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Abstract: A hybrid energy storage system (HESS) can effectively suppress the high and low-frequency
power fluctuations generated by wind farms under the intermittency and randomness of wind.
However, for the existing power distribution strategies of HESS, power-type and energy-type energy
storage have the problem of inconsistent charge–discharge states in the same time sequence, which
makes it difficult to achieve optimal operation in terms of charge–discharge coordination and energy
flow. To solve this problem, this study firstly adopts adaptive wavelet packet decomposition (WPD)
to decompose the original wind power to acquire grid-connected power and HESS initial distribution
power, to ensure that the supercapacitor and battery undertake the corresponding high and low-
frequency power fluctuations, respectively; Then, for the inconsistent charge–discharge states, a
charge–discharge time sequence optimization strategy based on the consistency index is proposed to
correct the initial power distribution of HESS for the first time; Finally, aiming at the stage of charge
(SOC) over-limit problem, the fuzzy optimization method is adopted to correct the HESS output
power for the second time, which can reduce the unnecessary charge–discharge energy effectively.
With typical daily output data of a 100 MW wind farm, the proposed control strategy is verified.
The results show that it can make different energy storage technologies synchronously suppress
wind power fluctuation in the same time sequence; compared with not considering charge–discharge
time sequence optimization, the charge–discharge conversion times of the battery obtained by the
proposed method are reduced from 71 to 14 times, and the charge–discharge conversion times of
supercapacitor are reduced from 390 to 61 times; The cumulative reduction of unnecessary charge–
discharge energy by HESS is 12.12 MWh. Besides, the SOC curves of HESS are controlled at a normal
level, thus improving the economy and service life of HESS.

Keywords: hybrid energy storage system; wind power suppression; charge–discharge time sequence
optimization; wavelet packet decomposition; fuzzy optimization

1. Introduction

Wind power output is characterized by intermittent and volatility. The direct grid
connection of wind power has a significant impact on the stability of the power system.
How to effectively suppress the fluctuation of wind power and improve its grid-connected
operation ability is of great practical importance for the utilization of wind power [1–4]. The
existing energy storage technologies consist of two categories: energy-type and power-type,
among which energy-type energy storage has high energy density, low power density and
short cycling life, which is not applicable for a fast charge–discharge; Power-type energy
storage has low energy density and high power density, frequent charge–discharge will
not damage its performance. In view of the excellent performance complementarity of the
two kinds of energy storage, many studies use them to form HESS to suppress wind power
fluctuations [5–9].
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Generally, hierarchical optimization of wind power suppression was carried out
according to energy storage SOC in [10,11], which can realize wind power suppression and
HESS normal operation through low-pass filtering, power regulation and limit management.
A novel dynamic power-distribution control based on multi-filter was proposed for HESS
integrated with a grid-connected wave energy converter [12], which can effectively suppress
the output power before grid connection. The wind power suppression methods by HESS
based on empirical mode decomposition (EMD) were proposed in [13–15]. A two-level
real-time wavelet decomposition (WD) method was used to dispose of wind power [16].
The first-level filtering can obtain the power that meets the fluctuation demand; the second-
level filtering can remove the noise produced by the rolling of the filtering window; Besides,
the HESS can normally work through the SOC feedback control. In [17], WPD theory was
used to dispose of the output fluctuation of wind power, the wind power is decomposed
into low-frequency signal reflecting grid-connected power and the high-frequency signal
connected to HESS, and then the high-frequency signal was further decomposed based on
the properties of HESS. An evaluation index based on intermittent power supply fluctuation
and micro-grid supply and demand balance was established, and a HESS charge–discharge
method on the basis of WPD and fuzzy control were presented in [18], which can improve
the fluctuation of intermittent power supply in micro-grid and reduce unbalanced power.
Fuzzy logic control was used to control the energy management system with HESS priority
order in [19,20], which can control SOC at a normal level.

At present, several studies put forward corresponding strategies of HESS to control its
SOC at a normal level on the premise of suppressing wind power fluctuation. However,
in the HESS power distribution strategies acquired by filtering, EMD, WPD and other
methods, when wind power fluctuation is small, energy-type and power-type energy
storage both get power instructions. Besides, there is a problem of inconsistent charge–
discharge states of each energy storage in the same time sequence, which increases the
charge–discharge conversion times, and makes HESS undertake extra energy absorption
and release, resulting in the reduction of economy and service life.

To solve the above problems, firstly, adaptive WPD is adopted to decompose the
original wind power to acquire grid-connected power and HESS initial distribution power
so that the battery and supercapacitor can undertake the corresponding high and low-
frequency power fluctuations, respectively. Then, for the inconsistent charge–discharge
states, a charge–discharge time sequence optimization method based on the consistency
index is proposed to correct the initial power distribution of HESS for the first time. Finally,
aiming at the SOC over-limit problem, the fuzzy optimization method is adopted to correct
the HESS power for the second time, and the unnecessary charge–discharge energy can be
effectively reduced. With a 100 MW wind farm, the superiority of the proposed method
is verified and analyzed from three aspects: suppression effect, charge–discharge time
sequence optimization effect and SOC optimization effect. The validation results show
that the adaptive WPD method has a good suppression effect on the original wind power
fluctuation, and the grid-connected power that meets the fluctuation standard is obtained.
The proposed charge–discharge time sequence optimization method can make different
energy storage technologies synchronously charge or discharge in the same time sequence
and effectively reduce the charge–discharge conversion times and accumulated charge–
discharge energy. Besides, the fuzzy control method considering charge–discharge time
sequence can reduce the charge–discharge depth of the energy storage system and prevent
excessive charge–discharge, thus improving the economy and service life of HESS.

2. Wind Storage System Structure and Grid-Connected Power Acquisition
2.1. Wind Storage System Structure

Figure 1 shows the typical wind storage system structure; it includes wind farm, HESS,
power grid and energy management system. Based on the comprehensive evaluation of the
current market status of battery energy storage technology, lithium iron phosphate battery
is regarded as one of the most competitive energy storage technologies in the future of large-
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scale application due to its advantages of high specific power, high specific energy, long
lifetime and continuous declining cost. Therefore, HESS is mainly composed of lithium iron
phosphate batteries, supercapacitors, DC/DC converters and DC/AC inverters. The battery
and the supercapacitor are connected to the DC bus through their respective DC/DC boost
circuits, and then the DC power of HESS is converted into AC power through the DC/AC
inverter circuit. Finally, the output power of the wind farm, battery and supercapacitor is
collected into the common bus (PCC) and then flows to the power grid together. The energy
management system can control the energy absorption and release of HESS reasonably by
collecting the SOC and output of each device to suppress wind power fluctuation.
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Figure 1. Wind storage system structure. 

The energy flow relationship in the wind storage system is shown in (1) and (2). 
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tively; Ph(t), Pb(t), Psc(t) are the output power of HESS, battery and supercapacitor, respec-
tively; Pb(t) > 0 or Psc(t) > 0 represents that the battery or supercapacitor is discharging; On 
the contrary, Pb(t) < 0 or Psc(t) < 0 represents that the battery or supercapacitor is charging. 
Units of all the above parameters are “MW” in this study. 
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The energy flow relationship in the wind storage system is shown in (1) and (2).

Pgrid(t) = Pw(t) + Ph(t) (1)

Ph(t) = Pb(t) + Psc(t) (2)

where Pgrid(t), Pw(t) are the output power of grid-connected point and wind farm, re-
spectively; Ph(t), Pb(t), Psc(t) are the output power of HESS, battery and supercapacitor,
respectively; Pb(t) > 0 or Psc(t) > 0 represents that the battery or supercapacitor is discharg-
ing; On the contrary, Pb(t) < 0 or Psc(t) < 0 represents that the battery or supercapacitor is
charging. Units of all the above parameters are “MW” in this study.

2.2. Grid-Connected Power Acquisition of Wind Storage System Based on Adaptive WPD

With the purpose of decreasing the adverse effects of wind power fluctuation on the
stability of power grid operation, many nations have established corresponding standards
for grid connection of wind power, among which GB/T 19963-2011 in China stipulates the
maximum limits of wind power variation at 1 min and 10 min time scales [21], as shown in
Table 1.

In order to maximize the economic benefits of HESS and the utilization rate of wind
power generation, it is only required to ensure that the wind power fluctuation meets
the grid-connected standard in Table 1. Among filtering, EMD, WD, WPD, and other
decomposition methods, traditional filtering decomposition is sensitive to the fluctuation
characteristics of wind power, its general applicability is poor, and the filtering time constant
is difficult to control accurately. EMD has the problems with boundary effect and mode
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aliasing. WD has multiple resolution properties in processing unsteady mutation signals.
On the premise of WD, WPD further improves the time-frequency resolution of signal
analysis and helps to obtain the details of the high-frequency signal. Besides, the calculation
speed of WD and WPD is faster than EMD. Since the signal studied in this study is based
on the real-time fluctuation power data of wind farms, the variation of wind power is large
and irregular under the condition of poor wind speed, so the decomposition method with
outstanding signal mutation decomposition ability and time-frequency local analysis ability
should be selected. Based on the above analysis, WPD is more applicable for the analysis of
wind power properties. So WPD is adopted to decompose the fluctuating output power of
wind farms. The basic principle of WPD is to represent the wavelet packet with an analysis
tree, that is, using the wavelet transform of multiple iterations to analyze the input signal.
The schematic diagram of WPD is shown in Figure 2. In Figure 2, from the left side to the
right side, the signal components acquired by decomposing the original signal in 1st layer,
2nd layer, . . . , and m-th layer are represented, respectively; S represents the original signal,
which is decomposed in m (m ≥ 1) layers to acquire the corresponding low-frequency parts
Sm,0 and high-frequency parts Sm,k.

Table 1. Maximum limits of wind farm output power variation of GB/T 19963-2011 standard [21].

Installation Capacity of Wind Farm
(MW)

Maximum Power Variation in 1 Min
(MW)

Maximum Power Variation in 10 Min
(MW)

<30 3 10
30–150 Installation capacity/10 Installation capacity/3
>150 15 50
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The wavelet packet algorithm includes two processes: decomposition and reconstruc-
tion of wave packets. The expression of the WPD process is shown in (3).

f j,2m
p =

m
∑

k=1
hk−2p f j+1,m

k

f j,2m+1
p =

m
∑

k=1
gk−2p f j+1,m

k

(3)

The expression of wavelet packet reconstruction process is shown in (4).

f j+1,2m
p =

m

∑
k=1

(hp−2k f j,2m
k + gp−2k f j,2m+2

k ) (4)

where f j,2m
p , f j,2m+1

p are the WPD factors, respectively; h and g are the factors of the low-pass
and high-pass filters for each decomposition and reconstruction.
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dbN wavelet has strong local analysis ability in the frequency domain and ideal
amplitude-frequency characteristics, so it is widely used in engineering practice. Therefore,
a high-order db5 wavelet is used in this study to decompose the original wind power
output signal S in m layers. The decomposed signal is divided into 2m frequency band
signals, and the bandwidth of each signal frequency band in the m-th layer is ∆ f = fs

2m+1 .
Since the number of decomposition layers in the traditional WPD method needs to be
manually selected, which lacks objectivity, and the number of decomposition layers is often
different under different wind power output scenarios. Therefore, in order to improve the
general applicability of WPD in different wind farm capacities and different wind power
fluctuation scenarios, adaptive WPD is adopted in this study; its decomposition process is
as follows:

(1) Let m = 1 and then decompose the original wind power;
(2) Calculate whether the decomposed low-frequency part Sm,0 meets the standard in

Table 1;
(3) If the standard in Table 1 is not met, let m = m + 1, continue to decompose the original

wind power and step (2) is repeated; If the standard in Table 1 is met, m is the best
WPD layer, then let Pgrid(t) = Sm,0. In this way, the grid-connected power is acquired.
The difference between Pgrid(t) and Pw(t) is the reference output power Phref(t) of
HESS.

The process diagram of wind power fluctuation suppression by the adaptive WPD
method is shown in Figure 3. After the original wind power is decomposed by adaptive
WPD, the low-frequency component Sm,0 satisfying the fluctuation standard in Table 1,
is obtained as the grid-connected power, and the remaining high-frequency fluctuation
components are suppressed by HESS.
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3. Initial Power Distribution and Charge–Discharge States Analysis of HESS
3.1. Initial Power Distribution of BESS Based on Adaptive WPD

According to the different technical characteristics of energy-type and power-type
energy storage, how to rationally distribute the power of HESS is a key factor affecting the
power suppression effect of wind power. Since the lifetime of the battery may be reduced
if the charge–discharge frequency is too fast, the battery is suitable for undertaking low-
frequency power fluctuation. At the same time, the response speed of the supercapacitor is
fast, and it can undertake high-frequency power instructions, which is suitable for frequent
charge–discharge conversion scenarios. The charge–discharge response time of the battery
and supercapacitor ranges from minutes to hours and milliseconds to minutes, respectively.
Therefore, 1 min is chosen as the boundary between the charge–discharge response time of
the battery and supercapacitor, and it can be calculated that the corresponding dividing
frequency is 1.67 × 10−2 Hz. Therefore, according to the results of adaptive WPD in
Section 2.2, the fluctuation power to be undertaken by the battery and the supercapacitor,
respectively, is shown in (5).{

Pbre f = −(Sm,1 + Sm,2 + . . . + Sm,k)
Pscre f = −(Sm,k+1 + Sm,k+2 + . . . + Sm,2m−1)

(5)

where Pbref and Pscref are the initial distribution power of battery and supercapacitor, re-
spectively; f s is the sampling frequency of the initial wind power signal; m is the number of
decomposition layers; Sm,1, Sm,2, . . . Sm,k are high-frequency signal parts after being decom-
posed by wavelet packet; k is the frequency division point of battery and supercapacitor
power signals.

3.2. Charge–Discharge States Analysis of HESS Based on Adaptive WPD

Low-pass filtering, EMD, WPD and other filter decomposition methods essentially
decompose the original signal through a series of filtering processes with different filtering
coefficients and then obtain high and low-frequency signal components. Therefore, when
the methods above are applied to the power distribution of HESS, high and low-frequency
wind power fluctuations are usually allocated to power type and energy type energy
storage, respectively, according to the response frequency of HESS, while the cooperation
between energy type and power type energy storage is ignored, resulting in inconsistent
charge–discharge states in the same time sequence. With a 100 MW wind farm, adaptive
WPD is adopted to decompose the original daily wind output power, the grid-connected
power and initial distribution power of HESS are acquired, and the problem of inconsistent
charge–discharge states in HESS is further explained.

The original wind power and the grid-connected power are shown in Figure 4.
The initial distribution power signals of HESS are shown in Figure 5. According to
Sections 2.2 and 3.1, it can be calculated that the number of optimal decomposition layers
is m = 5, and the frequency division point of the battery and supercapacitor power signal is
k = 3. In Figure 4, after WPD, the maximum fluctuation power of 100 MW wind farm at
1 min time scale decreases from the original 15.03 MW to 5.34 MW, and the grid-connected
power is acquired, which satisfies the fluctuation standard in Table 1. Compared with
the original wind power, grid-connected power has an obvious suppression effect. In
Figure 5, the supercapacitor undertakes the high-frequency power command with frequent
fluctuations, while the power command of the battery changes with a lower frequency and
the amplitude is large, the less charge–discharge conversion times are beneficial to extend
the lifetime of the battery. The power distribution results are in line with the technical
properties of the battery and supercapacitor. However, the initial power command of HESS
acquired by adaptive WPD has the problem that the charge–discharge time sequence of
each energy storage technology is inconsistent. For example, in Figure 5, when t = 554 min,
the HESS output power is Phess(t) = −2.36 MW, the supercapacitor output power is Psc(t)
= 3.24 MW, the battery output power is Pb(t) = −5.6 MW. Besides, |Pb(t)| > |Phess(t)|,
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|Psc(t)| > |Phess(t)|. Therefore, we can observe that the battery is charging while the super-
capacitor is discharging at this time; Moreover, the energy absorbed and released by each
energy storage technology is greater than HESS. Such inconsistent charge–discharge states
in the same time sequence can easily make the SOC approach its upper and lower limits,
resulting in a decrease in the overall operating efficiency of HESS.
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4. HESS Fuzzy Optimal Control Considering Charge-Discharge Time Sequence

After the initial power distribution of HESS, the existing studies often optimize the
SOC over-limit problem without considering the consistency of the charge–discharge
time sequence. Therefore, before SOC optimization, a charge–discharge time sequence
optimization method based on the consistency index is proposed to correct the initial power
distribution of HESS for the first time. Then, aiming at the SOC over-limit problem, the
fuzzy optimization method is adopted to correct the HESS output power for the second
time; the charge–discharge optimization control strategy for the HESS is shown in Figure 6.
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4.1. Charge–Discharge Time Sequence Optimization Based on Consistency Index

In order to judge the charge–discharge status of HESS, the charge–discharge consis-
tency index C is defined, as shown in (6).

C =
Ph(t)− PSC(t)

Ph(t)
(6)

where 0 ≤ C ≤ 1 means that both energy storage systems are in charge or discharge state,
or that one kind of energy storage is in charge or discharge state and the other kind of
energy storage doesn’t work; C < 0 or C > 1 means that one kind of energy storage is in
charge state while the other kind of energy storage is in discharge state.

Aiming at the problem of inconsistent charge–discharge states in the same sequence,
a charge–discharge time sequence optimization is proposed to correct the initial power
distribution of HESS for the first time. The optimization steps are as follows:

(1) If 0 ≤ C ≤ 1, keep the original charge–discharge strategies of the battery and superca-
pacitor unchanged.

(2) If C < 0, that is, |Psc(t)| > |Ph(t)|, which indicates that the HESS and supercapacitor
are both in charge or discharge state, while the battery is in discharge or charge
state, resulting in inconsistent charge–discharge states of different energy storage
technologies in the same time sequence. In this case, let Psc1(t) = Ph(t), Pb1(t) = 0.

(3) If C > 1, that is, |Psc(t)| < |Ph(t)|, which indicates that the HESS and battery are both
in charge or discharge state, while the supercapacitor is in discharge or charge state.
In this case, let Pb1(t) = Ph(t), Psc1(t) = 0.

After the first correction, the battery and supercapacitor energy storage can syn-
chronously suppress wind power fluctuation in the same time sequence.
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4.2. Fuzzy Optimization of HESS Based on SOC

Traditional control theories require a clear mathematical model of the controlled object,
which is generally used to solve the control problems of simple controlled systems, such as
linearity and time invariance. Fuzzy control does not depend on the mathematical model of
the controlled system but depends on the fuzzy rules converted from operating experience,
and then converts these rules into computer language to realize automatic control, so
it belongs to intelligent control. Due to the influence of the distributed inductance and
distributed capacitance of the battery and supercapacitor energy storage, they are in a
nonlinear state during the charge and discharge process. Therefore, the nonlinear degree
of HESS composed of battery and supercapacitor is greatly increased. Fuzzy control is
born to solve the nonlinear problem of the controlled object, so this study chooses the
fuzzy algorithm to control the SOC of HESS. As shown in Figure 6, on the basis of the
first correction, fuzzy optimization is adopted to correct the HESS output power for the
second time to solve the SOC over-limit problem. Since the SOC of the battery and the
supercapacitor may exceed the normal range during the actual operation of HESS, excessive
charge and discharge will reduce the service life of the energy storage; two fuzzy controllers
are selected to control the SOC of the battery and the supercapacitor, respectively. The first
fuzzy controller takes SOCSC(t− 1) and ∆SOCSC(t) of the supercapacitor as two inputs, and
the second fuzzy controller takes SOCb(t − 1) and ∆SOCb(t) of the battery as two inputs.
The optimization steps are as follows:

(1) Calculate the SOCSC(t) of the supercapacitor after the first correction; If SOCSC(t) is
appropriate, keep the charge–discharge strategy of the supercapacitor after the first
correction unchanged; If SOCSC(t−1) is too large and ∆SOCSC(t) > 0, or SOCSC(t−1) is
too small and ∆SOCSC(t) < 0, it is necessary to make a second correction to the output
power of supercapacitor. The output of the first fuzzy controller is the correction
coefficient KSC_SOC(t). The supercapacitor power command after the second correction
is Psc2(t) = KSC_SOC(t)·PSC1(t). In order to obtain a good control effect, the following
principles should be followed when designing the fuzzy control rules between input
and output variables in the first fuzzy controller: when ∆SOCSC(t) > 0, the larger
the SOCSC(t−1) and ∆SOCSC(t), the smaller the output variable KSC_SOC(t); Similarly,
when ∆SOCSC(t) < 0, the smaller the SOCSC(t−1) and ∆SOCSC(t), the smaller the
output variable KSC_SOC(t). KSC_SOC(t)∈[0, 1]. So the membership functions and fuzzy
rules for the first fuzzy controller are shown in Figure 7a and Table 3.

(2) The difference between the power command of the supercapacitor before and after
the second correction ∆Psc2(t) is supplemented by the battery, that is, ∆Psc2(t) = Psc1(t)
− Psc2(t). The second fuzzy controller optimizes the SOCb1(t) of the battery based on
the same strategy as step (1). The output of the second fuzzy controller is Kb-SOC(t).
The battery power command after second correction is Pb2(t) = Kb_SOC(t)·(Pb1(t) +
∆Psc2(t)). The fuzzy design principles of the second fuzzy controller are the same as
that of the first fuzzy controller. The membership functions and fuzzy rules for the
second fuzzy controller are shown in Figure 7b and Table 2.

The difference between the HESS output power after two corrections and the initial
HESS output power is ∆Ph(t). The system frequency is allowed to fluctuate in a small
range during the operation of the power grid. The frequency fluctuation corresponds to
the high-frequency unbalance power between the supply and demand side of the system;
it can be absorbed by the frequency deviation accommodation capacity of the power grid.
So ∆Ph(t) can be absorbed by the power grid itself. Therefore, after two corrections, the
output power of HESS and the wind farm also conforms to the energy balance relationship
in the wind storage system.
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Table 2. Control rules for the second fuzzy controller.

∆SOCb(t)
SOCb(t − 1)

VQ Q PQ H PW E VE

SA VQ Q PQ H PW PW VE
SD VQ PQ PW E E VE VE
SF VQ PW E VE VE VE VE
RD VE VE VE VE VE E VQ
RF VE VE VE E PW PW VQ
RA VE PW PQ PW H Q VQ
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Figure 7. Membership functions for the two fuzzy controllers. (a) Membership functions of the first 
fuzzy controller; (b) Membership functions of the second fuzzy controller. 
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Figure 7. Membership functions for the two fuzzy controllers. (a) Membership functions of the first
fuzzy controller; (b) Membership functions of the second fuzzy controller.

Table 3. Control rules for the first fuzzy controller.

∆SOCSC(t)
SOCSC(t − 1)

VQ Q H E VE

SA VQ Q HS HW VE
SD VQ HW E VE VE
SF VQ E VE VE VE
RD VE VE VE E VQ
RF VE VE HW HW VQ
RA VE HW HS Q VQ

According to the membership functions and fuzzy rules of the two fuzzy controllers,
the relationship curves of input and output variables in the two fuzzy controllers are
shown in Figure 8a,b, respectively. As seen in Figure 8, the two three-dimensional surfaces
are basically smooth, and the relations between input and output variables meet the
requirements of SOC correction of HESS, which indicate that the establishment of fuzzy
control rules is basically qualified.
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5. Case Study

To verify the superiority of the proposed strategy, the typical daily output data of
a 100 MW wind farm is adopted as the original wind power, whose fluctuation power
can be suppressed by HESS. The structure of the wind storage system is the same as the
one in Figure 1. The grid-connected power and the power optimization results of HESS
are acquired by the optimization control strategy proposed in Section 4. The superiority
of the proposed method is analyzed as follows from three aspects: suppression effect,
charge–discharge time sequence optimization effect and SOC optimization effect.

5.1. Analysis of Suppression Effect of Wind Power Fluctuation

Figure 9 shows the original wind power and grid-connected power. The sampling
time of original wind power is 1 min. After the original wind power is decomposed by
the adaptive WPD method, we can calculate that the number of WPD layers is 6, and
the frequency division point of the power signals of the battery and supercapacitor is
k = 4. As seen from Figure 9, after WPD, the maximum power fluctuation at a 1 min
time scale is reduced from 12.04 MW to 4.83 MW, so the grid-connected power meets
the standard in Table 1. With the calculation method in [20], it can be obtained that the
HESS suppresses 67.8% of the wind power fluctuation, so the grid-connected power has an
obvious smoothing effect.
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In order to demonstrate the general applicability of adaptive WPD in different wind
power application scenarios, the typical daily output data of 25 MW, 60 MW and 100 MW
wind farms are selected for analysis. Table 4 shows the wind power suppression effect
under different wind farm capacities obtained by adaptive WPD. As seen from Table 4,
the smaller the wind farm capacity, the smaller the fluctuation amplitude. According to
the different power fluctuation characteristics in the wind farms with different capacities,
the number of wavelet packet decomposition layers also changes accordingly, and the
grid-connected power meets the fluctuation standard in Table 1 is finally obtained. Results
in Table 4 show that the adaptive WPD can select the best WPD layer according to different
wind power output scenarios, and the adaptive wind power decomposition can also
be realized.

Table 4. Wind power suppression effect under different wind farm capacities based on adaptive WPD.

Capacity of Wind Farm
(MW)

Maximum Power Variation
in 1 Min in the Original

Wind Power Signal (MW)

Maximum Power Variation in
1 Min in the Grid-Connected

Power Signal (MW)

Number of Decomposition
Layers

25 3.63 1.59 3
60 7.06 3.48 5
100 12.04 4.83 6

5.2. Analysis of Charge–Discharge Time Sequence Optimization of HESS

After the initial power distribution of HESS, aiming at the problem of inconsistent
charge–discharge states, a charge–discharge time sequence optimization method is pro-
posed to correct the initial power distribution for the first time. In order to compare the
charge–discharge performance of the battery and supercapacitor before and after the first
correction, Figures 10 and 11, respectively, show the initial output power of the HESS
(without considering the charge–discharge time sequence optimization) and the output
power after the first correction (considering the charge–discharge time sequence opti-
mization). In Figure 10, during the period of 320 min–445 min, without optimizing the
charge–discharge time sequence, the encircled parts indicate that the charge–discharge
states of the battery and supercapacitor are inconsistent, resulting in additional energy
absorption and release. In Figure 11, the battery and supercapacitor can be controlled to
charge or discharge synchronously in the same time sequence after the first correction.
Compared with the unoptimized results in Figure 10, the charge–discharge conversion
times of the battery obtained by the first correction in Figure 11 are reduced from 71 to
14 times, and the charge–discharge conversion times of the supercapacitor in Figure 11 are
reduced from 390 to 61 times; The cumulative reduction of unnecessary charge–discharge
energy is 12.12 MWh. Therefore, after the first correction, the charge–discharge conversion
times and the accumulated charge–discharge energy are greatly reduced, which is beneficial
for improving the service life of HESS.

5.3. Analysis of SOC Optimization Effect of HESS

According to the calculation method in [22], the capacities of the battery and superca-
pacitor are 5.98 MWh and 1.69 MWh, respectively. In order to illustrate the effectiveness of
the method proposed in this study, the lower and upper limits of SOC are set to 0.2 and 0.8,
respectively, and two control methods are used to optimize the SOC of HESS, which are:
1© The fuzzy control method in literature [22]; 2© The fuzzy control method considering

charge–discharge time sequence proposed in this study. The SOC curves of the battery
and supercapacitor under different control strategies are shown in Figures 12 and 13. As
seen from Figures 12 and 13, both control methods can control the SOC of the battery and
supercapacitor between [0.2, 0.8]. The SOC curves of battery energy storage under the two
control methods are similar, while the SOC curves of supercapacitor energy storage under
the two control methods vary greatly with time. Although the first control method can
control the SOC of the supercapacitor between [0.2, 0.8], the SOC changes frequently and
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greatly, and the supercapacitor is in a high charge–discharge margin for nearly 30% of the
time. Compared with the first control method, the working range of the supercapacitor
SOC obtained by the fuzzy control method proposed in this study is greatly improved. The
SOC curve is relatively flat, and the SOC is maintained between [0.4, 0.6] for about 90%
of the time. Therefore, the fuzzy control method considering the charge–discharge time
sequence proposed in this study can effectively reduce the charge–discharge depth of the
energy storage system and prevent excessive charge–discharge. After two corrections of
HESS output power by using the charge–discharge time sequence optimization method
and fuzzy optimization method, the final output power of HESS is shown in Figure 14.
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5.4. Sensitivity Analysis of Different Frequency Division Points on Optimization Results

In order to analyze the influence of different frequency division points on the opti-
mization results of HESS, 1 min, 2 min, and 3 min are chosen as the boundary of response
time between the battery and supercapacitor, respectively. After the original wind output
power is decomposed by adaptive WPD, the frequency range of each signal component is
shown in Table 5. According to the frequency range of each signal, it can be determined
that the corresponding frequency division points under the boundary response time of
1 min, 2 min and 3 min are k = 4, k = 2, and k = 1, respectively. The optimization results
under three frequency division points are shown in Table 6. As seen from Table 6, when the
boundary response time increases, the cases of inconsistent charge–discharge states in HESS
increase, so the cumulative reduction of unnecessary charge–discharge energy after the
first correction also increases. We can also observe that increasing the boundary response
time can reduce the charge–discharge conversion times of the battery but increase the
charge–discharge conversion times of the supercapacitor. With the change in the boundary
response time, the changes in the charge–discharge conversion times and charge–discharge
energy reduction of the battery are not obvious, which indicates that the optimization
results of the battery are not sensitive to the small range change of boundary response
time. Besides, no matter how the boundary response time is selected, the charge–discharge
conversion times of the battery and supercapacitor are significantly reduced after the first
correction, which indicates that the charge–discharge time sequence optimization method
proposed in this study can obtain good results under different frequency division points.

Table 5. The frequency range of each signal component after adaptive WPD.

Signal Component after Adaptive WPD Frequency Range (Hz)

Sm,1 3.91 × 10−3–5.86 × 10−3

Sm,2 5.86 × 10−3–7.81 × 10−3

Sm,3 7.81 × 10−3–1.17 × 10−2

Sm,4 1.17 × 10−2–1.56 × 10−2

Sm,5 1.56 × 10−2–1.95 × 10−2

Sm,6 1.95 × 10−2–2.34 × 10−2

. . . . . .

Table 6. Optimization results under different frequency division points.

Response
Time

Boundary
of HESS

(Min)

Dividing
Frequency of

HESS (Hz)

Frequency
Division
Point of
HESS

Proportion of
Inconsistent

Charge–
Discharge

States before
Correction

Charge–
Discharge

Conversion
Times of

Battery before
and after

Correction

Charge–
Discharge

Conversion Times
of Supercapacitor
before and after

Correction

Charge–
Discharge

Energy
Reduction

after
Correction

(MWh)

1 1.67 × 10−2 k = 4 49.8% 71, 14 390, 61 12.12
2 8.33 × 10−3 k = 2 50.1% 69, 10 425, 69 13.11
3 5.56 × 10−3 k = 1 52.4% 61, 8 464, 75 13.90

Since the response time of the energy storage system is related to its type and capacity,
when the adaptive WPD is used to distribute the power of HESS, the selection of frequency
division point of energy-type and power-type energy storage may affect the optimization
results. The larger the wind farm capacity is, the greater the wind power fluctuation tends
to be. In this case, the influence of frequency division point selection on the optimization
results in HESS will also become larger. Therefore, in the scenario of large wind farm
capacity, sensitivity analysis of different frequency division points can be carried out,
combined with the actual type and capacity of the energy storage system, to select the
appropriate frequency division point.
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6. Conclusions

In this study, the battery-supercapacitor HESS is established to suppress the wind
power fluctuation and the wavelet packet-fuzzy optimization control strategy considering
charge–discharge time sequence is proposed to optimize the output power of the HESS.
The superiority of the proposed method is verified and analyzed with a 100 MW wind farm
from three aspects: suppression effect, charge–discharge time sequence optimization effect
and SOC optimization effect. The main conclusions are as follows:

(1) By comprehensively analyzing the properties of wind power fluctuation and HESS,
the grid-connected power that meets the GB/T 19963-2011 standard is obtained, and
the initial power distribution of HESS is realized by the adaptive WPD method; The
adaptive WPD method has a good suppression effect on the original wind power
fluctuation, and it can be applied to different wind power fluctuation scenarios.

(2) The proposed power optimization distribution method for HESS considering charge–
discharge time sequence can enable the battery and supercapacitor to charge or
discharge synchronously in the same time sequence, thus greatly reducing the charge–
discharge conversion times and accumulated charge–discharge energy. Moreover, the
fuzzy control method considering the charge–discharge time sequence proposed in
this study can effectively reduce the charge–discharge depth of the energy storage
system and prevent excessive charge–discharge, which is conducive to improving the
lifetime and economy of the HESS.

Overall, this study presents a comprehensive approach that combines adaptive wavelet
packet decomposition, charge–discharge time sequence optimization, and fuzzy optimiza-
tion methods to address the challenges associated with HESS power distribution strategies,
with the potential to improve the efficiency and performance of wind farms and HESS.
The proposed approach can solve the problem of inconsistent charge–discharge states
of energy-type and power-type energy storage and achieve optimal operation of HESS.
Therefore, it is of great significance for the sustainable development of energy storage
systems and the electricity power industry.
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