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Abstract: In this numerical study, the effects of the premixed ratio, intake manifold pressure and
intake air temperature on a four-cylinder, four-stroke, direct injection, low-compression-ratio gasoline
engine, operated in reactivity-controlled compression ignition (RCCI) combustion mode at a constant
engine speed of 1000 rpm, were investigated using Converge CFD software. The results of numerical
analyses showed that the maximum in-cylinder pressure and heat release rate (HRR) increased and
the combustion phase advanced depending on the rise in both intake manifold pressure and intake
air temperature. The CA50 shifted by 18.5 °CA with an increment in the intake air temperature
from 60 °C to 100 °C. It was observed that the combustion duration dropped from 44 °CA to 38 °CA
upon boosting the intake manifold pressure from 103 kPa to 140 kPa. Moreover, a delay in the
combustion phase occurred at a constant intake air temperature with an increasing premixed ratio.
The maximum value of in-cylinder pressure was recorded as 36.15 bar (at 11 °CA aTDC) with the use
of PRF20. Additionally, as the content of iso-octane in the fuel mixture was increased, combustion
delay occurred, and the maximum value of in-cylinder temperature obtained was 11 °CA aTDC
using PRF20 fuel at the earliest point. While HC and CO emissions reached the highest values at a
60 °C intake air temperature, NOy and soot emission values were detected at quite low levels at this
temperature. The values of all these emissions increased with rising intake manifold pressure and
reached their highest values at 140 kPa. In addition, while the highest HC and CO emission values
were observed with the use of PRF60 fuel, the results revealed that the control of the combustion
phase in the RCCI strategy is notably affected by the premixed ratio, intake manifold pressure and
intake air temperature.

Keywords: RCCI; combustion; intake air temperature; intake manifold pressure; premixed fuel ratio;
CFD; emission

1. Introduction

Recently, there has been an increase in the cost of oil resources due to a reduction in the
amount of them. Moreover, exhaust emissions have caused serious environmental pollution
due to the increase in the use of vehicles. Scientists have focused on alternative combustion
modes with high efficiency and low emissions in the face of these negative conditions [1-3].
Although spark ignition (SI) and compression ignition (CI) internal combustion engines
have high power density and performance, in SI engines, a compression ratio (CR) higher
than 14 cannot be applied due to the knock limit. In addition, SI engines are known to have
low energy conversion efficiency at high loads and high CO emissions [4,5]. CI engines
also have high soot emission, which may occur due to the heterogeneity of the mixture
and high nitrogen oxide (NOx) emission values due to high temperatures [6]. The use
of after-treatment systems to prevent these emissions is mandatory and costly. These
problems expose disadvantages in the use of SI and CI engines. Considering these negative
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effects, a new combustion mode has been developed that represents low-temperature
combustion technology, and involves a combination of the combustion processes of SI and
Cl engines [7,8].

Some low-temperature combustion modes include homogeneous charged compression
ignition (HCCI), premixed charge compression ignition (PCCI) and reactivity-controlled
compression ignition (RCCI) [9]. In HCCI engines, the air fuel mixture is taken into the
cylinder as in spark ignition engines. Combustion takes place via simultaneous self-ignition
of the homogeneous air—fuel mixture towards the end of the compression stroke. In this
low-temperature combustion mode, thermal efficiency is also high due to the need for a
high compression ratio [10-12]. Since HCCI engines can work with homogeneous lean
mixtures, the in-cylinder gas temperatures at the end of combustion are lower than in SI
and CI engines. Thanks to the low gas temperatures at the end of combustion, very low
levels of NOy are released [13,14]. The start of combustion (SOC) and the combustion
rate are different in each cycle due to the fuel properties and auto-ignition. The severe
knocking that occurs as a result of simultaneous homogeneous flash combustion, which
increases the pressure rise rate and leads to high fluctuation in pressure, causes low thermal
efficiency and cyclical variations. In addition, the operational range of an engine with
HCCI combustion mode is very limited due to the increased knocking at high loads and
the problem of misfire at low loads. The inability to control combustion, narrow operating
range, high carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions are seen
as the biggest challenges in HCCI engines [15]. In HCCI engines, some methods, such
as changing the octane number [16], increasing the intake air temperature [17], exhaust
gas recirculation (EGR) [18] and the use of alternative fuels [19], different compression
ratios [20,21], different intake manifold pressures [22-24] and different injection timings [25],
are used to expand the operating range and to control the combustion process.

Researchers developed the RCCI combustion mode using two fuels of different reac-
tivity in order to overcome the disadvantages of the HCCI combustion mode [26,27]. In the
RCCI mode, a low-reactivity fuel LRF (e.g., gasoline, ethanol, methanol, etc.) is injected via
port fuel injection, and a high-reactivity fuel HRF (e.g., diesel, dimethyl ether, etc.), which
acts as the ignition source, is injected via direct injection [28,29]. The combustion phase can
be controlled using a mixed ratio of LRFs and HRFs in the cylinder; thus, knocking can
be decreased by controlling heat release, and NOy and soot emissions can be significantly
reduced. In addition, the combustion phase can be controlled by the injection timing of
the fuels. Moreover, engines operating in RCCI mode have higher thermal efficiency than
engines with conventional combustion modes thanks to controlled combustion [30,31]. A
gasoline—air mixture cannot be ignited without diesel, as gasoline has poor auto-ignitability
at low compression ratios. In their study forming the basis of the RCCI combustion mode,
Kokjohn et al. [26] injected gasoline via port injection and diesel fuel via direct injection. The
ratio of gasoline/diesel and injection timing can be used for controlling combustion. It was
stated that 50% thermal efficiency and lower fuel consumption were achieved compared to
diesel or gasoline engines. RCCI depends on the homogeneity of the mixture and the strati-
fication of ignitability. This stratification can be easily controlled by spraying diesel fuel via
direct injection. In RCCI mode, combustion progression from the high-reactivity region
to the low-reactivity region significantly decreases the pressure rise rate (PRR) [32,33]. In
a study conducted to examine how fuel properties affect RCCI combustion at low loads,
both a dual fuel strategy and a single fuel strategy using gasoline with a 2-ethylhexylnitrate
additive as an ignition improver were used. The indicated thermal efficiency (ITE) of 54%
was achieved with the addition of additives, using gasoline as the single fuel [34]. Uyumaz
and Solmaz [35] investigated the effect of injection timing on combustion characteristics
in RCCI engines. It was observed that as the lambda diminished in a gasoline engine run
at different lambda values, the heat release and maximum cylinder pressure increased. It
was stated that the maximum ITE obtained was 42.47% at an injection timing of 80 °CA
before top dead center (bTDC), with lambda value of 2.2. The study revealed that when the
timing of direct injection was earlier than normal, the mixture was more homogeneous than
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in HCCI combustion. In a study conducted to investigate the combustion characteristics
and thermal efficiency of an RCCI engine for a wide range of engine speeds and loads,
it was observed that there was a maximum 5% improvement in thermal efficiency and a
92% reduction in NOy emissions compared to conventional diesel combustion [36]. Some
parameters affecting RCCI combustion characteristics and emissions are also investigated
numerically. Kakaee et al. [37] investigated the emissions and combustion characteristics of
RCCI mode in a diesel engine using the KIVA-CHEMKIN code with gasoline and diesel
used as fuel. It was stated that the PRR in RCCI combustion could be controlled by ratios
of fuels and the timing of the start of injection (SOI) of diesel fuel. In a study investigating
the effects of high-compression piston design to improve RCCI combustion and emissions,
the authors reported that the indicated mean effective pressure (IMEP) achieved was 18 bar
using gasoline—-diesel in RCCI mode at an exhaust gas recirculation (EGR) of 35%. The
direct injection of diesel fuel at different times was carried out for this analysis. The re-
sults showed that the changing of EGR affected RCCI combustion at high load [38]. In
addition, since combustion temperature decreases with the dilution and thermal effects of
EGR, a reduction in soot emissions and NOy has been observed [39]. Hasankola et al. [40]
numerically investigated intake valve closing temperature (T,y.) and EGR’s effectts on an
RCCI engine’s emissions and performance, and the software CHEMKIN II and AVL FIRE
were used in the numerical analyses. The natural gas was sprayed via port injection as an
LREF, while the diesel fuel was directly sprayed into the cylinder as an HRF. The simulation
results showed that as the EGR increased, the maximum pressure in the cylinder, the
maximum heat release rate, and NOy and soot emissions were reduced. In addition, an
increase in the maximum pressure, HRR, and NOy and soot emissions was observed due
to the increase in the Tyyc.

In this study, a four-stroke four-cylinder gasoline engine was operated in RCCI mode
ata 9.2:1 compression ratio, 80 °C intake air temperature and a constant engine speed of
1000 rpm. The influences of intake air temperature, intake manifold pressure and a pre-
mixed ratio of fuels on combustion and emission characteristics in a low-compression-ratio
gasoline engine operated in RCCI mode were investigated numerically, with the validation
of experimental results, using Converge CFD computer software. Conventional combustion
modes have low energy efficiency and damage the environment with their high emission
levels. In particular, their inability to reduce soot and NOx emissions simultaneously is
a major problem. The RCCI combustion mode has a high energy conversion efficiency
(up to 59% of the indicated thermal efficiency [27]), thereby contributing to sustainable
energy utilization. In addition, the reduction in soot and NOy emissions simultaneously
will have a positive effect on the environment. This numerical study aims to contribute
to the development of sustainable clean-energy technologies by using low-temperature
combustion modes that promise high thermal efficiency and low emission levels.

2. Methodology
2.1. Experimental Setup

Experiments were conducted using iso-octane/n-heptane in a direct-injection, four-
cylinder, four-stroke, 2.0 L, gasoline GM Ecotec engine operating in RCCI mode. The
technical properties of the engine used in the experiments, carried out at Michigan Tech-
nological University (at the Research Center for Advanced Power Systems), are given in
Table 1.

The test engine was connected to a 460 HP adjustable AC dynamometer; thus, the
engine load and speed were controlled. An external fuel pump and electric motor were
used for the fuel system. The intake air temperature was controlled by an air heater. The
control of the air heater was carried out via dSPACE. An air filter mounted in front of a
supercharger has a significant effect on the performance of the intake system and causes
a certain pressure drop [41,42]. The air filter also has a considerable effect on the flow
resistance [43,44].
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Table 1. Detailed technical properties of test engine.

. GM Ecotec
Engine Model GDI Turbo DOHC
Stroke X bore 86 mm x 86 mm

Cylinder number 4
Displacement 20L
CR 9.2:1
Max. power 270 kW@6000 rpm
Max. torque 353 Nm@2400 rpm
IvC —147 °CA aTDC
EVO 135 °CA aTDC

Eight low-pressure-port-type fuel (PFI) injectors were subsequently assembled on the
engine’s intake manifold. Four of these were used while the engine was operating in RCCI
mode. Iso-octane as an LRF was sprayed using PFI injectors with 3 bar injection pressure,
and n-heptane as an HRF was injected into the cylinder at 100 bar pressure via direct
injection (DI). The features of the n-heptane and iso-octane fuels used in the experiments
are shown in Table 2.

Table 2. Features of n-heptane and iso-octane [45,46].

Properties N-Heptane Iso-Octane
Formula C7H16 C8H18
LHV (M]/kg) 44.56 44.30
Molar mass (g/mol) 100.2 114.2
Density (kg/m®) 686.6 693.8
Boiling point (°C) 371 3724
Research octane number 0 100

A 115A04 model PCB piezotronics pressure transducer was used for in-cylinder
pressure measurement in the combustion analysis. The measured in-cylinder pressure
was amplified using a charge amplifier (DSP 1104CA) and processed using an ACAP
analysis system. An encoder with a sensitivity of 1 °CA was connected to the engine. Fuel
consumption was determined using a Coriolis-type fuel-flow meter (Micro Motion 1700).

Control of the RCCI motor was achieved using MicroAutoBox, dSPACE and RapidPro.
Control of throttle body, high-pressure fuel pump, variable valve timing and injectors
was achieved using the MATLAB Simulink model, which is embedded in the processor.
Parameters influencing engine control, such as pressure of fuel rail, ignition system, position
of cam, premixed ratio, position of throttle body, EGR valve position, pressure and intake
air temperature, were controlled using dSPACE.

In Figure 1, a diagram of the test bed is displayed. The chassis system (NI PXIe-1078)
was used for measurements of the thermocouple (NI TB-4353) and pressure transducer
(NI PXI-6225), and for control of the dynamometer (NI PXI-6722). LabVIEW was used to
display the obtained data. An emission analyzer was used for CO, CO,, NOy, HC and O,
emission measurements in the experiments.

Specific fuel consumption (SFC), mean effective pressure (IMEP), maximum in-cylinder
pressure and temperature, heat release rate (HRR), integrated heat release rate (IHRR),
volumetric efficiency, maximum pressure rise rate (MPRR), thermal efficiency, combustion
efficiency, CA50 and coefficient of variation of IMEP (COVygp) were computed using a
developed MATLAB code.
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Figure 1. Diagram of the test bed.
The HRR was calculated using Equation (1) according to the first law of thermodynamics [47].

aQ  k _dv 1 _dP  dQpuea

0 k=1 d0 Tk=1 do " do @
where P, V, dQ, dQj,q:, 40 and k are in-cylinder pressure, cylinder volume, heat release, heat
transfer to the cylinder walls, change in crank angle and ratio of specific heats, respectively.

2.2. Numerical Model

The CFD method was used with CONVERGE CFD software to simulate RCCI com-
bustion. CONVERGE is a CFD program consisting of pre-process, process and post-process
sections. CONVERGE automatically forms an excellently orthogonal, well-structured
grid at run-time based on easy grid control variables. This method for the generation of
grids at run-time completely overcomes the need for the manual generation of grids. The
CONVERGE pre-processor CONVERGE Studio (Graphical User Interface) was used to
form the case setup. Then, the compiled input files were run on the workstation, and the
results were obtained via precision analysis [48].
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The characteristics of the GM Ecotec GDI Turbo engine used in the simulations are
given in Table 1. The geometry, including the total cylinder volume of the RCCI engine, was
sketched using SOLIDWORKS software. Then, CONVERGE CFD was used for the meshing
process, as this software provides auto-mesh refinement. Adaptive mesh refinement
(AMR), which makes the mesh structure sensitive in the required regions, can be used in
CONVERGE. The geometry of the model and the mesh process are seen in Figure 2. The
mesh structure approximately consists of 550,867 cells.

: m it =

Figure 2. Demonstration of the geometry and mesh structure.

This numerical study was carried out as a closed cycle between IVC and EVO. Air and
iso-octane injected via port injection were considered to be homogeneously mixed upon
intake valve closing. The n-heptane direct injection procedure was simulated using the
Discrete Droplet Model (DDM) [49]. The hybrid Kelvin—-Helmholtz (KH)-Rayleigh-Taylor
(RT) model, which consists of primary and secondary breakups, was used as a spray atom-
ization model. KH and RT instabilities are responsible for the breakup length, while KH is
responsible for drop breakup in the characteristic breakup distance [50]. The Renormalized
Group (RNG) k-¢/Reynolds Averaged Navier—Stokes (RANS) was used to calculate turbu-
lence in this numerical study [51]. In all the analyses, the values of the Prandtl and Schmidt
numbers were assumed to be 0.9 and 0.78, respectively. The PISO method was used for
solving discrete equations in CONVERGE. The velocity field was determined using momen-
tum equations [52]. The SAGE detailed chemical kinetics solver was used for combustion
modeling [53]. A PRF chemical kinetic mechanism including n-heptane and iso-octane,
with 171 species and 861 reactions, was used in the numerical analyses. RCCI combustion
was simulated using this mechanism, which was developed by Luang et al. [54].

The validation case setup of the RCCI engine is shown Table 3. It can be concluded that
the validation process was successfully performed upon comparing the numerical results
with the experimental results. The change in in-cylinder pressure and HRR depending
on the crank angle obtained in the validation process is seen in Figure 3. According to
results of the simulations, RCCI combustion with iso-octane and n-heptane was effectively
analyzed by complying with the real experimental conditions. Therefore, the simulations
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In-Cylinder Pressure (bar)

are thought to be reliable. It can be seen that the max. HRR from the experiments and max.
HRR from the simulations are 79.29 ] /°CA and 77.91 ] /°CA, respectively.

Table 3. Validation case setup of RCCI engine at initial stage.

Port Injection Fuel

Iso-Octane (20%)

Direct injection fuel n-heptane (80%)
Engine speed 1000 rpm
Start of direct injection —25 °CA aTDC
Injection pressure 100 bar
Intake air temperature 80 °C
Total fuel mass 22 mg/cycle
Intake manifold pressure 103 kPa
Lambda 1.2
Mesh size 1 mm
AMR level 3
Cylinder wall temperature 545 K
Minimum time step 1x108%s
Maximum time step 1x107%s

45 120
[Engine speea = 1000 e e i Engine speed = 1000 rpm K o o g
40 SOl = 25°CA bTDC 4| SOI = 25°CA bTDC
|\ Fuel = PRF20 (a) Fuel = PRF20 (b)
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(0]
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-100 -75 -50 -25 0 25 50 75 100 -80 -60 -40 -20 0 20 40 60 80

Crank Angle (deg) Crank Angle (deg)

Figure 3. Validation of (a) in-cylinder pressure and (b) HRR.

3. Results and Discussion

The simulation results were validated based on the experiments carried out under the
conditions mentioned above. An extensive simulation study was performed to investigate
the effects of intake manifold pressure, premixed fuel ratio and intake air temperature on
RCCI combustion.

3.1. Intake Air Temperature’s Effects on RCCI Combustion

Figure 4 displays the change in the in-cylinder pressure and HRR at different intake
air temperatures (60 °C, 80 °C and 100 °C). RCCI combustion shows a lower heat release
gradient and lower cylinder pressure than the other conventional combustion types. RCCI
combustion has longer and slower heat release than conventional diesel combustion. These
results are consistent with those in the study of Pohlkamp and Reitz [55].

The maximum cylinder pressure increases and the combustion is advanced as the
intake air temperature increases. This situation influences the thermal efficiency and com-
bustion. There is a significant increase in reactivity with increasing intake air temperature.
The results show that combustion is significantly advanced and the maximum pressure
increases, especially at an intake air temperature of 100 °C. After a certain value, the volu-
metric efficiency is significantly reduced due to the low density of the intake air. The lower
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Figure 4. Change in (a) in-cylinder pressure and (b) HRR at various intake air temperatures.

RCCI combustion is a type of premixed combustion controlled by chemical kinetics.
The high intake air temperature prevents the cylinder wall temperature from decreasing
too much; thus, the combustion is improved. This is because the cold cylinder wall causes a
decrease in the kinetic reaction rate and adversely affects the combustion in RCCI mode [56].

Combustion duration is equal to the difference between the crank angle of 90% (CA90)
and the crank angle of 10% (CA10) of the total heat released. The crank angle corresponding
to 50% of the total heat release is called CA50. CA50 and combustion duration (CA90-CA10)
can affect the cyclic variability, controllability and tendency for knocking [57,58]. The CA50
is equal to 23 °CA, 8.5 °CA and 4.5 °CA aTDC for intake air temperatures of 60 °C, 80 °C
and 100 °C, respectively.

The results show that higher values of intake air temperature increase CA50, and the
combustion duration is also decreased noticeably. When intake air temperature goes up
from 60 °C to 100 °C, the CA50 shifts by 18.5 °CA.

For low-temperature combustion strategies such as HCCI and RCCI, the charge air
is heated and taken into the cylinder in order to achieve better combustion. Figure 5
presents the effects of intake air temperature on HC, CO, NOy and soot emissions for RCCI
combustion. The lower the intake air temperature, the lower the in-cylinder temperature
tends to be, and incomplete combustion products are also produced. This is why it is
seen that HC emissions are much higher at low temperatures. A similar situation is also
observed for CO emissions. The maximum values of these emissions were recorded at a
60 °C intake air temperature. As the intake air temperature is increased, the temperature
profile in the cylinder tends to drop less than the previous temperature value. Therefore,
the increase in intake air temperature causes more NOy to be released. Soot emission
also reaches higher emission levels with increasing intake air temperature. However, the
NOy and soot emission values obtained in this numerically investigated low-temperature
combustion strategy are very low relative to conventional diesel combustion. The minimum
NOy emission obtained is 0.03 g/h at a 60 °C intake air temperature.
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Figure 5. The effects of intake air temperature on (a) CO, (b) HC, (¢) NOy and (d) soot emissions.
3.2. Intake Manifold Pressure’s Effects on RCCI Combustion
Figure 6 illustrates the change in the in-cylinder pressure and HRR at various intake
manifold pressures and at a constant lambda value (A = 1.2). The in-cylinder pressure rises
as the intake manifold pressure increases. It is seen that the start of combustion advances
when the intake manifold pressure increases. It is found that the combustion duration is
dropped from 44 °CA to 38 °CA upon boosting the intake manifold pressure from 103 kPa
to 140 kPa. It is observed that the maximum in-cylinder pressure is equal to 48 bar (at
7 °CA aTDC) at an intake manifold pressure of 140 kPa. In addition, the combustion
is advanced with increased manifold pressure. The rise in auto-ignition reactions with
increasing intake manifold pressure easily brings about combustion of the fuel. There are
two stages of heat release—low temperature and high temperature—in RCCI combustion.
The low-temperature reactions are advanced due to increased intake manifold pressure [46].
55 - 180
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Figure 6. Change in (a) in-cylinder pressure and (b) HRR at various intake manifold pressures.
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The effects of intake manifold pressure on HC, CO, NOx and soot emissions for the
RCCI combustion mode are seen in Figure 7. The nOy and soot emission values increase
due to the effect of rising in-cylinder temperature with increasing intake manifold pressure.
The minimum value of NOy emission is recorded as 0.110 g/h at a 103 kPa intake manifold
pressure. In addition, an increase in HC and CO emissions is also observed as more charge
is taken into the cylinder with the increase in intake manifold pressure. The maximum
values of these emissions are obtained at 140 kPa intake manifold pressure. In the analyses
performed in the closed cycle, it is observed that the HC emissions are at different values
before direct injection with increasing intake manifold pressure, since approximately 8% of
the residual exhaust gas formation was defined after combustion in the cylinder. As the
intake manifold pressure increases, it can be stated that the emissions are released at lower
crank angles with increasing temperature.
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Figure 7. The effects of intake manifold pressure on (a) CO, (b) HC, (c) NOy and (d) soot emissions.

3.3. Premixed Fuel Ratio’s Effects on RCCI Combustion

The premixed fuel ratio’s effects on RCCI combustion are demonstrated in Figure 8.
The premixed fuel ratio significantly affects low-temperature combustion. The ignition
timing delays, the cylinder pressure and the combustion rate decrease with a rise in the
LRF in RCCI mode [59].

As can be seen, combustion is delayed with increasing premixed fuel ratio. This may
be due to the decrease in fuel reactivity in the combustion chamber when the premixed
LREF rises [60]. More HRF is injected directly a reduction in premixed fuel ratio. This causes
the formation of richer regions in the combustion chamber before the combustion starts. It
can be stated that combustion is controlled by n-heptane at low premixed fuel ratios [34].



Sustainability 2023, 15, 10406

11 of 17

45

SOl = 25°CA bTDC
P =103 kPa

Tint = 80°C

=120

40

354

Engine speed = 1000 rpm

In-Cylinder Pressure (bar)
- n N w
(& o (&) o
1 1 1 1

=)
!

Heat Release Rate (J/deg)

T T
-75 -50

1100

T T
-25 25

Crank Angle (deg)

0

100

100 12"

Engine speed = 1000 rpm
SOl = 25°CA bTDC
P

®
o
1

[}
o
1

IS
o
1

20

— PRF20
~ — PRF40
— — PRF60

(b)

TDC|

60 70

Crank Angle (deg)

Figure 8. Change in (a) in-cylinder pressure and (b) HRR at various premixed ratios.

The maximum value of in-cylinder pressure was recorded as 36.15 bar (at 11 °CA
aTDC) with the use of PRF20. When PRF20, PRF40 and PRF60 fuels are used, the combus-
tion durations are obtained at 39 °CA, 18 °CA and 15 °CA, respectively.

The effects of premixed ratio variation on HC, CO, NOy and soot emissions in RCCI
combustion mode are shown in Figure 9. In general, it is seen that increasing the amount
of iso-octane fuel in the mixture causes an increment in HC, CO and soot emissions. The
minimum values of these emissions are recorded with PRF20 fuel. On the contrary, the
NOy emission values decrease. It can be concluded that this is caused by the reduction in
the in-cylinder temperature with the increase in the percentage of iso-octane content in the
mixture. The minimum NOy emission obtained is 0.110 g/h with PRF60 fuel.
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It is not possible to experimentally obtain the distribution of equivalence ratio of the
fuel and the in-cylinder temperature depending on the crank angle. These parameters were
also analyzed numerically. The distribution of equivalence ratio for different premixed
ratios is shown in Figure 10. The distribution of the fuels at different crank angles and the
regions where they are concentrated were investigated depending on the PRF ratio change.
The amount of iso-octane in the fuel mixture directly affects the equivalence ratio in the
cylinder. Considering the equivalence ratio distribution, the formation of richer regions can
be increased by reducing the amount of n-heptane in the mixture [61], which significantly
affects the combustion efficiency.

+11 °CA +17°CA

1 |

2
s
©
g

|
@
o
c
K
©
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3
w

Figure 10. The distribution of equivalence ratio for different PRFs.

Figure 11 shows the distributions of in-cylinder mean temperature for the different
premixed ratios. The numerical analysis results show that the maximum temperatures
occur at 11 °CA, 31 °CA and 33 °CA aTDC for the fuels of PRF20, PRF40 and PRF60,
respectively. As the PRF ratio increases, the amount of iso-octane in the mixture also
increases, and thus, combustion is delayed due to the high octane number of iso-octane.
Thereby, it is observed that the maximum temperatures in the cylinder for the three fuels
occur at different crank angles.
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Figure 11. The distribution of in-cylinder mean temperature for different PRFs.

4. Conclusions

The aim of this study was to numerically research the effects of premixed ratio, intake
manifold pressure and intake air temperature on RCCI combustion using n-heptane as an
HRF and iso-octane as an LRF at a compression ratio of 9.2:1.

The in-cylinder pressure and HRRs for RCCI combustion were validated as being
close to those under real conditions using the physical and chemical properties of the
surrogate fuels (n-heptane and iso-octane) for diesel and gasoline. As a result of the
analyses, it was found that intake air temperature, premixed fuel ratio and intake manifold
pressure significantly affect RCCI combustion. There was a significant increase in reactivity
in the combustion chamber with increasing intake air temperature. Therefore, the max.
cylinder pressure also was increased, and combustion was advanced. The CA50 shifted
by 18.5 °CA with an increment in the intake air temperature from 60 °C to 100 °C. As the
intake charge mass increased, higher in-cylinder pressures were acquired by increasing
the intake manifold pressure. In addition, combustion was advanced with increasing
intake manifold pressure. It was observed that the combustion duration dropped from
44 °CA to 38 °CA upon boosting the intake manifold pressure from 103 kPa to 140 kPa.
The combustion phasing was delayed as the premixed fuel ratio increased owing to the
decrease in fuel reactivity in the combustion chamber. The maximum value of in-cylinder
pressure was recorded as 36.15 bar (at 11 °CA aTDC) with the use of PRF20. This value was
the highest in-cylinder pressure among all the in-cylinder pressure values obtained using
all the fuels. It was shown that combustion delay occurred as the content of iso-octane
in the fuel mixture was increased, and the maximum value of in-cylinder temperature
obtained was 11 °CA aTDC using PRF20 fuel at the earliest point.

As the intake air temperature decreased, the in-cylinder temperature also dropped
and incomplete combustion products were formed. Therefore, HC and CO emissions
are much higher at low temperatures. The maximum values of these emissions were
recorded at a 60 °C intake air temperature. However, the minimum NOy emission obtained
was 0.03 g/h at a 60 °C intake air temperature. As more charge was supplied to the
cylinder with increasing intake manifold pressure, an increase in HC and CO emissions
was also detected. The maximum values of these emissions were observed at a 140 kPa
intake manifold pressure. The nOx and soot emission values increased due to the effect of
rising in-cylinder temperature with increasing intake manifold pressure. The minimum
value of NOy emission was recorded as 0.110 g/h at a 103 kPa intake manifold pressure.
The maximum values of HC and CO emissions were recorded using PRF60 fuel since
hydrocarbons were not fully combusted with an increase in the amount of iso-octane in the
mixture. In addition, the minimum NOy emission obtained was 0.110 g/h with PRF60 fuel
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due to the decrease in the in-cylinder temperature with the rising proportion of iso-octane
content in the mixture.

Considering the results of this study and similar studies, the operating range and
combustion and emission characteristics of the alcohol-derived fuels that show good
performance in RCCI combustion can be investigated experimentally or numerically in
future studies. Also, optimization studies can be carried out using the response surface
method for different fuel pairs. Moreover, the operating range can be extended using the
variable compression ratio approach. Experimental and numerical studies can be carried
out in this respect.
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Nomenclature

AMR Adaptive Mesh Refinement

aTDC After Top Dead Center

bTDC Before Top Dead Center

CA Crank Angle

CA50 Crank Angle Corresponding to 50% of the Total Heat Release
CFD Computational Fluid Dynamics
CcI Compression Ignition

CcO Carbon Monoxides

COVivep  Coefficient of Variation of IMEP
CR Compression Ratio

DDM Discrete Droplet Model

DI Direct Injection

EGR Exhaust Gas Recirculation

EVO Exhaust Valve Opening

GDI Gasoline Direct Injection

HC Hydrocarbon

HCCI Homogeneous Charged Compression Ignition
HRF High-Reactivity Fuel

HRR Heat Release Rate

THRR Integrated Heat Release Rate
IMEP Indicated Mean Effective Pressure
ITE Indicated Thermal Efficiency

vc Intake Valve Closing

KH Kelvin—-Helmholtz

LHV Low Heat Value

LRF Low-Reactivity Fuel
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PFI Port Fuel Injection

PRR Pressure Rise Rate

NOy Nitrogen Oxides

PCCI  Premixed Charge Compression Ignition
PRF Premixed Ratio Fuel

RANS Reynolds Averaged Navier-Stokes

RCCI  Reactivity-Controlled Compression Ignition

RT Rayleigh-Taylor
SFC Specific Fuel Consumption
SI Spark Ignition

SOC Start of Combustion

SOI Start of Injection

Tve Intake Valve Closing Temperature
UHC  Unburned Hydrocarbons
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