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Abstract: The unconsolidated sandstone is a type of rock that has poor cementation, a low strength,
a high porosity, and permeability. It is highly compressible under high stress and exhibits non-
linear plastic deformation during hydraulic fracturing construction in its reservoir. In this study, the
mechanical properties of unconsolidated sandstone with a different permeability were studied, and a
three-dimensional hydraulic fracture propagation numerical model was established based on the
modified traditional Cambridge model. This model was used to simulate the fracture propagation
law of unconsolidated sandstone in separate layer fracturing under different construction conditions.
During hydraulic fracturing construction, the fracturing fluid slowly invades the reservoir when the
displacement of the fracturing fluid is small. The unconsolidated sandstone undergoes compaction
and hardening, followed by shear expansion, and then complete destruction. A larger displacement
will cause the reservoir rock to directly enter the state of destruction from compaction and hardening.
This study found that several critical parameters are obtained for fracturing construction. When the
displacement is greater than 5 m3/min, the fracturing fluid exceeds 100 mPa·s, or when the filtration
coefficient exceeds 1.2 × 10−3 m/

√
s, the second and third layers will be penetrated. This study

provides valuable insights into the mechanical properties of unconsolidated sandstone and reveals
the critical parameters for the successful hydraulic fracturing construction in this type of reservoir.

Keywords: unconsolidated sandstone; separate layer fracturing; modified Cam-clay model; fracture
propagation law

1. Introduction

Unconsolidated sandstone has abundant oil and gas reserves, and its production
occupies a very important position in the total crude oil production. The large-scale use of
fracturing and sand control completion technology in unconsolidated sandstone reservoirs
has achieved good sand control and production increase effects. Essentially, this technology
uses end sand removal to allow sand-carrying fluid to remove sand at the end of the
fracture, and then expand and fill the fracture to form short and wide high-conductivity
seepage channels [1,2]. As the unconsolidated sandstone reservoir has an uneven longi-
tudinal thickness distribution and overlaps with the other lithologic formations present,
separate layer fracturing technology can be used to treat the target interval in a targeted
manner to improve productivity, and more fractures and pore connections can be formed
in the target interval to increase oil and gas mobility and enhance oil recovery. However,
the characteristics of an unconsolidated sandstone determine that the fracturing fluid loss,
formation failure characteristics, and formation permeability evolution during fracturing
are significantly different from those of dense and low-permeability rocks. At present,
research on the hydraulic fracturing principles and technologies mainly focus on hard,
brittle, low-permeability, and dense rocks, while research on unconsolidated sandstones are
few [3–6]. Different from low permeability reservoirs, long fractures need to be created, and
unconsolidated sandstone reservoirs need to optimize fracturing parameters to generate
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short and wide fractures, effectively improve the seepage capacity in the near-wellbore
area and achieve the purpose of increasing its production. Therefore, it is necessary to
conduct research on the optimization technology of these separate layer fracturing param-
eters for the unconsolidated sandstone reservoir, clarify the expansion laws of hydraulic
fractures in the three directions of length, width, and height in separate layer fracturing in
unconsolidated sandstones, and reveal the effects of the relevant factors, such as fracturing
fluid viscosity, injection displacement, and the filtration coefficient on the expansion laws
of hydraulic fractures.

Sandstone, with a good degree of cementation, is generally regarded as an elastic or
porous elastic medium, while weakly consolidated unconsolidated sandstone has a more
complex fracture generation mechanism due to its poor degree of cementation, low strength,
high porosity, and permeability. Therefore, the preliminary research mainly focused on
laboratory experiments, and these laboratory experiments were considered as an effective
means to define and understand the deformation and failure mechanisms of weakly con-
solidated and unconsolidated sandstone. Murdoch (1993) [7,8] was the first to conduct
experimental research on hydraulic fracturing. He injected tracer glycerin into a partially
saturated silt containing some clay and found that four zones could be distinguished from
the initiation to the fracture front: the initiation zone, the more pronounced fracture zone,
the “finger in” zone, and the forward fluid loss zone, respectively. Khodaverdian and Mcel-
fresh (2000) [9] used 200-mesh quartz sand to prepare unconsolidated sandstone samples,
injected a crosslinked guar gum solution, and conducted a classic hydraulic fracturing
experiment in a radial flow vessel. It was believed that due to the strong plasticity and high
pore pressure, the rock is thereby prone to enter a shear failure state, resulting in a large
number of discrete and discontinuous short fractures. These results differ significantly from
the traditional single tensile fractures. Gil (2005) [10,11] previously applied the particle dis-
crete element method to assess the fracture propagation law in unconsolidated sandstone
formations. The mechanical and physical parameters of unconsolidated sandstone were
measured through experimental methods, and a corresponding discrete element model of
particle flow was established. The results showed that intergranular shear failure was more
significant than tensile failure during fracture extension. Zhang (2013) [12], Li (2016) [13],
and others have conducted similar studies, and generally obtained a consistent understand-
ing of the fracture propagation law. However, their methods have obvious shortcomings in
terms of their practical application—comparing the micromechanical parameters used in
the model with the macroscopic parameters measured in actual experiments is difficult.
Therefore, there is currently a lack of research on the deformation and failure mechanisms
of weakly consolidated and unconsolidated sandstone under fluid injection conditions
based on discontinuous mechanics, which are still in the exploration stage. Feng Kai
(2012) [14] identified an appropriate formula based on the characteristics of natural cores
in unconsolidated sandstone reservoirs and simulated and developed artificial cores of
unconsolidated sandstones. The physical properties of unconsolidated sandstone cores
were assessed using different loading methods. Khodaverdian and Sorop et al. (2010) [15]
injected a shear-diluted polymer reagent into an unconsolidated sandstone sample, and
their results showed that the net pressure was lower than in the previously completed
low-viscosity fluid injection experiment. It has been believed that rock deformation and
failure are mainly caused by the shear expansion of the rock in the fracture tip area, while
the fracture morphology has been considered to be a tensile fracture surrounding the
“subparallel” shear fracture band. Germanvich’s research team [16–18] at the Georgia
Institute of Technology began studying fracture propagation in completely unconsolidated
rocks composed of granular materials after 2000 years. They believed that the level of
ground stress is an important factor affecting the initiation and elongation behavior, and
that fracture morphology is controlled by various mechanical mechanisms (dilatancy, com-
paction, and tension). Fluid loss is closely related to the fracture tip behavior. Golovin and
Jasarevic et al. [19–21] conducted numerous hydraulic fracturing experiments on weakly
consolidated and unconsolidated sandstones in 2010 and 2011, respectively. The exper-
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imental results show that with changes in the rheology, injection rate, and in-situ stress
level of the injected fluid, fracturing fractures mainly include four morphologies: seepage,
cavity, single visible fracture, and complex bifurcation fracture. After fracture initiation,
several small fractures with random directions are formed near the open hole initially,
and then they extend along the horizontal maximum loading direction to form a single
integrated fracture. The results have shown that increasing the proportion of solid particles
and the difference in the ground stress level in the injected fluid promotes the formation
of a single plane fracture. Higher injection rates result in more complex fractures. In 2011
and 2012, Hosseini and Olson [22,23] first used the method of an airbag to apply stress in
all directions to the samples in the true triaxial fracturing equipment, and then injected
Vaseline oil as the fracturing fluid into the weakly consolidated unconsolidated sandstone
samples and observed the experimental results using slices. The results showed that tensile
failure mainly occurs during fracture initiation, and bifurcated shear fracture bands may be
generated during the extension process under different experimental conditions.

Experiments on rock mechanic parameters mainly involve loading and unloading
experiments under different stress paths, with the most common ones being uniaxial
and triaxial compression experiments. In the past, a significant number of experimen-
tal studies focused on the constitutive model of weakly consolidated or unconsolidated
sandstones, primarily examining the rock’s dilatancy softening behavior, such as oil sand
dilatancy under high temperature and differential stress [24]. The most commonly used
failure criteria are the Moore Coulomb criterion, the Drucker Prager criterion, and their
corresponding modified and derived models [25–31]. The Mohr Coulomb criterion has
been widely used in rock mechanics as it only requires two parameters, being cohesion
and the internal friction angle, which can be easily measured through conventional rock
mechanic parameter experiments. The model is highly convenient and straightforward.
However, the Mohr Coulomb criterion does not consider the influence of intermediate
principal stress and is limited to describing the dilatancy behavior of the rock, thereby
making it challenging to assess the shear compaction phenomena in the deformation and
failure of weakly consolidated and unconsolidated sandstones. The Cambridge model and
the modified Cambridge model as two constitutive models describing the elastoplastic
behavior of weakly consolidated soils can well describe the shear-expansion behavior of
rocks. The Cambridge model only needs to determine a few parameters, such as the elastic
modulus and the shear-expansion modulus of the rock to describe the shear-expansion
behavior of these rocks, while the modified Cambridge model introduces additional cor-
rection coefficients and parameters, such as initial shear-expansion, stress stiffness, etc., to
describe the shear stress-strain response and the shear-expansion characteristics of rocks
in more detail. In recent years, several studies [32–44] have started using the modified
Cambridge model to conduct mechanical experiments on unconsolidated sandstones. The
results demonstrated that the model effectively describes the dilatancy behavior of rocks
under high-stress differences and confining pressures, while also considering the coupling
relationship between the stress state and the elastic parameters. Unlike well-consolidated
brittle rock, the strength of cement in weakly consolidated and unconsolidated sandstones
is significantly lower than that of rock particles, and pore collapse is considered the main
failure mode during compaction.

In this paper, unconsolidated sandstone mechanical properties were obtained, and
modifications were made to the traditional Cambridge model. A three-dimensional frac-
ture propagation model for the hydraulic fracturing of unconsolidated sandstones was
established based on the modified model. The effects of viscosity, the filtration coefficient,
and the injection displacement of the fracturing fluid on the three-dimensional fracture
propagation of separately layered fracturing of unconsolidated sandstones were assessed.
These research results have guiding significance for field fracturing construction.
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2. Experimental Procedure
2.1. Experiment Preparation

In this paper, sandstones of different depths obtained from well X were selected as the
experimental materials. Cylindrical rock samples with diameters of 25 mm and heights of
50 mm, respectively, were used as the rock samples. From the obtained cores, the core with
no obvious damage and smooth surface was selected for the preparation of the standard
samples. The specific length, diameter, mass, and other basic material parameters of the
core were then measured. Four groups of cores with different permeabilities were selected
in this experiment, which were 100 mD, 330 mD, 1050 mD, and 2300 mD, respectively.
There are 4 samples in each group, totaling 16 cores (Figure 1).
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Figure 1. Core with different permeabilities.

The experimental instrument used in this study was the rock multi-field coupling
triaxial test instrument produced by Changchun Praseoce Test Instrument Co., Ltd.
(Changchun, China) (Figure 2). The experimental instrument mainly consists of an axial
pressure system, a confining pressure system, and a water pressure system, which can
directly measure the failure strength, elastic modulus, and other parameters of the
sample in a single test. The loading rate was controlled at 0.5 mm/min until the sample is
destroyed. During this period, the experimental curve was displayed through the system
experiment, and the experimental data was automatically recorded. This instrument was
then used to carry out the compressive test on the prepared core sample.
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2.2. Experiment Results

The uniaxial compression test of the rock samples with different permeabilities was
carried out using the triaxial tester. Based on the experimental data obtained directly
from these uniaxial compression tests, the stress-strain curve of a typical unconsolidated
sandstone specimen, as shown in Figure 3, was plotted. According to Figure 3, it can be seen
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that although the permeability is different, the stress-strain curve of the unconsolidated
sandstone can be roughly divided into four stages: (1) initial stage: the trend of the axial
strain of the unconsolidated sandstone specimen is steep as the load increases as the small
cracks or pore throats inside the rock are slowly closed due to the actions of the external
forces; (2) nearly elastic deformation stage: this stage of the unconsolidated sandstone
is almost a proportional relationship, where there is a linear relationship between the
displacement and the load. The elastic modulus is the tangent slope at the midpoint of this
stage; (3) plastic deformation stage: this refers to the part of the unconsolidated sandstone
that first enters the plastic stage with a low strength, which will lead to the development
of new gaps inside the specimen. At the same time, the slightly higher strengthened part
of the specimen also begins to enter the plastic stage. The previous cracks become more
developed, and the curve of this stage does not continue according to the trend of the
previous stage; and the (4) failure stage: where the specimen continues to bear the actions
of axial shear stress after the plastic deformation stage. After being in the ultimate bearing
stage, the cracks developed inside the rock gradually connect with each other to form
visible large cracks. The overall unconsolidated sandstone thereby lacks bearing capacity.
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For sandstone, the rock classification standard usually considers it as an unconsoli-
dated sandstone if its uniaxial compressive strength (UCS) is less than 20 MPa. However,
there are no unified conclusions on its strength for weakly cemented unconsolidated sand-
stone, and several studies believe that its UCS should be less than 5 MPa. When the UCS of
an unconsolidated sandstone is less than 1 MPa, the rock will break under little pressure,
and can be regarded as either uncemented or a pile of unconsolidated sand, which is not
within the scope of research. Four unconsolidated samples with different permeabilities
(S-1, S-2, S-3, and S-4, respectively) were selected for stress-strain comparison analysis,
and the stress-strain curve comparison chart is displayed in Figure 3. By analyzing and
comparing the graph, it can be concluded that the compressive strength of unconsolidated
sandstone decreases with the increase in the permeability. Under the same stress conditions,
unconsolidated sandstone with higher permeability inevitably has a higher strain. These
uniaxial experimental test results found that the strength of the unconsolidated sandstone
was low, with UCS value ranging from 3.4 to 4.5 MPa, respectively.

3. Constitutive Equations

Roscoe and his colleagues from the University of Cambridge (1958–1963) proposed
the basic concept of the fully yield boundary surface, and established a representative soil
elastic-plastic model, termed as the Cambridge clay model (hereafter referred to as the Cam
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model). The Cam model was developed based on a large number of isotropic consolidation
and swelling tests on normally consolidated clay and weakly over-consolidated clay, as
well as triaxial drained and undrained shear tests under different consolidation pressures.
Later, it was also extended to strongly over-consolidated clay. This model adopts a hat yield
surface, corresponding flow rules, and hardening parameters based on the plastic volume
strain. The Cam model, also known as the critical state model, theoretically explains the
characteristics of elastic-plastic deformation in the soil, marking the beginning of a new
stage in the development of soil constitutive models, and has been widely accepted and
applied internationally. In recent years, the extension of the modified Cam-clay model
has been referred to as a double surface material constitutive model. The implementation
of this version appears to give more accurate results [45,46]. This section introduces and
modifies the Cambridge model.

3.1. Basic Theory of the Cam Model

It has been proven that for normal consolidated clay and weakly consolidated sat-
urated remodeled clay, there is a unique relationship between the pore ratio e and the
external force p′, q, and it does not change with the stress path. This model attempts to
describe the phenomenon observed in laboratory tests, that is, loading from an initial state
to a critical state that maintains plastic constant volume deformation. Its basic composition
is as follows:

(1) In the (e, p′) plane, a curve exists in that all stresses in the normally consolidated
clay follow this path, which is called the normal consolidation line (NCL). This line
provides volume hardening rules that can be generalized to general stress conditions;

(2) There also exists a line in the (e, p′, q) space, and all residual states follow this path,
regardless of the experiment class and the initial conditions. This line is parallel to the
normal consolidation line in the (e, p′) plane, where shear deformation occurs without
volume deformation;

(3) The stress path obtained from the consolidated drainage and undrained experiments
is located in a unique state surface, generally known as the Roscoe surface. In fact,
in the undrained path, the soil hardens with the development of the plastic volume
strain where the sum of the elastic and plastic strain increments of the volume strain
remains constant. The value of the Roscoe surface lies in the fact that it provides a
basis for selecting the type of the yield surface.

This model is based on the assumption of critical state line, yield surface, and the
consolidation law of the correlated plasticity theory. This model assumes that: (1) the yield
is only related to two stress components, the stress sphericity p′, and the stress eccentricity
q, and has nothing to do with the third stress invariant; (2) the strain hardening law of
the plastic body has been adopted, and H is used as the hardening parameter; (3) that the
plastic deformation conforms to the associated flow law, that is, g(s) = f (s); and (4) that the
work has been consumed by deformation, namely the plastic work, which is as follows:

dWp = Mpdε
p
s (1)

where: M = q/p′; dε
p
s is the increment of the plastic partial strain.

3.2. Constitutive Equation of the Cam Model

(1) Energy equation

In order to obtain the yield function, Roscoe adopted the energy theory and established
the energy equation. Under the conditions of octahedral stress p′ and q, there are stress
increments dp′ and dq when loading, resulting in the formation of deformation increments,
volume strain increments dεv, and partial strain increments dεq. The deformation energy
increment is:

dW = p′dεv + qdεq (2)



Sustainability 2023, 15, 10444 7 of 19

The increment of deformation energy can be divided into the recoverable elastic
deformation energy increment dWe and the unrecoverable plastic deformation energy
increment dWp, namely:

dW = dWe + dWp (3)

Among them:
dWe = p′dεe

v + qdεe
q (4)

dWp = p′dε
p
v + qdε

p
q (5)

In the Cam model, it has been assumed that the elastic volume strain can be obtained
from the rebound curve of the isobaric consolidated sample,

dεe
v = − dve

1 + e′
=

κ

1 + e
·dp′

p′
(6)

and it is also assumed that all shear strains are unrecoverable, dεe
q = 0.

There is

dWe = p′dεe
v + qdεe

q =
κdp′

1 + e
(7)

In the Cam model, it is also assumed that the increment formula of plastic deformation
energy is

dWp = Mp′dε
p
q = Mp′dεq (8)

There is

dW = dWe + dWp = p′dεv + qdεq =
κdp′

1 + e
+ Mp′dεq (9)

(2) Yield surface equation

The yield surface of the Cam model is the Roscoe state boundary surface. In this
model, it is assumed that the soil is a work-hardened material, and the flow rule is adopted,
that is, as the plastic potential surface coincides with the yield surface. In Figure 4, the stress
and strain planes coincide, dεp is the plastic strain increment, and dε

p
v and dε

p
q represent the

plastic volume strain and plastic partial strain increments, respectively.
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For any point X′ on the yield trajectory, the plastic strain increment dεp coincides with
the direction of the yield surface development at the point beyond X′:

q
Mp′

+ ln p′ = ln C (10)

where lnC is an integral constant, which can be determined by the boundary conditions.
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In Figure 4, Equation (10) for the test point A′(p0, 0, e0) of the isotropic pressure, C = p0,
substituted into Equation (10), and then the equation of the yield trajectory on the p′-q plane is

q
p′
−M ln

p0

p′
= 0 (11)

(3) Stress-strain relationship

dv = −(λ− κ

M
dη +

λ

p
dp′) (12)

or

dεv =
λ− κ

1 + e
(

λ

λ− κ
·dp′

p′
+

dη

M
) (13)

where η is the normal stress ratio, which can be obtained from the energy Equation (9)

κ

1 + e
dp′ + Mpdεq = pdεv + qdεq (14)

By substituting Equation (13) into Equation (14), we get

dεq =
λ− κ

1 + e
· p
′dη + Mdp′

Mp′(M− η)
(15a)

or

dεq =
λ− κ

1 + e

[
1

M− η
·dp′

p′
+

1
M(M− η)

dη

]
(15b)

According to Equations (13) and (14), if the stress increments dp′ and dq are known,
the corresponding strain increment dεv and dεq sum can thus be obtained.

3.3. The Modified Cam-Clay Model

When the same plastic potential surface is hardened and unchanged, the plastic
function g and the yield function f can be equivalently exchanged.

dε
p
v = dλ

∂ f
∂p′

(16)

dε
p
s = dλ

∂ f
∂q

(17)

By substituting it into the dilatancy equation, the relation between plasticity and stress
variation can be obtained:

dε
p
v

dε
p
s
=

∂ f
∂p′

/
(
− ∂ f

∂p′
∂p′

∂q

)
=

∂q
∂p′

(18)

By substituting it into the total differential of the yield function and then integrating it,
the expression of the yield function f is as follows:

f =
q
p′

+ M ln p′ − C (19)

The plastic work equation is written as follows:

dWp = Mpdε
p
s =

√(
p′dε

p
v

)2
+
(

qdε
p
v

)2
= p′

√(
dε

p
v

)2
+
(

Mdε
p
v

)2
(20)
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According to this correction, the corrected dilatancy equation can be obtained:

dε
p
v

dε
p
s
− M2 − (q/p′)2

2q/p′
=

M2 p′2 − q2

2p′q
(21)

The yield function can then obtained:

f = q2 + M2 p′2 − Cp′ (22)

The modified yield function curve of the Cam model is shown as follows:
As shown in Figure 5, the modified yield function curve forms a semi-elliptic shape.

When the shear stress is 0, the average effective stress is p′ = p′x, which is the yield pressure
of isotropic compression. (p′x, 0) substituted into the yield function yields:

C = M2 p′x (23)Sustainability 2023, 15, x FOR PEER REVIEW 10 of 19 
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After substitution into Equation (22), we can then obtain:

q2 + M2 p′2 = M2 p′2
p′x
p′

(24)

The plastic strain expression of rock is:

ε
p
v = εv − εe

v =
λ− κ

1 + e0
ln

p′x
p′0

(25)

(p′0, e0) represents the initial point of the normal consolidation line in Equation (25),
which can be sorted as follows:

p′x = p′0 exp

(
ε

p
v

cp

)
(26)

where cp = λ−κ
1+e0

is the plastic stiffness of the unconsolidated sandstone.
Since unconsolidated sandstone will slowly harden in the process of compressive

resistance, hardening parameters have been adopted in this study to describe the whole
process of the unconsolidated sandstone’s compressive resistance change, and H has now
been used to represent the hardening parameters. According to the characteristics of H
on the same yield surface, that is, on the same yield function, the hardening parameter
is constant, and is in direct proportion to p′x. Therefore, the expression of the hardening
parameter can be expressed as follows:

H =
∫

c
(

p′, q
)
dε

p
v (27)
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The new yield function is obtained as follows:

f = ln
p′

p′0
+ ln

(
1 +

q2

M2 p′2

)
− H = 0 (28)

Thus, the expression of plastic shear strain can be written as:

dε
p
s =

1
c(p′, q)

1
p′

4η2

M4 − η4 dq (29)

The stress-strain curves of normally consolidated and over-consolidated rocks are
very similar, except that the stiffness of the initial changes cp and the peak stress M f are
different. The plastic shear strains of normally consolidated and over-consolidated rocks
are as follows:

dε
p
s = cp

1
p′

4η2

M4 − η4 dq (30)

dε
p
s = ρ

1
p′

4η2

M f
4 − η4 dq (31)

where ρ is the plastic stiffness of the over-consolidated rock, and M f is the peak stress ratio
of the over-consolidated rock.

Following sorting, the expression of hardening parameters can be derived as follows:

H =
∫ 1

ρ

M f
4 − η4

M4 − η4 dε
p
v (32)

However, ρ in Equation (32) is unknown, which can be obtained through the plastic
volume strain increment. The expression of the plastic volume strain is as follows:

dε
p
v = Λ

∂ f
∂p′

= ρ
M4

M f
4

dp′x
p′

(33)

dε
p
v =

λs − κ

1 + e0

dp′x
p′

(34)

where ρ can thereby be obtained from Equations (33) and (34).

ρ =
M4

M f
4

λs − κ

1 + e0
(35)

The hardening parameters were obtained by substituting Equation (35) into Equation (33).

H =
1 + e0

λs − κ

∫ M4

M f
4

M f
4 − η4

M4 − η4 dε
p
v (36)

For the convenience of study, the plastic stiffness of normally consolidated rock cp was
substituted into the above equation, and the hardening parameter thus became:

H =
1
cp

∫
λ− κ

λs − κ

M4

M f
4

M f
4 − η4

M4 − η4 dε
p
v (37)

There must be a relationship between the peak stress ratio and the critical state ra-
tio (λ− κ)/(λs − κ) ≥ 1, M4/M f

4 ≤ 1, and with previous studies having shown that
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(λ− κ)/(λs − κ) and M4/M f
4 are of the same order of magnitude, the two can approxi-

mately cancel each other out, so the hardening parameter can thereby be simplified as:

H =
1
cp

∫ M f
4 − η4

M4 − η4 dε
p
v (38)

Equation (38) is converted into a hardening parameter to represent the plastic volume
strain of over-consolidated rock, which is as follows:

ε
p
v = cp

∫ M4 − η4

M f
4 − η4 dH (39)

The volume strain can be divided into the elastic volume strain and the plastic volume
strain, meaning the expression of the volume strain is:

εv = εe
v + ε

p
v =

κ

1 + e0
ln

p′x
p′0

+ cp

∫ M4 − η4

M f
4 − η4 dH (40)

The parameters calculated by the modified Cambridge model are shown in Table 1.

Table 1. Model correlation parameters.

Physical and Mechanical Properties of Rock

Rebound curve slope, κ 0.025 Slope of isobaric consolidation curve, λ 0.1
Slope of critical state line, M 1.2 Poisson’s ratio 0.25

Over consolidation ratio, OCR 1.203 Slope of recompression curve, λs 0.03
Biot 1 Upper permeability limit, mD 15,000

4. Numerical Simulation
4.1. Model Building

As shown in Table 2, in the actual formation of well X, the reservoir and interlayer
are superimposed on each other, and the thickness of the reservoir and spacer is not equal.
Considering that fracturing requires multiple layers at a time to improve its construction
efficiency, a three-dimensional numerical model incorporating separate layered fracturing
has been established using software according to the reservoir parameters of well X (Table 3),
and the influence of the construction factors and geological factors on fracture propagation
under the mode of separate layered fracturing has been studied. The length, width, and
height of the model are 60 m× 20 m× 47 m, respectively, among which the thickness of the
interlayer was 8 m, and the thickness of the reservoir was 8 m, 4 m, and 3 m, respectively. In
order to make the model run more convergently, and the calculation results more accurate
and reliable, the model used an excessive mesh encryption for the fracture main expansion
layer. The mesh property was designed as a pore fluid/stress attribute, and the mesh type
was designed as a full three-dimensional quadrilateral mesh (C3D8P), as shown in Figure 6.

Table 2. Formation data of well X.

Layer
Position

Layer
Number

Interval Interpretation of
Reservoir Location Thickness

(m)
Porosity

(%)
Permeability
(10−3 µm2)

Water
Saturation

(%)

Argillaceous
Content

(%)
Lithology Result of

InterpretationTop
Boundary

Bottom
Boundary

S2 25 816 824 8.0 35.5 4235.2 26.8 1.1 \ Heavy oil
reservoir

S2 28 831 834.9 3.9 33.2 3659.3 44.5 1.4 \ Heavy oil
reservoir

S2 30 842 844.8 2.8 33.9 3577.3 36 1.3 \ Heavy oil
reservoir



Sustainability 2023, 15, 10444 12 of 19

Table 3. Reservoir parameter values.

Parameter Reservoir Interlayer

Elasticity modulus (Gpa) 5 8
Poisson’s ratio 0.25 0.3

Permeability (mD) 1500 1000
Horizontal minimum principal stress (Mpa) 12 14
Horizontal maximum principal stress (Mpa) 17 17

Vertical stress (Mpa) 22 22
Pore ratio 0.35 0.35

Tensile strength (Mpa) 0.2 0.2
Fracture energy (J/m2) 100 300

Filtration coefficient
(
10−3m/

√
s ) 0.8 0.8

Fracturing fluid viscosity (mPa·s) 20–200 -
Displacement (m3/min) 1–3 -
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Figure 6. Numerical model of separate layered fracturing.

4.2. The Influence of the Different Displacements

Under the conditions of controlling the viscosity and filtration coefficient of the frac-
turing fluid to remain unchanged, Figure 7 displays a cross-sectional view of the layered
fracturing operation completed. It is shown that as the injection displacement of the frac-
turing fluid increases, the fractures of the unconsolidated sandstone expand in the same
direction as the displacement. The length and width of these fractures also gradually
increase. Therefore, under the same injection to be perforated, the smaller the thickness of
the reservoir, the longer the fracture length.
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Figures 8 and 9 show that the fracture length of the first layer in separate layer fractur-
ing increased from 0.0336 m to 0.059 m, the height from 4.086 m to 7.9469 m, and the width



Sustainability 2023, 15, 10444 13 of 19

from 12.4 m to 25.62 m, respectively. The fracture length, width, and height increased by
106.6%, 75.59%, and 94.49%, respectively. The fracture length of the second layer increased
from 0.049 m to 0.0.085 m, the height from 3.63 m to 5.67 m, and the width from 16.6 m to
34.7 m, respectively. The corresponding fracture length, width, and height increased by
109%, 73.46%, and 56.24%, respectively. The fracture length of the third layer increased
from 0.089 m to 0.116 m, the fracture height from 2.9516 m to 4.7681 m, and the fracture
width from 22.56 m to 48.64 m, respectively, with the fracture length, width and height
increasing by 115.6%, 30.33%, and 61.54%, respectively. It can be seen that displacement
has a significant effect on fracture propagation. In the field fracturing construction, the
pumping equipment and economic factors were comprehensively considered in order to
obtain long fractures. Increasing the pumping displacement will be reasonably conducive
to opening the formation and help the extension of the fractures in the unconsolidated
sandstone formation. When the displacement is greater than 5 m3/min, the second and
third reservoirs will be penetrated.Sustainability 2023, 15, x FOR PEER REVIEW 14 of 19 
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4.3. The Influence of the Different Viscosities

When the displacement of the fracturing fluid is constant, its viscosity increases, and
its filtration performance deteriorates as a result. The force of the fracturing fluid on the
tip of the fracture height will increase, far exceeding the fracture toughness of the tip of
the fracture height. At this time, the fracture height will propagate in the vertical direction,
meaning the fracture height will increase. The force of the fracturing fluid within the
fracture will increase, causing the fracture to become wider. The pore pressure around the
tip of the fracture increases at the same time, making it difficult for the fracture to spread
forwards, resulting in the fracture length to decrease. The propagation results of fractures
under different viscosities are shown in Figure 10.

As shown in Figures 11 and 12, with the increase in the fracturing fluid’s viscosity,
the length of the first layer decreased from 21.06 m to 9.91 m, the height increased from
3.4181 m to 9.6265 m, and the width from 0.048 m to 0.066 m, respectively. The fracture
length of the first layer decreased by 52.9%, while the height and width increased by 181.63%
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and 37.5%, respectively. The length of the second layer also decreased from 29.34 m to
13.35 m, the height increased from 3.703 m to 6.512 m, and the width from 0.056 m to 0.093 m,
respectively. The length was found to have reduced by 54.4%, with the width and height
having increased by 66.07% and 75.85%, respectively. The length of the third layer decreased
from 48.53 m to 21 m, the height increased from 2.56 m to 5.94 m, and the width from 0.078 m
to 0.105 m, respectively. The length decreased by 56.7%, while the width and height increased
by 34.61% and 132.03%, respectively. Therefore, it can be concluded that if the displacement
of the fracturing fluid is constant and the viscosity increases, the filtration loss effect and the
filtration loss amount will decrease as a result, and the force of the fracturing fluid on the
fracture height tip will increase, far exceeding the fracture toughness of the fracture high tip,
meaning the fracture height will increase. When the loss in filtration decreases, the force of
the fracturing fluid on the fracture wall increases, causing the fracture width to also increase.
As the fracturing fluid is injected, the pore pressure around the crack tip increases, making it
difficult for the fracture to propagate forward, resulting in the fracture length to decrease.
When the viscosity of the fracturing fluid exceeds 100 mPa·s, the second and third layer
reservoirs will be penetrated.
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4.4. The Influence of the Different Filtration Coefficients

With the increasing filtration performance of the fracturing fluid, the fracture tough-
ness of the high tip of the fracture thereby becomes smaller. Combined with the infiltration
of the fracturing fluid, this makes it easier for the fracture height to expand upwards. At
this point, the fracture width will also gradually increase as a result. As the fracturing fluid
penetrates into the reservoir through the fracture, the force of the fracturing fluid on the
tip of the fracture length decreases and the fracture is difficult to propagate, causing the
fracture length to decrease. The propagation results of fractures under different filtration
coefficients are shown in Figure 13.Sustainability 2023, 15, x FOR PEER REVIEW 16 of 19 
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5. Discussion

Many scholars have carried out a lot of research on the technology and theory related
to the fracturing of the unconsolidated sandstone. By conducting mechanical experiments
in unconsolidated sandstone and establishing numerical models based on the modified
Cambridge model for experimental research, we have a certain understanding of the mech-
anisms and laws of hydraulic fracture initiation and extension under layered fracturing.
It is different from the fracturing results of the single-layer unconsolidated sandstone
reservoirs [44,45]. Under the same layer and thicknesses of the reservoir, the viscosity of
the fracturing fluid has a more significant effect on increasing the height and width of
the cracks, and the displacement has a more significant effect on improving the length
of the cracks. As the displacement of the fracturing fluid increases, the hydraulic frac-
tures propagate in the same direction as the displacement, and the length and width of
the fractures gradually increase. Under the same injection displacement, the thickness of
the reservoir to be perforated decreases, and the length of the fractures increase. When
the displacement of the fracturing fluid remains constant, the filtration performance will
deteriorate as the viscosity increases. The filtration loss will decrease, and the seam height
will expand vertically and horizontally, resulting in an increase in the seam height and
width. The pore pressure around the crack tip will increase, making it difficult for the
crack to expand forward, thus reducing the crack length. With the increasing filtration
performance of the fracturing fluid, the fracture toughness at the top of the fracture height
is smaller when the fracture propagates. With the penetration of the fracturing fluid, the
fracture height is easier to expand upwards, and the fracture width will gradually increase.
The force exerted by the fracturing fluid penetrating into the reservoir through the crack
on the tip of the crack length subsequently decreases. Fractures are difficult to expand
forward, and their length will decrease accordingly. However, there are still several issues
which require further research:

(1) The extension of cracks and the settlement law of proppant during the filling and
sand removal stages.

The main stages of fracturing and filling completion in the unconsolidated sandstone
include fracturing, filling, and sand removal. This paper mainly assessed the initiation and
extension laws of fractures during the fracturing and filling stages of layered fracturing.
Existing research has also rarely considered the changes in fracture extension, proppant
settlement, and fracturing fluid filtration during the filling and sand removal stages. Therefore,
further research is needed on the changes in these relevant parameters during the filling and
sand removal stages of fracturing and filling completion in unconsolidated sandstones.

(2) The extension direction of cracks under conditions such as different perforation
orientations and in situ stresses.

The three-dimensional geological model established in this article was pre-configured
with the cohesive element to simulate the initiation and extension of cracks, and these
cracks can only crack along the cohesive element. The preset cohesive element in this paper
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was perpendicular to the minimum horizontal principal stress direction, which is consistent
with the expected crack cracking direction, but the actual perforation orientation was not
always along the minimum horizontal principal stress direction, meaning the problem of
crack extension direction under the conditions of different perforation orientations and
different crustal stress needs further study.

6. Conclusions

(1) Under different permeability conditions, the compressive strength of the unconsol-
idated sandstone decreases with the increase in the permeability. Under the same
stress conditions, unconsolidated sandstone with a high permeability has a greater
strain before fracture pressure;

(2) This Cambridge model is edited and correcting the error of the non-zero increase
in the shear strain. The hardening parameters were used to represent the plastic
volumetric strain when the shear stress was zero;

(3) A three-dimensional numerical model for the separate layer fracturing of the un-
consolidated sandstone was established through software. The impact of different
construction conditions on hydraulic crack propagation was investigated. Maintain-
ing a fixed fracturing fluid displacement and increasing the viscosity and filtration
coefficient of the fracturing fluid, unconsolidated sandstone was found to be more
likely to form short and wide cracks. Keeping the viscosity and filtration coeffi-
cient of the fracturing fluid unchanged and increasing the displacement resulted in
unconsolidated sandstone to be more likely to form long and wide fractures.
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