measurement and Reduction of Food Loss and Waste Reconsidered; Leibniz Institute of Agricultural Development in Transition Economies: Halle, Germany, 2018. [Google Scholar]
- Bellemare, M.F.; Çakir, M.; Peterson, H.H.; Novak, L.; Rudi, J. On the Measurement of Food Waste. Am. J. Agric. Econonmics 2017, 99, 1148–1158. [Google Scholar] [CrossRef] [Green Version]
- Hafner, G.; Barabosz, J.; Schneider, F.; Lebersorger, S.; Scherhaufer, S.; Schuller, H.; Leverenz, D.; Kranert, M. Ermittlung der Weggeworfenen Lebensmittelmengen und Vorschläge zur Verminderung der Wegwerfrate bei Lebensmitteln in Deutschland; Institut für Siedlungswasserbau, Wassergüte- und Abfallwirtschaft: Stuttgart, Germany, 2012. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; Food and Agriculture Organization of the United Nations (FAO): Roma, Italy, 2012. [Google Scholar]
- Food and Agriculture Organization. The Future of Food and Agriculture—Trends and Challenges. Rome. 2017. Available online: https://www.fao.org/3/i6583e/i6583e.pdf (accessed on 5 June 2023).
- Thünen-Institut. Lebensmittelverschwendung Befeuert Klimawandel Neue Studie Bilanziert Treibhausgasemissionen der in Deutschland Konsumierten Lebensmittel und Zeigt Wege Auf, Lebensmittelabfälle zu Reduzieren; Thünen Institute: Braunschweig, Germany, 2019. [Google Scholar]
- Jamaludin, H.; Elmaky, H.S.E.; Sulaiman, S. The future of food waste: Application of circular economy. Energy Nexus 2022, 7, 100098. [Google Scholar] [CrossRef]
- USDA Food Waste and Its Links to Greenhouse Gases and Climate Change. 2022. Available online: https://www.usda.gov/media/blog/2022/01/24/food-waste-and-its-links-greenhouse-gases-and-climate-change (accessed on 5 June 2023).
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food Wastage Footprint: Impacts on Natural Resources. Rome. 2013. Available online: www.fao.org/docrep/018/i3347e/i3347e.pdf (accessed on 21 June 2023).
- Ellen MacArthur Foundation. Towards the Circular Economy Vol. 1: An Economic and Business Rationale for an Accelerated Transition. Cowes. 2013. Available online: https://ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an (accessed on 21 June 2023).
- Tamasiga, P.; Miri, T.; Onyeaka, H.; Hart, A. Food Waste and Circular Economy: Challenges and Opportunities. Sustainability 2022, 14, 9896. [Google Scholar] [CrossRef]
- Ouro Salim, O.; Guarnieri, P.; Leitão, F. Food Waste from the View of Circular Economy: A Systematic Review of International Literature. Rev. Gestão Soc. E Ambient. 2021, 15, e02579. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular economy: The concept and its limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards Circular Economy in the Food System. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Ada, N.; Kazancoglu, Y.; Sezer, M.D.; Ede-Senturk, C.; Ozer, I.; Ram, M. Analyzing Barriers of Circular Food Supply Chains and Proposing Industry 4.0 Solutions. Sustainability 2021, 13, 6812. [Google Scholar] [CrossRef]
- Kumar, M.; Raut, R.D.; Jagtap, S.; Choubey, V.K. Circular economy adoption challenges in the food supply chain for sustainable development. Bus. Strategy Environ. 2022, 32, 1334–1356. [Google Scholar] [CrossRef]
- Alonso-Muñoz, S.; García-Muiña, F.E.; Medina-Salgado, M.-S.; González-Sánchez, R. Towards circular economy practices in food waste management: A retrospective overview and a research agenda. Br. Food J. 2022, 124, 478–500. [Google Scholar] [CrossRef]
- Negrete-Cardoso, M.; Rosano-Ortega, G.; Álvarez-Aros, E.L.; Tavera-Cortés, M.E.; Vega-Lebrún, C.A.; Sánchez-Ruíz, F.J. Circular economy strategy and waste management: A bibliometric analysis in its contribution to sustainable development, toward a post-COVID-19 era. Environ. Sci. Pollut. Res. Int. 2022, 29, 61729–61746. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bao, W.; Xiu, C.; Zhang, Y.; Xu, H. Energy Conservation and Circular Economy in China’s Process Industries. Energy 2010, 35, 4273–4281. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Growth Within: A Circular Economy Vision for a Competitive Europe; Ellen MacArthur Foundation: Isle of Wight, UK, 2015. [Google Scholar]
- Moraga, G.; Huysveld, S.; Mathieux, F.; Blengini, G.A.; Alaerts, L.; Van Acker, K.; de Meester, S.; Dewulf, J. Circular economy indicators: What do they measure? Resour. Conserv. Recycl. 2019, 146, 452–461. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.; Hultink, E.J. The circular economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Morseletto, P. Targets for a circular economy. Resour. Conserv. Recycl. 2019, 153, 104553. [Google Scholar] [CrossRef]
- Iacovidou, E.; Velis, C.A.; Purnell, P.; Zwirner, O.; Brown, A.; Hahladakis, J.; Millward-Hopkins, J.; Williams, P.T. Metrics for optimising the multi-dimensional value of resources recovered from waste in a circular economy: A critical review. J. Clean. Prod. 2017, 166, 910–938. [Google Scholar] [CrossRef]
- Merli, R.; Preziosi, M.; Acampora, A. How do scholars approach the circular economy? A systematic literature review. J. Clean. Prod. 2018, 178, 703–722. [Google Scholar] [CrossRef]
- Sharma, S.; Gahlawat, V.K.; Rahul, K.; Mor, R.S.; Malik, M. Sustainable Innovations in the Food Industry through Artificial Intelligence and Big Data Analytics. Logistics 2021, 5, 66. [Google Scholar] [CrossRef]
- Davenport, T.H. From analytics to artificial intelligence. J. Bus. Anal. 2018, 1, 73–80. [Google Scholar] [CrossRef] [Green Version]
- McKinsey & Company. How AI Can Unlock a $127 B Opportunity by Reducing Food Waste; McKinsey & Company: Atlanta, GA, USA, 2019. [Google Scholar]
- McKinsey Global Institute. Notes from the AI frontier: Tackling Bias in AI (and in Humans); McKinsey Global Institute: Washington, DC, USA, 2019. [Google Scholar]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Garre, A.; Ruiz, M.C.; Hontoria, E. Application of Machine Learning to support production planning of a food industry in the context of waste generation under uncertainty. Oper. Res. Perspect. 2020, 7, 100147. [Google Scholar] [CrossRef]
- Sundaram, S.; Zeid, A. Artificial Intelligence-Based Smart Quality Inspection for Manufacturing. Micromachines 2023, 14, 570. [Google Scholar] [CrossRef]
- Adak, A.; Pradhan, B.; Shukla, N. Sentiment Analysis of Customer Reviews of Food Delivery Services Using Deep Learning and Explainable Artificial Intelligence: Systematic Review. Foods 2022, 11, 1500. [Google Scholar] [CrossRef] [PubMed]
- Mezgec, S.; Eftimov, T.; Bucher, T.; Koroušić Seljak, B. Mixed deep learning and natural language processing method for fake-food image recognition and standardization to help automated dietary assessment. Public Health Nutr. 2019, 22, 1193–1202. [Google Scholar] [CrossRef] [Green Version]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Popa, A.; Hnatiuc, M.; Paun, M.; Geman, O.; Hemanth, D.J.; Dorcea, D.; Son, L.H.; Ghita, S. An Intelligent IoT-Based Food Quality Monitoring Approach Using Low-Cost Sensors. Symmetry 2019, 11, 374. [Google Scholar] [CrossRef] [Green Version]
- Dedeoglu, V.; Malik, S.; Ramachandran, G.; Pal, S.; Jurdak, R. Blockchain meets edge-AI for food supply chain traceability and provenance. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Tsolakis, N.; Schumacher, R.; Dora, M.; Kumar, M. Artificial intelligence and blockchain implementation in supply chains: A pathway to sustainability and data monetisation? Ann. Oper. Res. 2022, 1–54. [Google Scholar] [CrossRef]
- Bačiuliene, V.; Bilan, Y.; Navickas, V.; Lubomír, C. The Aspects of Artificial Intelligence in Different Phases of the Food Value and Supply Chain. Foods 2023, 12, 1654. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy:An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Cugurullo, F. The sustainability of artificial intelligence: An urbanistic viewpoint from the lens of smart and sustainable cities. Sustainability 2020, 12, 8548. [Google Scholar] [CrossRef]
- Agarwal, V.; Goyal, S.; Goel, S. Artificial Intelligence in Waste Electronic and Electrical Equipment Treatment: Opportunities and Challenges. In Proceedings of the 2020 International Conference on Intelligent Engineering and Management, London, UK, 17–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 526–529. [Google Scholar]
- Abdallah, M.; Talib, M.A.; Feroz, S.; Nasir, Q.; Abdalla, H.; Mahfood, B. Artificial intelligence applications in solid waste management: A systematic research review. Waste Manag. 2020, 109, 231–246. [Google Scholar] [CrossRef]
- Demestichas, K.; Daskalakis, E. Information and Communication Technology Solutions for the Circular Economy. Sustainability 2020, 12, 7272. [Google Scholar] [CrossRef]
- Acerbi, F.; Taisch, M. A literature review on circular economy adoption in the manufacturing sector. J. Clean. Prod. 2020, 273, 123086. [Google Scholar] [CrossRef]
- Nascimento, D.L.M.; Alencastro, V.; Quelhas, O.L.G.; Caiado, R.G.G.; Garza-Reyes, J.A.; Rocha-Lona, L.; Tortorella, G. Exploring Industry 4.0 technologies to enable circular economy practices in a manufacturing context: A business model proposal. J. Manuf. Technol. Manag. 2019, 30, 607–627. [Google Scholar] [CrossRef]
- Lechner, G.; Reimann, M. Integrated decision-making in reverse logistics: An optimisation of interacting acquisition, grading and disposition processes. Int. J. Prod. Res. 2020, 58, 5786–5805. [Google Scholar] [CrossRef] [Green Version]
- Dastjerdi, B.; Strezov, V.; Kumar, R.; Behnia, M. An evaluation of the potential of waste to energy technologies for residual solid waste in New South Wales, Australia. Renew. Sustain. Energy Rev. 2019, 115, 109398. [Google Scholar] [CrossRef]
- Vlachokostas, C.; Achillas, C.; Agnantiaris, I.; Michailidou, A.V.; Pallas, C.; Feleki, E.; Moussiopoulos, N. Decision Support System to Implement Units of Alternative Biowaste Treatment for Producing Bioenergy and Boosting Local Bioeconomy. Energies 2020, 13, 2306. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Mehmood, R.; Corchado, J.M. Green artificial intelligence: Towards an efficient, sustainable and equitable technology for smart cities and futures. Sustainability 2021, 13, 8952. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Alam, G.; Jamal, A.; Shaik, F. Recent advances in applications of artificial intelligence in solid waste management: A review. Chemosphere 2022, 309, 136631. [Google Scholar] [CrossRef]
- Mihailiasa, M.; Avasilcai, S. Towards a circular economy: Tools and instruments. In Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wroclaw, Poland, 23–28 June 2019; Institute of Thermal Technology: Moscow, Russia, 2019; pp. 4595–4603. [Google Scholar]
- Ghoreishi, M.; Ari, H. New Promises AI Brings into Circular Economy Accelerated Product Design: Review on Supporting Literature. In Proceedings of the 7th International Conference on Environment Pollution and Prevention (ICEPP 2019), Melbourne, Australia, 18–20 December 2019. [Google Scholar]
- Ihsanullah, I.; Mustafa, J.; Zafar, A.M.; Obaid, M.; Atieh, M.A.; Ghafour, N. Waste to wealth: A critical analysis of resource recovery from desalination brine. Desalination 2022, 543, 116093. [Google Scholar] [CrossRef]
- Cioffi, R.; Travaglioni, M.; Piscitelli, G.; Petrillo, A.; Parmentola, A. Smart manufacturing systems and applied industrial technologies for a sustainable industry: A systematic literature review. Appl. Sci. 2020, 10, 2897. [Google Scholar] [CrossRef] [Green Version]
- Mboli, J.S.; Thakker, D.; Mishra, J.L. An Internet of Things-enabled decision support system for circular economy business model. Softw. Pract. Exp. 2020, 53, 772–787. [Google Scholar] [CrossRef]
- Drabble, B.; Schattenberg, B. Transforming Complex Business Challenges into Opportunities for Innovative Change-An Application for Planning and Scheduling Technology; University of Oldenburg: Oldenburg, Germany, 2016. [Google Scholar]
- Wang, L. Study on the flexible developing model of circular economy of coal enterprise. In Proceedings of the 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, AIMSEC 2011—Proceedings, Zhengzhou, China, 8–10 August 2011; pp. 1562–1565. [Google Scholar] [CrossRef]
- Bianchini, A.; Rossi, J.; Pellegrini, M. Overcoming the Main Barriers of Circular Economy Implementation through a New Visualization Tool for Circular Business Models. Sustainability 2019, 11, 6614. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Singh, A.; Kaur, G. Chapter 16—Role of Artificial Intelligence and the Internet of Things in Agriculture. In Artificial Intelligence to Solve Pervasive Internet of Things Issues; Kaur, G., Tomar, P., Tanque, M., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 317–330. [Google Scholar]
- Monteiro, J.; Barata, J. Artificial Intelligence in Extended Agri-Food Supply Chain: A Short Review Based on Bibliometric Analysis. Procedia Comput. Sci. 2021, 192, 3020–3029. [Google Scholar] [CrossRef]
- Ramirez-Asis, E.; Vilchez-Carcamo, J.; Thakar, C.M.; Phasinam, K.; Kassanuk, T.; Naved, M. A review on role of artificial intelligence in food processing and manufacturing industry. Mater. Today Proc. 2022, 51, 2462–2465. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.-W.; et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef]
- Sahil, K.; Mehta, P.; Kumar Bhardwaj, S.; Dhaliwal, L.K. Chapter 20—Development of mitigation strategies for the climate change using artificial intelligence to attain sustainability. In Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence; Srivastav, A., Dubey, A., Kumar, A., Narang, S.K., Khan, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 421–448. [Google Scholar]
- Mathew, T.E.; Sabu, A.; Sengan, S.; Sathiamoorthy, J.; Prasanth, A. Microclimate monitoring system for irrigation water optimization using IoT. Meas. Sens. 2023, 27, 100727. [Google Scholar]
- Bigliardi, B.; Filippelli, S.; Petroni, A.; Tagliente, L. The digitalization of supply chain: A review. Procedia Comput. Sci. 2022, 200, 1806–1815. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, A.; Rajput, V.D.; Yadav AK, S.; Kumar, P.; Singh, A.K.; Minkina, T. Chapter 36—Role of artificial intelligence, sensor technology, big data in agriculture: Next-generation farming. In Bioinformatics in Agriculture; Sharma, P., Yadav, D., Gaur, R.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 625–639. [Google Scholar] [CrossRef]
- Camaréna, S. Artificial intelligence in the design of the transitions to sustainable food systems. J. Clean. Prod. 2020, 271, 122574. [Google Scholar] [CrossRef]
- Addanki, M.; Patra, P.; Kandra, P. Recent advances and applications of artificial intelligence and related technologies in the food industry. Appl. Food Res. 2022, 2, 100126. [Google Scholar] [CrossRef]
- Kutyauripo, I.; Rushambwa, M.; Chiwazi, L. Artificial intelligence applications in the agrifood sectors. J. Agric. Food Res. 2023, 11, 100502. [Google Scholar] [CrossRef]
- Sharma, A.; Georgi, M.; Tregubenko, M.; Tselykh, A.; Tselykh, A. Enabling smart agriculture by implementing artificial intelligence and embedded sensing. Comput. Ind. Eng. 2022, 165, 107936. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M.; Xu, B.; Sun, J.; Mujumdar, A.S. Artificial intelligence assisted technologies for controlling the drying of fruits and vegetables using physical fields: A review. Trends Food Sci. Technol. 2020, 105, 251–260. [Google Scholar] [CrossRef]
- Gladju, J.; Kamalam, B.S.; Kanagaraj, A. Applications of data mining and machine learning framework in aquaculture and fisheries: A review. Smart Agric. Technol. 2022, 2, 100061. [Google Scholar] [CrossRef]
- Liu, N.; Bouzembrak, Y.; van den Bulk, L.M.; Gavai, A.; van den Heuvel, L.J.; Marvin HJ, P. Automated food safety early warning system in the dairy supply chain using machine learning. Food Control 2022, 136, 108872. [Google Scholar] [CrossRef]
- Ren, Q.-S.; Fang, K.; Yang, X.-T.; Han, J.-W. Ensuring the quality of meat in cold chain logistics: A comprehensive review. Trends Food Sci. Technol. 2022, 119, 133–151. [Google Scholar] [CrossRef]
- Nunes, C.A.; Ribeiro, M.N.; de Carvalho TC, L.; Ferreira, D.D.; de Oliveira, L.L.; Pinheiro AC, M. Artificial intelligence in sensory and consumer studies of food products. Curr. Opin. Food Sci. 2023, 50, 101002. [Google Scholar] [CrossRef]
- Gedi, M.A.; di Bari, V.; Ibbett, R.; Darwish, R.; Nwaiwu, O.; Umar, Z.; Agarwal, D.; Worrall, R.; Gray, D.; Foster, T. Upcycling and valorisation of food waste. In Routledge Handbook of Food Waste; Reynolds, C., Soma, T., Spring, C., Lazell, J., Eds.; Routledge Taylor and Francis Publishers: Oxford, UK, 2020; 516p. [Google Scholar]
- Pimentel, B.F.; Misopoulos, F.; Davies, J. A review of factors reducing waste in the food supply chain: The retailer perspective. Clean. Waste Syst. 2022, 3, 100028. [Google Scholar] [CrossRef]
- Said, Z.; Sharma, P.; Thi Bich Nhuong, Q.; Bora, B.J.; Lichtfouse, E.; Khalid, H.M.; Luque, R.; Nguyen, X.P.; Hoang, A.T. Intelligent approaches for sustainable management and valorisation of food waste. Bioresour. Technol. 2023, 377, 128952. [Google Scholar] [CrossRef]
- Yadav, V.S.; Singh, A.R.; Raut, R.D.; Mangla, S.K.; Luthra, S.; Kumar, A. Exploring the application of Industry 4.0 technologies in the agricultural food supply chain: A systematic literature review. Comput. Ind. Eng. 2022, 169, 108304. [Google Scholar] [CrossRef]
- Ciccullo, F.; Fabbri, M.; Abdelkafi, N.; Pero, M. Exploring the potential of business models for sustainability and big data for food waste reduction. J. Clean. Prod. 2022, 340, 130673. [Google Scholar] [CrossRef]
- Kar, A.K.; Choudhary, S.K.; Singh, V.K. How can artificial intelligence impact sustainability: A systematic literature review. J. Clean. Prod. 2022, 376, 134120. [Google Scholar] [CrossRef]
- Galaz, V.; Centeno, M.A.; Callahan, P.W.; Causevic, A.; Patterson, T.; Brass, I.; Baum, S.; Farber, D.; Fischer, J.; Garcia, D.; et al. Artificial intelligence, systemic risks, and sustainability. Technol. Soc. 2021, 67, 101741. [Google Scholar] [CrossRef]
- Issa, H.; Jabbouri, R.; Palmer, M. An artificial intelligence (AI)-readiness and adoption framework for AgriTech firms. Technol. Forecast. Soc. Chang. 2022, 182, 121874. [Google Scholar] [CrossRef]
- Stoitsis, G.; Papakonstantinou, M.; Karvounis, M.; Manouselis, N. Chapter 67—The role of Big Data and Artificial Intelligence in food risk assessment and prediction. In Present Knowledge in Food Safety; Knowles, M.E., Anelich, L.E., Boobis, A.R., Popping, B., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 1032–1044. [Google Scholar]
- IBM. (n.d.). 7 benefits of IBM Food Trust. Available online: https://www.ibm.com/blockchain/resources/7-benefits-ibm-food-trust/ (accessed on 18 May 2023).
- Yeshe, A.; Gourkhede, P.; Vaidya, P. Blue River Technology: Futuristic Approach of Precision Farming; Just Agriculture: Punjab, India, 2022. [Google Scholar]
- Brightloom. (n.d.). How it Works. Available online: https://www.brightloom.com/how-it-works (accessed on 18 May 2023).
- AgShift. (n.d.). AgShift. Available online: https://www.agshift.com/ (accessed on 19 May 2023).
- ImpactVision. (n.d.). ImpactVision. Available online: https://www.linkedin.com/company/impactvi/ (accessed on 19 May 2023).
- Sonwani, E.; Bansal, U.; Alroobaea, R.; Baqasah, A.M.; Hedabou, M. An Artificial Intelligence Approach Toward Food Spoilage Detection and Analysis. Front. Public Health 2021, 9, 816226. [Google Scholar] [CrossRef]
- UN. Transforming our world: The 2030 Agenda for Sustainable Development. In Division for Sustainable Development Goals; Springer: New York, NY, USA, 2015. [Google Scholar]
- Shen, Z.; Shehzad, A.; Chen, S.; Sun, H.; Liu, J. Machine Learning Based Approach on Food Recognition and Nutrition Estimation. Procedia Comput. Sci. 2020, 174, 448–453. [Google Scholar] [CrossRef]
- Deng, X.; Cao, S.; Horn, A.L. Emerging Applications of Machine Learning in Food Safety. Annu. Rev. Food Sci. Technol. 2021, 12, 513–538. [Google Scholar] [CrossRef]
- Miyazawa, T.; Hiratsuka, Y.; Toda, M.; Hatakeyama, N.; Ozawa, H.; Abe, C.; Cheng, T.-Y.; Matsushima, Y.; Miyawaki, Y.; Ashida, K.; et al. Artificial intelligence in food science and nutrition: A narrative review. Nutr. Rev. 2022, 80, 2288–2300. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.; Vijaygopal, R.; Kottasz, R. Who Gives to Food Banks? A Study of Influences Affecting Donations to Food Banks by Individuals. J. Nonprofit Public Sect. Mark. 2021, 35, 243–264. [Google Scholar] [CrossRef]
- Prayogo, E.; Chater, A.; Chapman, S.; Barker, M.; Rahmawati, N.; Waterfall, T.; Grimble, G. Who uses foodbanks and why? Exploring the impact of financial strain and adverse life events on food insecurity. J. Public Health 2018, 40, 676–683. [Google Scholar] [CrossRef]
- Bertmann, F.; Rogomentich, K.; Belarmino, E.H.; Niles, M.T. The Food Bank and Food Pantries Help Food Insecure Participants Maintain Fruit and Vegetable Intake During COVID-19. Front. Nutr. 2021, 8, 673158. [Google Scholar] [CrossRef]
- Poulos, N.S.; Nehme, E.K.; O’Neil, M.M.; Mandell, D.J. Implementing food bank and healthcare partnerships: A pilot study of perspectives from charitable food systems in Texas. BMC Public Health 2021, 21, 2025. [Google Scholar] [CrossRef]
- Van Erp, M.; Reynolds, C.; Maynard, D.; Starke, A.; Ibáñez Martín, R.; Andres, F.; Leite, M.C.A.; Alvarez de Toledo, D.; Schmidt Rivera, X.; Trattner, C.; et al. Using Natural Language Processing and Artificial Intelligence to Explore the Nutrition and Sustainability of Recipes and Food. Front. Artif. Intell. 2021, 3, 621577. [Google Scholar] [CrossRef]
- Kirk, D.; Kok, E.; Tufano, M.; Tekinerdogan, B.; Feskens EJ, M.; Camps, G. Machine Learning in Nutrition Research. Adv. Nutr. 2022, 13, 2573–2589. [Google Scholar] [CrossRef]
- Morgenstern, J.D.; Rosella, L.C.; Costa, A.P.; de Souza, R.J.; Anderson, L.N. Perspective: Big Data and Machine Learning Could Help Advance Nutritional Epidemiology. Adv. Nutr. 2021, 12, 621–631. [Google Scholar] [CrossRef]
- Amugongo, L.M.; Kriebitz, A.; Boch, A.; Lütge, C. Mobile Computer Vision-Based Applications for Food Recognition and Volume and Calorific Estimation: A Systematic Review. Healthcare 2022, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Yagoub, M.M.; Al Hosani, N.; Alshehhi, A.; Aldhanhani, S.; Albedwawi, S. Remote Sensing and Gis for Food Banks. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 10, 293–299. [Google Scholar] [CrossRef]
- Feye, K.M.; Lekkala, H.; Lee-Bartlett, J.A.; Thompson, D.R.; Ricke, S.C. Survey analysis of computer science, food science, and cybersecurity skills and coursework of undergraduate and graduate students interested in food safety. J. Food Sci. Educ. 2020, 19, 240–249. [Google Scholar] [CrossRef]
- Liu, K. Research on the Food Safety Supply Chain Traceability Management System Base on the Internet of Things. Int. J. Hybrid Inf. Technol. 2015, 8, 25–34. [Google Scholar] [CrossRef]
- Wheeler, C. Where Deep Learning Meets GIS. 2021. Available online: https://www.esri.com/about/newsroom/arcwatch/where-deep-learning-meets-gis/#:%7E:text=The%20field%20of%20artificial%20intelligence,that%20weren%E2%80%99t%20possible%20before (accessed on 18 May 2023).
- Pereira, P.; Brevik, E.; Trevisani, S. Mapping the environment. Sci. Total Environ. 2018, 610–611, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Bålan, C. Potential Influence of Artificial Intelligence on the Managerial Skills of Supply Chain Executives. Qual. Access Success 2019, 20, 17–24. [Google Scholar]
- Abd-Elmabod, S.K.; Bakr, N.; Muñoz-Rojas, M.; Pereira, P.; Zhang, Z.; Cerdà, A.; Jordán, A.; Mansour, H.; De la Rosa, D.; Jones, L. Assessment of soil suitability for improvement of soil factors and agricultural management. Sustainability 2019, 11, 1588. [Google Scholar] [CrossRef] [Green Version]
- El Behairy, R.A.; Arwash, H.M.E.; El Baroudy, A.A.; Ibrahim, M.M.; Mohamed, E.S.; Rebouh, N.Y.; Shokr, M.S. Artificial Intelligence Integrated GIS for Land Suitability Assessment of Wheat Crop Growth in Arid Zones to Sustain Food Security. Agronomy 2023, 13, 1281. [Google Scholar] [CrossRef]
S/N | Technology | Application Examples | Role in Sustainability | References |
---|---|---|---|---|
1 | Machine Learning (ML) | ML can analyse consumer behaviour patterns to predict food purchases and reduce overproduction. | ML can help in sustainable food production by optimising crop yields based on weather patterns and soil conditions. | [42,43] |
2 | AI Image Recognition | Used in quality control for food items during manufacturing and packaging. Helps to minimise waste by identifying substandard products before reaching consumers. | AI image recognition can help design out food waste by ensuring only quality products are packaged and sold, reducing return rates and subsequent waste. | [44] |
3 | Natural Language Processing (NLP) | NLP can interpret the feedback provided by customers about food products and services to reduce food waste. | NLP can help in developing healthier food items by analysing customer feedback to identify demand for healthier options or improvements to existing items. | [45,46] |
4 | AI-Driven Smart Agriculture | AI applications can enhance farming methods, crop selection, and yield predictions, reducing the unnecessary waste of resources and promoting a circular economy. | AI can support local food production by optimising growing conditions for local species and forecasting market demand to reduce waste. | [47] |
5 | Internet of Things (IoT) and AI | IoT devices can collect data about food storage conditions, and AI can analyse these data to prevent spoilage, improving the shelf-life of food products. | IoT and AI can support the development of healthier food items by tracking nutritional value during storage and informing consumers. | [48] |
6 | Blockchain and AI | A combination of blockchain and AI can ensure traceability in the food supply chain, decreasing food waste and fraud. | Blockchain and AI can help design out food waste by ensuring transparency and accountability throughout the supply chain, reducing losses and inefficiencies. | [49,50] |
7 | Reinforcement Learning | AI systems can optimise food logistics and supply chain management, learning to improve over time and reduce food waste. | Reinforcement learning can support local food production by optimising delivery routes and times to ensure fresh, quality produce. | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onyeaka, H.; Tamasiga, P.; Nwauzoma, U.M.; Miri, T.; Juliet, U.C.; Nwaiwu, O.; Akinsemolu, A.A. Using Artificial Intelligence to Tackle Food Waste and Enhance the Circular Economy: Maximising Resource Efficiency and Minimising Environmental Impact: A Review. Sustainability 2023, 15, 10482. https://doi.org/10.3390/su151310482
Onyeaka H, Tamasiga P, Nwauzoma UM, Miri T, Juliet UC, Nwaiwu O, Akinsemolu AA. Using Artificial Intelligence to Tackle Food Waste and Enhance the Circular Economy: Maximising Resource Efficiency and Minimising Environmental Impact: A Review. Sustainability. 2023; 15(13):10482. https://doi.org/10.3390/su151310482
Chicago/Turabian StyleOnyeaka, Helen, Phemelo Tamasiga, Uju Mary Nwauzoma, Taghi Miri, Uche Chioma Juliet, Ogueri Nwaiwu, and Adenike A. Akinsemolu. 2023. "Using Artificial Intelligence to Tackle Food Waste and Enhance the Circular Economy: Maximising Resource Efficiency and Minimising Environmental Impact: A Review" Sustainability 15, no. 13: 10482. https://doi.org/10.3390/su151310482
APA StyleOnyeaka, H., Tamasiga, P., Nwauzoma, U. M., Miri, T., Juliet, U. C., Nwaiwu, O., & Akinsemolu, A. A. (2023). Using Artificial Intelligence to Tackle Food Waste and Enhance the Circular Economy: Maximising Resource Efficiency and Minimising Environmental Impact: A Review. Sustainability, 15(13), 10482. https://doi.org/10.3390/su151310482