
Citation: Zhang, Y. The Sustainability

of Regional Innovation in China: Insights

from Regional Innovation Values and

Their Spatial Distribution. Sustainability

2023, 15, 10398. https://doi.org/

10.3390/su151310398

Academic Editor: Boris A. Portnov

Received: 8 May 2023

Revised: 22 June 2023

Accepted: 27 June 2023

Published: 30 June 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

The Sustainability of Regional Innovation in China: Insights
from Regional Innovation Values and Their Spatial
Distribution
Yipeng Zhang

School of Economics and Resources Management, Beijing Normal University, Beijing 100875, China;
201731410002@mail.bnu.edu.cn

Abstract: As the continuous improvement of the quality of innovation becomes increasingly signifi-
cant for balanced regional development in China, it is critical to provide insights into the sustainability
of regional innovation in China from the viewpoint of value. This study estimates regional innovation
values based on an improved regional innovation value model incorporating patent values and
a regional innovation indicator system. Data for invention patents as well as regional innovation
indicators in 282 cities from 1987 to 2019 in China are utilized for estimation. Based on the estimated
parameters and Monte Carlo simulation, city-level innovation values are calculated as benchmarks,
along with provincial and regional innovation values, to analyze the patterns of the spatial distribu-
tion and agglomeration of regional innovation value. The findings are as follows. (1) The regional
innovation value model provides an effective way to measure regional innovation in terms of value.
(2) The regional innovation values are unevenly distributed; cities with higher innovation values
are clustered in Eastern China, while most other cities have much lower innovation values. (3) The
innovation values in Eastern China are notably higher, and the differences in innovation values
between Eastern China and other regions are large and show a trend of first widening and then
narrowing during the sample period. (4) The sustainability of regional innovation is not widely
achieved, since highly concentrated innovation value is found in only a few regions in the eastern
coastal areas. These findings suggest that promoting China’s innovation capacity and the sustainable
development of technological innovation requires continually implementing innovation-driven de-
velopment strategies, cultivating high-value innovation, optimizing industrial transfer, improving
the layout of the national research infrastructure, giving full play to spatial spillover effects, and
promoting interregional innovation information exchange in order to achieve the balanced and
sustainable development of regional innovation.

Keywords: regional innovation value; reginal innovation indicator; spatial distribution of innovation
value; agglomeration of innovation value; sustainability of regional innovation

1. Introduction

China has attached great importance to the development of technological innovation
and regards the innovation-driven deployment strategy as a core national strategy. For
instance, the report from China’s 20th National Congress highlighted the importance
of innovation in the country’s modernization and the need to accelerate scientific and
technological self-reliance and improvement. The implementation of a series of important
policies regarding technological and scientific innovation has enhanced China’s innovation
capability in recent decades. In recent years, China’s ranking in the Global Innovation
Index (GII) kept increasing and moved up to 11th in 2022 (see the Global Innovation Index
2022, available at https://www.wipo.int/global_innovation_index/en/2022/ (accessed
on 30 April 2023)). In addition, the dramatic increase in the amount of Chinese innovative
outputs under the influence of a series of policy strategies has drawn scholars’ attention [1,2].
As a matter of fact, Chinese domestic invention patent applications increased from 4065
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in 1985 to 1.24 million in 2019 (according to the China Intellectual Property Statistical
Yearbooks 1985 and 2019, available at https://www.cnipa.gov.cn/col/col61/index.html#
mark (accessed on 30 April 2023)), and Chinese applicants have been filing the most Patent
Cooperation Treaty (PCT) applications since 2019 (according to the Patent Cooperation
Treaty Yearly Review 2020–2023, available at https://www.wipo.int/publications/en/
details.jsp?id=4666&plang=EN (accessed on 30 April 2023)).

However, rapid growth in the amount of innovation outputs does not necessarily
ensure the sustainable growth of innovation capacity in China. Although the policies
of establishing national high-tech industrial parks and innovation cities, the growth of
direct foreign investment, and the amendments to patent laws may have contributed to
the surge in innovation outputs in China [3–6], evidence has shown that the majority of
regions in China are struggling with low innovation capability and are clustered with other
regions of low innovation capability [7], even in the regional high-tech industries [8], which
suggests an unsustainable development path of innovation in the majority of regions in
China. To explore the sustainability of innovation in more detail, it is essential to analyze
innovation from another prospective rather than the number of innovative outputs. Quan-
titative indicators of innovation based on the assumption of homogeneity and additivity
ignore technological differences between innovative outputs and hardly reflect the true
technological level [9]. Instead, the quality of innovation is the essence of endogenous
economic growth [10]. In addition, the literatures suggest that the value representing the
economic return can be an effective indicator of the quality of an innovative output, such
as a patent [9,11,12].

Another manifestation of China’s unsustainable development of technological in-
novation is the uneven spatial distribution of its innovation capability. Large regional
differences in economic endowment result in significant gaps in innovation capacity be-
tween regions, as measured by the number of patents, clearly reflecting uneven regional
distribution [13–15]. However, such studies primarily utilize quantitative indicators of
innovation, which may underestimate the gaps in regional innovation due to the under-
lying assumption of technological homogeneity in the innovative outputs. Other studies
have drawn similar conclusions when utilizing data for R&D expenditure, human capital,
government support, technology conversion expenditure, and other factors as proxies for
the innovation in a region [8,16–18]. However, such proxies may not properly represent
innovation, as it should be the result of the transformation of these inputs [19], which may
lead to bias in analyzing the spatial distribution of regional innovation. Therefore, the
research on the spatial distribution of regional innovation measured in terms of value in
China remains relatively scarce, necessitating further investigation.

As such, this study aims to answer the following questions. How can the regional
innovation in China be accurately measured in terms of the values of innovation outputs?
What is the spatial distribution of regional innovation value in China? Using data from Chi-
nese invention patents, this study measures regional innovation value using an improved
regional innovation value model. Then, a spatial measurement method is used to explore
the spatial characteristics of regional innovation value and analyze the sustainability of
regional innovation in China. This study is organized as follows. Section 2 provides a
review of the relevant literature and presents the hypotheses for this paper. Section 3
presents the methodology and data utilized to estimate and analyze the value of regional
innovation. Section 4 contains the empirical results and discussions of the estimation and
spatial analysis of the regional innovation value. Section 5 concludes the findings and
discussions about the regional innovation value in China and provides policy recommen-
dations. Section 6 discusses the limitations in this paper and potential interests for future
research studies.

This study’s main contributions are as follows. (1) It establishes an improved model
that incorporates patent value and regional innovation factors to provide a more accurate
measure reflecting regional innovation values. (2) Micro-level patent data are combined
with macro-level data on regional innovation factors to provide a more comprehensive
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estimation of regional innovation values. (3) The spatial econometric analysis of regional
innovation values at the city, province, and country levels in China can enrich the research
on the spatial distribution of regional innovation, in contrast to analyzing the spatial
distribution of innovation based on quantitative indicators.

2. Literature Review and Research Hypotheses
2.1. The Value of Innovation

The value of innovation refers to the economic value of the innovation output, includ-
ing the gains from owning a patent right, the profit from promoting new products and
services, and the external benefits from scientific and technological innovations. In this
paper, the innovation value in a region is defined as the aggregation of the (discounted) net
returns from all invention patents in the region. The reasons why the other two sources of
innovation value are not addressed are twofold: the data for the sales of new products and
services are not generally accessible across regions in China, and the method to appropriate
the social value of innovation is limited [20]. Although not all technological innovations are
patentable, and many patented inventions might not be innovative enough [21,22], the en-
riched patent information provided by patent databases and the availability of high-quality
computers and software today have encouraged researchers to use patent data to study
innovation [19].

As a main innovation output, patents contain a wealth of information about new
technologies and have, therefore, received a great deal of research attention. However,
merely using the number of patents to measure innovation might be deceptive because
the technological innovativeness endowed by a patent and its economic effect might
not be significant [22], which may result in measurement noise [9]. Therefore, some
scholars have taken a different approach by estimating the value of patents based on
the behavioral characteristics of patent rights holders and the validity period of patents.
A primary advantage of the patent value is that it provides a monetary measure of an
innovative output’s exclusive market profit enforced by the patent system [11,23], which
allows a more objective and precise measure of innovation and comparative analyses
between countries’ innovation values [9,24]. However, such methods often neglect the
comprehensive effect of other factors influencing the innovation processes in a region and
may not address the spatial inequality of innovation between regions, which raises the
need for a measure of innovation that embodies the advantages of patent values while
balancing the comprehensive effects of factors influencing regional innovation. A potential
solution to this issue can be found in studies that construct indicator systems to measure
innovation and analyze its spatial distribution [8,25–27]. Although the primary focus in
these studies is not the value of regional innovation, they indicate that an indicator system
addressing the input factors, innovation environmental factors, and other economic factors
can effectively integrate the impacts of these factors on regional innovation. Therefore, this
paper aims to establish a regional innovation value model that incorporates the patent value
estimation and a regional innovation indicator system consisting of the input, innovation
environmental, and economic factors to effectively estimate the regional innovation value
in China. As such, this paper proposes the first research hypothesis:

Hypothesis 1 (H1). The regional innovation value model that incorporates the patent value
and a regional innovation indicator system can effectively estimate the regional innovation values
in China.

2.2. The Spatial Distribution of Regional Innovation

In recent years, the study of the spatial characteristics and correlations of innovation
across geographical regions has drawn increasing attention. The relevant studies may have
originated from the theoretical framework of national innovation system (NIS) that was
established by scholars including Freeman [28], Lundvall [29], and Nelson [30]. In the 1990s,
Cooke and his colleagues [31,32] introduced the notion of the regional innovation system
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(RIS), which synthesized the framework of the NIS and empirical evidence of regional
innovation. Accordingly, the theory of the RIS proposed that economic agents’ activities
directly rely on the characteristics of the region, and through the integration of financial
capacity, institutionalized learning, and productive culture, the economic agents conduct
systemic innovative activities [32]. Therefore, the outcomes of innovative activities in a
region are not only the results of the agents’ own effort but also under the influence of
regional innovation and economic environmental factors.

Based on the RIS theory, scholars have conducted a series of empirical studies examin-
ing the characteristics of the spatial distribution and correlation of regional innovation in
China. For instance, Li [13] established a set of stochastic frontier models and used quanti-
tative indicators of patents to examine the disparity in innovation performance between
Chinese regions, and the author confirmed that while the innovation environment exerted
significant impacts on innovation efficiency, the overall innovation efficiency between
regions became increasingly disparate. Xu et al. [7] utilized Chinese patent information at
the province level to conduct research on the inequality of regional innovation in China
based on concentration indexes and concluded a high degree of inequality of regional
innovation accompanied by the regional agglomeration effects. Tu et al. [8] incorporated
Moran’s index and LISA cluster maps with a comprehensive indicator system for the
innovation capacity of regional high-tech industries and found that the spatial distribution
of regional high-tech industries’ innovation capacity was vastly unbalanced and character-
ized by low–low agglomeration. Although all of these studies provided evidence on the
unbalanced spatial distribution of regional innovation in China, they mainly utilized the
quantitative indicator (or combined with an innovation indicator system) as the measure of
regional innovation, which may cause the previously mentioned challenge. Moreover, the
small number of other studies that applied the method of the patent value to analyze the
value of innovation in China were limited to the country level [23,33], province level [34], or
industrial level [12,23,35], and few studies have addressed the patent value at the city level
and conducted an analysis of the spatial distribution of innovation values by integrating
the city, province, and country levels. As the quality of innovation becomes increasingly
significant for balanced regional development in China, it is critical to provide insights
into the spatial distribution of regional innovation in China from the viewpoint of value.
In addition, since the value of innovation can address the heterogeneity of technology
embodied in innovative outcomes [9,11,12], there may be an even larger regional disparity
of innovation values in China. Therefore, this paper puts forward the following hypothesis:

Hypothesis 2 (H2). The spatial distribution of regional innovation value is unbalanced and mainly
characterized by the agglomeration of regions with low innovation values.

3. Methods and Data
3.1. Methodology

In this paper, an improved regional innovation value model was established based on
the original patent renewal model and a regional innovation indicator system. The regional
innovation indicator system was identified, and the weighted valued for the main (tier 1)
indicators in 282 sample cities in China from 1987 to 2019 were estimated using the entropy
weight method. Moreover, the nonlinear least squares method was employed to estimate
the essential parameters in the regional innovation value model that incorporated both
datasets for approximately 2.8 million invention patents applied for and granted in China
and the estimated weighted indicators of regional innovation. The fitted parameters based
on the empirical results were utilized in a series of Monte Carlo simulation processes to
estimate the innovation values at the city, province, and area levels in China. The analyses
of the spatial distribution of regional innovation values in China were then conducted
using a local Moran’s index, LISA cluster maps, and hotspot maps in order to examine the
sustainability of regional innovation in China.
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Original Model: Patent Renewal Model

(1) Setup of the patent renewal model
Researchers have often used patent renewal information to estimate the patent value

(some other information, such as the patent family size (e.g., [36,37]) and citations (e.g., [37,38]),
can also be used as indicators of patent quality). The underlying logic of this method is
that under the patent system, the holders of patent rights must periodically pay renewal
fees to maintain the right to receive exclusive economic benefits from the patent. Thus, it is
assumed that the number of periods a patent right remains effective is positively related
to its economic value. Pakes and Schankerman originated the patent renewal model that
formalizes this relationship [39]. This model was further developed by Schankerman and
Pakes [9], Lanjouw [36], Pakes [40], and Bessen [11]. An advantage of the patent renewal
model is that it establishes the theoretical mapping of the patent value onto the observable
renewal behavior of patent holders, which then allows for the estimation of the patent
value. Moreover, the aggregated patent value within a region (or nationwide) is often
considered an estimate of the regional or national innovation value.

The paten renewal model assumes that a representative agent who holds a patent
of cohort i determines whether to renew the patent at age t (years renewed) in order to
maximize its discounted economic value (i.e., the discounted net return) throughout the
renewal period. A simplified version of this discrete optimization problem can be expressed
as the following:

max
T∈{1,2,...,T}

T

∑
t=1

λt(Ri0 · d−t − Cit), (1)

where Ri0 represents the initial implicit return to the patent right and d represents the
exogeneous decay rate (equivalently, studies also use the depreciation rate δit to express the
decay of a patent’s return (i.e., dit = 1 − δit)) of the patent’s return. Thus, the term Ri0·d−t

represents the nonincreasing implicit return to the patent rights at age t of the patent. Since
the return to the patent rights cannot be observed directly, scholars have establised different
setups modelizing the dynamics of the return. One is to assume that the return changes
deterministically with an initial Ri0 and a series of exogenous decay rates (e.g., [12,33,34]),
which can be further simplified by assuming the indifference between decay rates, as in this
paper. The other is to assume a stochastic dynamic of the return (e.g., [23,40,41]). Bessen,
however, claimed that the stochastic dynamics of the return do not necessarily distinguish
the estimation results [11]. This paper, therefore, assumes the deterministic dynamics of
the return. Furthermore, λ is the discount factor, T is the optimizer the representative agent
chooses to maximize the overall discount net return of the patent, and T represents the
statutory limit on the patent protection (20 years). In China, the statutory limit on patent
protection was originally 15 years for invention patents. This was changed to 20 years
with the second amendment of the Patent Law of the People’s Republic of China on
1 January 1993. Here, Cit is the annual renewal fee in the same period (to guarantee the
existence of an optimal renewal period T* in a deterministic setup, the flow of annual
implicit returns Ri0·d−t must be nonincreasing in age t, while the flow of annual renewal
fees Cit must be nondecreasing in t so that the flow of net returns converges to 0 in time),
and the schedule of annual renewal fees is often specified by each country’s patent office
(the schedule of renewal fees for invention patents applied in China and its amendments are
published by the China National Intellectual Property Administration and can be found at
https://www.cnipa.gov.cn/ (accessed on 31 May 2022)) and is nondecreasing in a patent’s
renewal period.

Since the returns of the patent are nonincreasing and the costs of renewal are nonde-
creasing in the renewal period, it is clear that the representative agent would maximize
the discount net return at an optimal renewal period T*, such that any additional period of
renewal would result in a net loss in that period:

Ri0 · d−T∗ − CiT∗ > 0, and Ri0 · d−(T
∗+1) − Ci,T∗+1 ≤ 0 for T∗ ∈ {1, 2, . . . , 20}. (2)

https://www.cnipa.gov.cn/
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If there exists no such T* within the statutory limit, then the representative agent finds
the statutory limit as the optimizer (i.e., there exists a corner solution at the upper boundary
of the renewal period).

The solution to this optimization problem indicates that any holder of the patent in
cohort i would keep renewing the patent rights as long as the current return (taking account
of its decay) exceeds the renewal fee. Accordingly, the observable renewal proportion of
all patents in cohort i at a certain renewal period t can be expressed as a function of the
initial return Ri0, along with other exogeneous factors (i.e., the corresponding decay rate d,
renewal period t, and renewal fee Cit). Although the initial return of a patent in a cohort
is not observable, it can be represented by a random variable following the distribution
characterized by a particular probability density function and parameters associated with
the specific cohort. Moreover, studies have shown that the distribution of patent values
is highly skewed (e.g., [9,11,42,43]). In the framework of the patent renewal model, the
lognormal distribution has been confirmed to have the best fit for renewal data in studies
focused on Europe and the US (e.g., [9,11,44]). In studies on Chinese patent value, it
is often accepted that the initial returns of the patent value are distributed lognormally
(e.g., [12,23,33]). In the following sections of this paper, a lognormal distribution is used
as the distribution method of the initial returns of the patents. This study tests three
candidates for the distribution of the initial returns of sample invention patents, namely
lognormal, Pareto–Levy, and Weibull distributions. The econometric model that best fits the
sample data is the one that assumes a Pareto–Levy distribution according to the adjusted
R2 and the weighted sum of squared errors, suggested by Schankerman and Pakes [9]. The
result is consistent regardless of the method of identifying the cohorts of sample patents.
However, the estimated shape parameters (often denoted by α) in different sample sets are
somewhere in between 0.373 and 0.436 and fall within the range of [0, 1]. This means that
the mean of the patent value is infinity in principle and will lead to overestimating both the
patent value and regional innovation value. To avoid overestimation, this study chooses
the distribution that yields the second-best fitness, which is the lognormal distribution.
Here, Ri0~LN(µi,σi) or lnRi0~N(µi,σi) is used, where µi and σi denote, respectively, the
population mean and standard deviation of the initial value of patents in cohort i. In
addition, following Bessen [11], Zhang et al. [12], and Og et al. [45], the log of the initial
return of a patent is a function of some observable characteristics of the patent. In this
study, the selected characteristics include the year and city of the patent application, the
type of applicant, and the industrial classification of the patent, which are represented by
xi, the vector of dummy variables. It then follows that:

ri0 = ln Ri0 = µi0 + β′xi + ζi, (3)

where µi0 + β′xi is the mean of Ri0
′s distribution (i.e., µi0 + β′xi = µi). Here, xi is the vector

of variables controlling the factors that influence the initial returns of the patents in cohort
i. As suggested by previous studies, factors including the categorical variables identifying
the cohort, the inputs for innovative activities, and other innovation and economic environ-
mental factors may exert significant impacts on the initial returns [9,11,12,23,24,33]. Here,
β is the vector representing the coefficients of these factors and ζi denotes the normally
distributed stochastic error with a zero mean and standard deviation σi. To further simplify
the analysis, the standard deviation is assumed to be indifferent across cohorts [9–11] (i.e.,
σi = σj = σ for all i and j). Therefore, according to the optimization condition, the proportion
of patents in cohort i that are renewed at period t can be formalized as the following:

Pit = 1− Pr[
ri0− (µi0 + β′xi)

σ
>

cit− t ln d− (µi0 + β′xi)

σ
] = 1−Φ[

cit− t ln d− (µi0 + β′xi)

σ
], (4)

where cit = lnCit as the log transformation of the renewal fee for patents in cohort i at period
t. Note that the renewal condition (indicated by the left inequality in (2)) is normalized
according to the assumption of a lognormal distribution of the initial return (Equation (3)),
and it is clear that (ri0 − (µi0 + β′xi))/σ follows the standard normal distribution N(0,1),
whose cumulative density function is denoted by Φ(·).
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Based on Equation (4), an econometric model that links the patent holder’s renewal
behavior to the patent value can be established as the following:

yit ≡ Φ−1(1− Pit) =
1
σ
[−(µi0 + β′xi) + cit− t ln d] + εit, (5)

where yit is defined as the inverse of the cumulative density function of the previously
described standard normal distribution; Pit stands for the proportion of patents in the ith
cohort that are renewed at period t; xi is the vector of variables controlling the initial return
of the patent in the same cohort; cit is the log of the renewal fee; t represents the renewal
period; µi0, σ, β, and d are the previously defined parameters defined to be estimated; εit is
the error term. Using the nonlinear least squares method, one can estimate the parameters
that are key to calculating the patent value.

(2) Calculation of the patent value
The estimates based on Equation (5) contain the fitted parameters describing the

patents’ initial distributions (i.e., µ̂i0, β̂, and σ̂) and the decay rate of the patent value with
age (i.e., d̂). Using the fitted parameters as well as the given schedule of renewal fees
for patents in the ith cohort, one can use a Monte Carlo simulation to generate a set of
pseudo-random numbers representing the initial returns of patents in the ith cohorts (i.e.,
R̃i0) and simulate their renewal decisions, which results in the optimal renewal periods
(T̃∗) for each pseudo-random number, satisfying the following condition:

R̃i0 > CiT̃∗ ·d̂
T̃∗ and R̃i0 > Ci,T̃∗+1·d̂

T̃∗+1, (6)

where T̃∗ = 1, 2, . . . , T. Then, the discount value (the discount factor, λ, is set to 0.95 as
suggested by Deng [41]) of each simulated pseudo-number is:

Ṽ
(

T̃∗
)
= ∑T̃∗

t=1 λt
(

R̃i0·d̂−t − Cit

)
. (7)

The last step is to calculate the arithmetic average of the simulated discount values
within each group of simulated optimal renewal periods; that is, to calculate the average of
all Ṽ

(
T̃∗
)

in Equation (7) for those whose age is T̃∗. Then, the result is the estimate of the
value of the patents in the ith cohort at age t.

3.2. Extended Model: Regional Innovation Value Model

A limitation of the original patent renewal model is that it does not incorporate the
comprehensive effects of regional factors that might influence innovation and its value,
which might lead to estimation bias when aggregated at the regional level. Innovation
activity in a region is a systematic process this is potentially affected by various factors [46].
Not only do innovation inputs determine the outcome of innovation activity but the
region’s innovation environment (e.g., government fiscal support and educational effort)
and economic environment (e.g., market scale and financial development) are also essential
for innovation behaviors, as well as the conversion of new ideas and inventions into regional
productivity. The comprehensive effects of these factors determine the regional innovation
capacity and the differences across regions [47–49]. Although the choices of particular
indicators representing the factors of innovation inputs, the innovation environment,
and the economic environment may differ in the literature, scholars who focus on the
regional innovation in China often incorporate indicators representing innovation inputs,
the innovation environment, and the economic environment in their indicator systems and
find them statistically significant in analyzing the spatial inequality of regional innovation
in China [8,25,27], although the particular choices of indicators may differ in the relevant
studies. The average and overall levels of the regional innovation value may, therefore,
differ owing to such factors. However, such factors are not directly reflected in the patent
renewal model. In addition, although some studies have controlled some of the factors
in the patent renewal model (e.g., [9,11,50]), the lack of a systematic measure of regional
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innovation factors and their effects on the patent value might result in the insufficient
measurement of regional innovation value.

(1) Regional innovation value model
To include the comprehensive effects of regional innovation factors to make suitable

estimations of regional innovation value, this study modifies the patent renewal model by
introducing a regional innovation indicator system using Jaffe’s knowledge production
function [51,52]. In this way, an extended regional innovation value model is established.

According to the knowledge production function, the output of innovation activity can
be expressed as a Cobb–Douglas production function of certain factors. This study primarily
addresses the previously mentioned three sets: the innovation input, the environment for
innovation activity, and the region’s economic environment. Thus, the log of the initial
returns of a patent can be expressed as:

ri0 = µi0 + b1 ln Inpi,L2 + b2 ln Envi,L2 + b3 ln Ecoi,L2 + νi, (8)

where Inpi,L2, Envi,L2, and Ecoi,L2 denote the indicators of the innovation input, innovation
environment, and economic environment two periods prior to a patent application by the
ith cohort in their associated regions. Studies have shown that there are time lags between
a firm’s R&D investment and its innovation output [53–55]. However, the actual time lags
remain debatable (see [56]). In addition, the samples in this study include invention patents
not applied for by firms. Therefore, a relatively short time lead (2 years) in the indicators
prior to the patent application is chosen for the model. Here, b1, b2, and b3 are the elasticities
of the indicators; µi0 denotes a constant; and νi denotes an error term following normal
distribution with a zero mean and standard deviation σ.

Equation (8) indicates that the innovation inputs (along with the innovation and
economic environmental factors) lead to the lagged outputs of innovation. However, the
direction of causality between the innovation inputs and the value of the innovation outputs
has not been systematically studied in the existing literature. In the related literature, the
direction of the causality is somewhat ambiguous. There exists evidence indicating that
the direction of causality is from R&D investment to firm profitability [57], while other
studies have found insignificant causal relationships between the inputs and outputs of
innovation in particular industries (e.g., [58]). Since the primary focuses in this paper are
the estimation of the regional innovation value and the analysis of the spatial distribution
of the regional innovation value in China, the theoretical relationship between the value of
innovation outputs and inputs remains as presented in Equation (8), leaving the analysis of
the causality for potential future studies.

Based on Equation (8), the proportion of patents renewed at age t can be expressed as:

Pit = 1−Φ[
cit − t ln d− (µi0 + b1 ln Inpi,L2 + b2 ln Envi,L2 + b3 ln Ecoi,L2)

σ
]. (9)

Rewriting the above equation as in Equation (5) yields:

yit ≡ Φ−1(1− Pit) =
1
σ
[−(µi0 + b1 ln Inpi,L2 + b2 ln Envi,L2 + b3 ln Ecoi,L2) + cit − t ln d] + εit, (10)

which is the basic regional innovation value model.
Furthermore, the influence of the patents’ observable characteristics as described in

Equation (3) is also considered in the following:

yit =
1
σ
[−(µi0 + b1 ln Inpi,L2 + b2 ln Envi,L2 + b3 ln Ecoi,L2 + β′xi) + cit − t ln d] + εit. (11)

Finally, some variation in the decay rate is allowed in the model, considering that tech-
nology in general is evolving at an accelerating pace, which might increase the depreciation
rate of the innovation. As suggested by Schankerman and Pakes [9], at age t, the decay rate
of the value of the patents applied for in year r can be expressed in an exponential form:

drt = d exp(θ1D1
rt + θ2D2

rt), (12)

where Drt
1 and Drt

2 are dummy variables representing the actual year (i.e., r + t), which satisfy:
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D1
rt = {

1 i f 2001≤r+t≤2010
0 elsewhere, ,

D2
rt = {

1 i f 2011≤r+t≤2019
0 elsewhere. .

(13)

Therefore, the regional innovation value model can be written as:

yit =
1
σ [−(µi0 + b1 ln Inpi,L2 + b2 ln Envi,L2 + b3 ln Ecoi,L2 + β′xi) + cit − t ln d]

− 1
σ (θ1

t
∑

τ=1
D1

rτ + θ2
t

∑
τ=1

D2
rτ) + εit

(14)

Equations (10), (11) and (14) are the three functions of the regional innovation value
model that are incorporated into the effects of innovation factors in the associated re-
gions. However, to complete the model, a regional innovation indicator system needs to
be specified.

(2) Regional innovation indicator system
In general, the theory of knowledge production regards the innovative outputs as a

function of the inputs, including R&D investment, human capital, and knowledge accu-
mulation [51,52]. Li [13] suggested that patents can also be treated as a function similar
to the knowledge production function. Among the studies that used indicators systems
of regional innovation, the indicators representing the inputs of innovation were often
included along with patent information (e.g., [8,59,60]). Besides the innovation inputs, the
innovation and economic environment are also essential to the technological innovation in
a region. As the theory of RIS indicates, regional innovation is a series of systemic activities
under the comprehensive effects of local innovation and economic environmental factors
such as governmental effort, financial support, and institutional support. Following the
logic of the RIS theory, empirical studies have also aggregated the innovation and economic
environmental effects on regional innovation by addressing relevant factors in the indicator
systems [60]. This paper extracts indicators that potentially characterize the innovation
input, innovation environment, and economic environment, which determine the output of
regional innovative activities. A regional innovation indicator system is established based
on the indicator systems suggested in the “Evaluation Report on China’s Regional Innova-
tion Capacity 2021” [61] and the “Evaluation Report on the Innovation Capacity of National
Innovative Cities 2021” [62], as well as other studies on regional innovation (e.g., [8,59,60]).
In addition, due to the limited accessibility of the corresponding data in the sample cities
and the timespan, some of the indicators included in the abovementioned reports and
studies are excluded, while others are substituted by their alternatives, which then leads
to the regional indicator system consisting of three main indicators (tier 1 indicators) and
12 subindicators (tier 2 indicators), as presented in Table 1.

Table 1. Regional innovation indicator system.

Tier 1 Indicators Tier 2 Indicators Unit of Measure

Innovation Input Number of R&D personnel per 10,000 people Number/10,000 people
Government R&D spending as a proportion of fiscal expenditure %
Number of papers published in domestic academic journals per 10,000 people Number/10,000 people
Number of papers published in foreign academic journals per 10,000 people Number/10,000 people

Innovation Environment Government educational spending as a proportion of fiscal expenditure %
Ratio of telephone, mobile phone, and Internet subscribers to population Ratio
Number of national-level incubators for innovative enterprises Number
Number of patent agencies Number

Economic Environment GRP per capita Yuan/person
Average wage of employees Yuan/person
Amount of foreign capital actually used per capita Yuan/person
Ratio of total market value of listed enterprises to GRP %

First, the regional innovation input factors mainly include human capital, capital,
and accumulated knowledge. As suggested by Pan et al. [60], the R&D personnel, expen-
diture invested, and knowledge accumulated within a region are essential indicators to
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measure the abundance of resources to produce innovative outcomes. Studies often use
the number of R&D personnel, the amount of internal R&D expenditure, and the number
of academic papers published in a region as indictors representing these inputs [8,60–62].
However, the data for the amount of internal R&D expenditure by local enterprises are not
accessible in most cities, especially in the early sample years. A potential alternative is the
R&D expenditure by the local government, which indicates the local government’s direct
spending on innovation projects. In addition, to reduce the potential estimation bias caused
by endogeneity, the indicator for R&D personnel is calculated per 10,000 people and the
government R&D expenditure is converted to its proportion to the local fiscal expenditure,
as suggested in the relevant literature (e.g., [63–66]). Knowledge, which generates new
ideas and methods, plays a key role in combining capital and human capital in the pro-
cess of innovation. However, it is often ambiguous and hard to measure. The previously
mentioned reports [61,62] utilize the numbers of published academic papers to indicate
the stock of knowledge, since they represent the new scientific findings to some extent.
Therefore, the numbers of papers published by researchers in major domestic and foreign
scientific and technical journals in each city are used as the incremental knowledge formed
in the region, thereby measuring the level of regional knowledge input (e.g., [67,68]).

Second, factors such as educational support, communication infrastructure, and inno-
vation service institutions in a region constitute the innovation environment of the region
and indirectly contribute to the value of the regional innovation. According to the reports
on China’s regional innovation mentioned previously, indicators addressing the regional
governments’ efforts to improve the quality of human capital, reduce the cost of infor-
mation, and provide services to innovators are necessary to evaluate the environment of
innovation in a region [61,62]. A major way to improve the quality of human capital in a
region is to support education, as it provides the training for basic skills and knowledge to
enhance the overall ability to engage in innovative activities. The proportion of educational
spending to the fiscal expenditure in a region reflects the intensity of educational support
and thereby is selected as an indicator. The infrastructure for the Internet and telecom-
munications operates as the hardware fundamentals for communication and the sharing
of the information related to science and technology. As technologies grow increasingly
complicated and interrelated, the creation of cutting-edge technologies rely heavily on
the communication and cooperation between innovators at different locations. The con-
struction of Internet and telecom infrastructure benefits the innovators by alleviating the
burden of the cost for communication. As suggested by the reports on China’s regional in-
novation [61,62], the numbers of communication devices and Internet users can effectively
describe the environmental innovation factor, which contributes to the communication
between innovators. Thus, this indicator is included in the innovation indicators system in
this paper. In addition, to reduce the possible endogeneity in the estimations, the indicator
representing the regional government expenditure on education is converted to the propor-
tion of educational expenditure to fiscal expenditure, and the indicator representing the
intensity of Internet and telecom infrastructure is calculated as the share of communication
devices and Internet users in the population [69–71]. Besides the regional educational
support and communication infrastructure, the intensity of services for local innovators is
also of great importance in producing innovative outputs in a region. The services for the
innovators can be provided by different organizations, including incubators and patent
agents. Such organizations often provide financial and informational support for local
innovators to convert new ideas, projects, and inventions into final products and to help
market these products. Thus, a region with a larger number of such organizations is ex-
pected to have better innovation environment. Furthermore, studies have found evidence
of the positive impacts of national incubators on local innovation performance [72,73]. In
addition, although few studies pay attention to the potential influence of patent agencies on
local innovative activities, it may be an effective indicator of services for local innovators.

Third, the reports on China’s regional innovation [61,62] also included indicators
of regional economic environmental factors, which address the external conditions for
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the dynamic equilibrium of the technology market influencing the decisions of both the
supply and demand sides of technology and the benefits of technology formation. The per
capita gross regional product (GRP) in a region was utilized to reflect the overall economic
development [60–62]. Moreover, the regional economic development determines the size
of the local market, which affects the value of the patents, as implied by Schankerman
and Pakes [9]. Besides the regional per capita GRP, the foreign capital actually utilized
is considered as another key factor determining the outputs of innovation in a region.
The underlying logic is that foreign investment often leads to the inflow of advanced
technologies from foreign countries, and through the spillover effect, such technologies
would be quickly diffused, allowing domestic producers to imitate and improve the level of
technology [74,75]. The development of finance in a region also determines the innovation
outputs, since designing new products, improving production lines, and other forms of
innovative efforts require large amounts of investment, especially when high-value projects
developing cutting-edge technologies are involved. The ratio of the total market value
of the listed enterprises to the GRP is selected as the indicator of the development of
regional finance, as suggested in the “Evaluation Report on China’s Regional Innovation
Capacity 2021” [61]. In addition to these indicators of regional economic environment
mentioned above, the average employee wage is included in the indicator system to reflect
the level of household income in a region. Since 9.52% of the invention patents in the
sample are applied for by individual households, it is significant to consider the potential
effect of a household’s income on its innovative activities. According to the componential
theory of creativity [76], the theory of planned behavior [77], and the theory of individual
innovation [78], individuals’ personal competences, which can be reflected by their incomes,
may be the key components to encourage individual innovative activities [79]. Further,
prosperous individuals tend to pursue different life goals other than subsistence and
safety, as implied in Maslow’s hierarchy of needs [80]. Thus, Chen et al. [81] argued that
prosperous individuals are more likely to conduct innovation activities. Studies have
confirmed the positive impact of income on household innovation [81–83]. Therefore, this
paper also includes the average wage of an employee in the indicator system to address the
potential effect of income on regional innovation.

The estimation of the weighted value of each tier 1 indicator in each sample year is
conducted by the entropy weight method. The city level is selected as the benchmark
regional administrative division in establishing the regional innovation indicator system.
The comprehensive measure of each tier 1 indicator is calculated based on the values of
the four associated tier 2 indicators and their corresponding weights estimated using the
entropy weight method based on the following equations:

Yij =
Xij − Xj,min

Xj,max − Xj,min
, (15)

ej = −k ∑n
i=1 pij· ln pij , pij = Yij/ ∑n

i=1 Yij, (16)

Fh
i = ∑4

j=1 wh
j Xh

ij , wj =
(
1− ej

)
/ ∑m

j=1

(
1− ej

)
. (17)

where Equation (15) shows the process of normalization of the data, Y represents the
normalized dimensionless data, X represents the data in the ith city and jth tier 2 indicator
in a sample year, and Xj,min and Xj,max represent the minimum and maximum of the data
for the jth tier 2 indicator in the sample year, respectively. Equation (16) calculates the
entropy of the jth tier 2 indicator, wherein k = 1/lnn, with n being the number of cities
sampled in the corresponding year. The calculation of the three tier 1 indicators is presented
in Equation (17), where Fh

i represents the hth tier 1 indicator for the ith city in a sample year
and wh

j represents the entropy weight for jth tier 2 indicator of the hth tier 1 indicator. A
similar calculation is conducted for each year throughout the sampling time span.
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3.3. Data Description

This study uses two datasets: one is the micro-level data for patents, and the other is
the macro-level data for each (tier 2) indicator in the regional innovation indicator system.

3.3.1. Patent Data

(1) Data sources
A total of 2,799,639 invention patents issued by patent offices and applied for by

domestic applicants in 31 Chinese provinces (patents applied for in Hong Kong, Macau, and
Taiwan were not included because they have their own patent offices) were collected from
the Patent Information Search Platform (Available at http://search.cnipr.com (accessed on
31 May 2022)), which was established by China’s statutory publisher of patent literature.
The date range for the collected patent applications was 1 January 1987 to 31 December 2019.
The earliest patent applications in China date to 1 April 1985, when the first amendment
of the Patent Law of the People’s Republic of China was published. At that time, the
statutory renewal limit was 15 years, which was later changed to 20 years for those who
applied after 1 January 1993, when the third amendment of the Patent Law went into
effect. Then, on 10 December 2001, the CNIPA extended the statutory renewal limit to
20 years for patents applied for before 1 January 1993. Therefore, given these differences
in statutory renewal limits, this study excluded patents applied for before 1 January 1993
(those patents had a 15-year statutory renewal limit and had already expired before the
extension). The data for the invention patents were collected in 2022. However, it takes
about three years on average to grant approval for an invention patent after its application
in China, and the renewal information for the invention patents applied for after 2019 was
mostly unobservable, meaning it could not be utilized for the estimation of the innovation
value. Therefore, the invention patents applied for after 2019 were excluded from the data
set. A small number of invention patents that were still in the examination stage or missing
information about the termination date of patent rights protections at the end of 2020 were
excluded. Among the collected patents, 609,758 had terminated there protection by the
end of 2020. In addition to the patent information, the schedule of the patent renewal fees
was collected from the China National Intellectual Property Administration (CNIPA) and
converted to real terms using GDP deflators (the base year was 2010).

(2) Patent cohorts
The cohort of a patent is identified based on the year and city of application, the type

of applicant, and the industrial classification for the national economic activity of the patent.
The data contain the IPC codes for the patents, which identify the technical area. However,
IPC codes might not directly relate to regional economic activity. Therefore, the IPC codes
are converted to their associated industrial classifications based on the “Reference Table
for IPC and Industrial Classification for National Economic Activities (2018)” published
by CNIPA, (available at https://www.cnipa.gov.cn/art/2018/10/8/art_75_131968.html
(accessed on 31 May 2022)) (henceforth, “industrial sector”. The dataset contains patents
covering 33 years (1987–2019), 282 cities (including municipalities and prefecture-level
cities), four types of applicants (individuals, nonlisted enterprises, listed enterprises, and
other public organizations, including government departments, government-affiliated
institutions, colleges, and research institutions), and eight industrial sectors (agriculture,
forestry, livestock, and fisheries; mining; manufacturing; electricity, heat, gas, and water
production and supply; construction; information transmission, software, and information;
technical services; and health and social work). Altogether, these categorical variables form
53,056 cohorts in the patent dataset.

(3) Renewal proportion in the sample
The renewal proportion for patents in a cohort at a specific age is calculated based on

the ratio of the number of patents remaining valid at that age to the total number of patents
in the cohort. The patent age is not directly provided but can be calculated based on the
difference between the date the rights expired and the date of application, which is then
rounded down to the nearest integer as its age. Thus, up to the age of a patent, it keeps

http://search.cnipr.com
https://www.cnipa.gov.cn/art/2018/10/8/art_75_131968.html
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renewing and remains valid. The average age of the 609,758 expired patents in the sample
was 6.60 years (standard deviation: 0.004 years). Table 2 shows the number of patents and
the renewal proportions (at the end of the 5th, 10th, 15th, and 20th years after application)
grouped by year of application, type of applicant, and industrial sector. Overall, the renewal
proportions in the 10th, 15th, and 20th years increase in the application year, while the
renewal proportions in the 5th year are somewhat ambiguous. Considering the time span of
renewals for the majority of expired patents is relatively short (73% of total sample patents
renewed up to the fifth year), it cannot be concluded explicitly that the values of invention
patents in China increases with time. Moreover, the patents applied for by listed firms
have relatively higher renewal proportions, and some small differences can be overserved
between renewal proportions in different industrial sectors, which implies differences in
frequency distribution among the groups of patents. Differences in frequency distributions
are verified using K–S tests. Among the 562 pairs of renewal frequency distributions, only
seven pairs have an estimated p-value greater than 0.01, which indicates that most of the
groups have different renewal frequency distributions. It is necessary, therefore, to control
the potential heterogeneity in patent values using dummies for patents’ categories.

3.3.2. Data for Regional Innovation Indicators

The data for the tier 2 indicators were mainly obtained from the China City Statistical
Yearbooks from 1985 to 2019. Owing to data limitations, the number of scientific researchers
was substituted by the number of people employed in the sector of “scientific research,
technical services, and geological prospecting.” In addition, data for the number of local
telephone subscribers were missing for 2017, while data for mobile phone and Internet
service subscribers were missing for 2000 and before. To simplify the indicator, the number
of subscribers for all three was summed up to calculate the ratio of subscribers to population
annually. The unit of measure for the amount of foreign capital actually used per capita
was converted to yuan based on the annual average exchange rate of the US dollar to the
RMB each year.

The number of papers published in domestic academic journals was collected from
the China National Knowledge Infrastructure (CNKI) database by matching the addresses
of authors’ affiliated institutions with the sample cities for each year. The number of papers
published in foreign academic journals was collected from the Web of Science using the
sample cities’ names as the search criteria for each year. National-level incubators and their
locations were obtained from the website of the Torch High Technology Industry Develop-
ment Center, Ministry of Science and Technology (The lists of national-level incubators can
be found at http://www.chinatorch.gov.cn (accessed on 31 May 2022)). Information about
patent agencies, including addresses and years of establishment, was collected from the
CNIPA website (Available at http://dlgl.cnipa.gov.cn/txnqueryAgencyOrg.do (accessed
on 31 May 2022)). Lastly, the total market value of listed enterprises is the sum of the total
annual individual market value of all listed A-share enterprises in each city of registration.

All monetary data in the innovation indicator system are deflated by the GDP de-
flator to reduce the influence of macro-level prices. (The data for GDP deflators are not
directly provided by any official of statistics in China. However, as suggested by Shen
and Wang [84], the GDP deflators can be calculated based on the nominal GDP and GDP
at a constant price, which are provided by the National Bureau of Statistics of China (the
base year is 2010)). After excluding cities missing considerable data, data for 282 sample
cities were retained. In the remaining data, missing values were filled in using regression
interpolation. Finally, the values of the tier 2 indicators were calculated according to their
definition and then used to calculate the indexes of the three tier 1 indicators. Table 3
presents the descriptive statistics of all tier 2 indicators.

http://www.chinatorch.gov.cn
http://dlgl.cnipa.gov.cn/txnqueryAgencyOrg.do
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Table 2. Number of invention patents and proportion of renewals for the full sample.

Category of Sample Patents Total Number of Patents
in the Cohort

Renewal Proportion (%)
Percentage of Unexpired

Patents (%)5th
Year 10th Year 15th Year 20th Year

Whole Sample 1 2,799,639 73 16 2 1 78
Year of Application

1987 1447 92 25 7 2 0
1988 1589 90 25 7 2 0
1989 1436 87 26 7 3 0
1990 1652 88 27 8 4 0
1991 1857 86 30 8 3 0
1992 2394 88 36 11 6 0
1993 2711 95 43 13 8 0
1994 2738 98 39 15 9 0
1995 2808 99 35 19 10 0
1996 3474 96 32 18 11 0
1997 4020 92 32 19 12 0
1998 4817 92 34 22 12 0
1999 6051 91 38 25 12 0
2000 8670 89 46 26 13 0
2001 11,425 90 50 29 16
2002 18,571 88 53 32 22
2003 26,328 88 56 30 23
2004 30,768 88 56 29 26
2005 41,574 94 59 32 31
2006 52,852 95 61 37
2007 64,338 96 62 41
2008 82,625 96 60 48
2009 106,456 94 57 53
2010 127,230 93 60 60
2011 161,289 93 69
2012 214,565 94 76
2013 280,558 91 80
2014 310,103 90 85
2015 325,582 92 91
2016 352,744 95
2017 2 270,453 99
2018 2 192,387 99
2019 2 84,127 99

Type of Applicant 1

Individual 266,419 74 18 3 1 51
Nonlisted firms 1,425,615 77 21 3 1 87
Listed firms 189,437 96 54 6 2 90
Public sector 918,168 67 9 1 0 69

Industrial Sectors 1

Agriculture, forestry,
livestock, and fisheries 40,565 60 8 1 0 65

Mining 10,322 72 16 3 1 80
Manufacturing 2,367,409 73 16 3 1 78
Electricity, heat, gas, and

water production and supply 5451 70 10 1 0 76

Construction 47,148 64 11 2 1 82
Information transmission,

software, and information 84,106 79 16 2 0 86

Technical services 16,055 84 21 0 0 86
Health and social work 228,583 75 16 1 0 83

Note 1: The corresponding renewal ratios are the proportion of the conditions for the renewal of lapsed invention
patents in each cycle. Note 2: Some invention patents filed from 2017 to 2019 are still under reexamination and are
not included in the sample; hence, the sample of granted invention patents is small.

4. Results and Discussion
4.1. Estimation of Regional Innovation Value Model
4.1.1. Correlation between Regional Innovation Indicators and Sample Renewal Proportion

Before estimating the regional innovation value model, a graphic illustration is pre-
sented (Figure 1) of the correlation between the log indicators of the regional innovation in-
puts (lnInpi,L2), innovation environment (lnEnvi,L2), and economic environment (lnEcoi,L2),
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as well as the logs of the sample renewal proportions (lnPit), to preview the indicators’
potential influence on the patent value.

Table 3. Descriptive statistics for regional innovation indicators.

Regional Innovation Indicators Mean Std. Dev. Min Max

Innovation Input
Number of R&D personnel per 10,000 people 15.04 0.29 0.22 524.42
Government R&D spending as proportion of fiscal expenditure 0.01 0.011 0.00 0.21
Number of papers published in domestic academic journals per 10,000 people 5.69 10.339 0.00 122.40
Number of papers published in foreign academic journals per 10,000 people 0.51 3.469 0.00 103.22

Innovation Environment
Government educational spending as a proportion of fiscal expenditure 0.20 0.06 0.02 0.49
Ratio of telephone, mobile phone, and Internet subscribers to population 0.59 0.93 0.00 13.53
Number of national-level incubators for innovative enterprises 0.82 3.27 0.00 61.00
Number of patent agencies 2.01 14.94 0.00 637.00

Economic Environment
GRP per capita 23,187.09 32,770.05 426.35 455,125.43
Average wage of employees 21,733.51 17,954.21 14.04 169,823.84
Amount of foreign capital actually used per capita 689.04 1807.53 0.04 30,415.53
Ratio of total market value of listed enterprises to GRP 0.16 0.38 0.00 7.69
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Figure 1. Scatterplot of the correlation between the logs of regional innovation indicators and
renewal proportions.

As seen in Figure 1, the logs of the regional innovation indicators and of the sample
renewal proportions show a somewhat skewed, inverted U-shaped relationship. Consid-
ering the change in the scale of variables owing to the log transformation, the inverted
U-shaped relationship implies a potential lognormal distribution of patent renewal across
regions (cities) with various levels of regional innovation indicators. This provides indirect
evidence that the regional innovation indicators have a significant influence on the patent
value; that is, the coefficients of elasticities for the indicators in the regional innovation
value model are possibly statistically significant.

4.1.2. Regression Results for the Regional Innovation Value Model

The regional innovation value models established in Equations (10), (11) and (14),
along with the original patent renewal model in Equation (5) (for comparison), are estimated
using the nonlinear least-squares method. Table 4 presents the results.
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Table 4. Results of the regional innovation value models.

Parameters
Regional Innovation Value Model

Patent Renewal Model
(I) (II) (III)

µi0
1 10.195 *** 9.354 *** 9.973 *** 10.330 ***

(0.075) (0.063) (0.085) (0.045)
b1 0.090 *** 0.015 *** 0.017 ***

(0.003) (0.003) (0.004)
b2 −0.055 *** 0.026 *** 0.028 ***

(0.005) (0.006) (0.007)
b3 0.084 *** 0.023 *** 0.026 ***

(0.006) (0.006) (0.006)
σ 0.613 *** 0.473 *** 0.525 *** 0.470 ***

(0.008) (0.005) (0.007) (0.005)
d 0.744 *** 0.813 *** 0.757 *** 0.814 ***

(0.004) (0.003) (0.005) (0.003)
θ1 −0.029 ***

(0.004)
θ2 −0.048 ***

(0.003)
Application year Control Control Control 2

Application city Control
Applicant type Control Control
Industrial sector Control Control
N 503,185 503,185 503,185 503,185
Adjusted R2 0.544 0.571 0.571 0.554
WSSE 0.164 0.156 0.155 0.163

Note: *** denotes parameter estimates statistically significant at the 0.01 level of significance, and values in
parentheses are standard errors. Note 1: µi0 is the mean value of the initial distribution of patent proceeds from
inventions filed by individuals in 1987 in agriculture, forestry, livestock, and fisheries. Note 2: Owing to the
large number of urban dummy variables, the econometric software (Stata17) was unable to estimate a model that
included both application year and urban dummy variables, so a quadratic polynomial about the application year
was used to control for its effect on the mean of the initial distribution of returns, i.e., µi = µi0 + α1 (application
year–1987) + α2 (application year–1987)2 + β′xi.

In Table 4, the regional innovation value models (I), (II), and (III) refer to
Equations (10), (11), and (14), respectively. Model (I) only introduces the tier 1 regional
innovation indicators; model (II) further controls for the application year, applicant type,
and industrial sector; model (III) allows for some variation in the decay rates of patent re-
turns. The last column shows the results of the original patent renewal model as described
in Equation (5). Following Amemiya [85] and Schankerman and Pakes [9], the weighted
sum of the squared error (WSSE) is calculated based on the sum of the squared difference
between the sample and the fitted renewal proportions weighted by the binomial sampling
variance of renewal proportions (i.e., Pit(1 − Pit)/Ni, where Ni is the number of patents on
cohort i). This gives a general view of the overall fitness of the models.

As shown in Table 4, the larger value for the adjusted R2 and smaller value for the
WSSE in model (III) indicate the good overall fit of the regional innovation value models
to the sample data. In addition, comparing the values of the adjusted R2 and the WSSE
in models (III) and (I), it can be inferred that the controls for the categorical variables of
sample patents do increase the overall explanatory power of the model.

The estimates for elasticity parameters b1, b2, and b3, which are the focus of this study,
are statistically significant and generally have the expected positive sign, thereby rejecting
the original hypothesis that the elasticity coefficients of the regional innovation indicators
are zero. This indicates that the regional innovation indicators do have a significant
influence on the value of patents in the associated regions. However, the estimated elasticity
of the innovation environment indicator, lnEnvi,L2, in model (I) is significantly negative,
while in models (II) and (III), the estimates are significantly positive. This result, along
with the increase in the adjusted R2 and the decrease in WSSE in models (II) and (III),
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implies that other categorical variables controlled by dummy variables might reduce the
endogeneity caused by some omitted variables.

The estimates of µi0 are generally smaller in the regional innovation value model
(10.195, 9.354, and 9.973 in models (I), (II), and (III), respectively) compared with the
estimate in the patent renewal model (10.330). This implies a potential overestimation of
the patent value and regional innovation value by the patent renewal model. Comparing
all four models, the estimates for σ are somewhat ambiguous, indicating that the variation
in the patents’ initial returns might differ using models with different setups. However,
the differences are not quite notable and do not significantly affect the calculation of the
regional innovation value. In model (III), where the decay rates of patent returns are
separately estimated, the results indicate that the decay rates decrease in actual years, or
equivalently the patent value depreciates faster in more recent years. This could be caused
by decreases in renewal fees in China in more recent years.

In general, the regional innovation value model fits the Chinese invention patent
samples better based on the empirical results. The statistical significance of the estimated
elasticity of the regional innovation input, innovation environment, and economic environ-
ment indicators validates the model’s effectiveness and confirms the first hypothesis (H1)
proposed in the previous section. Comparing the estimated µi0 indicates that the patent
renewal model might overestimate the patent value and regional innovation value.

4.1.3. Robustness Test

Despite the large number of observations in the patent sample, given that the nonlinear
model has more stringent assumptions for the sample data, coupled with the large number
of cohorts in the sample, it is necessary to conduct a robustness test on the regional
innovation value model. The robustness test is conducted by fitting the model with
subsamples of different application years, specifically those that were applied for 1987 to
1995, 1987 to 2005, and 1987 to 2015. Table 5 presents the regression results.

Table 5. Robustness test of the regional innovation value model.

Parameters Application Years
1987–1995

Application Years
1987–2005

Application Years
1987–2015 Full Sample

µ0 9.326 *** 8.929 *** 9.975 *** 9.973 ***
(0.117) (0.086) (0.089) (0.085)

b1 0.059 *** 0.039 *** 0.020 *** 0.017 ***
(0.005) (0.004) (0.004) (0.004)

b2 0.072 *** 0.066 *** 0.036 *** 0.028 ***
(0.012) (0.008) (0.007) (0.007)

b3 0.012 0.065 *** 0.027 *** 0.026 ***
(0.010) (0.007) (0.007) (0.006)

σ 0.387 *** 0.444 *** 0.526 *** 0.525 ***
(0.008) (0.007) (0.007) (0.007)

d 0.844 *** 0.831 *** 0.756 *** 0.757 ***
(0.007) (0.006) (0.006) (0.005)

θ1 −0.047 *** 0.035 *** −0.029 *** −0.029 ***
(0.004) (0.003) (0.004) (0.004)

θ2 −0.053 *** −0.072 *** −0.049 *** −0.048 ***
(0.010) (0.004) (0.003) (0.003)

Application Year Control Control Control Control
Applicant Type Control Control Control Control
Industrial Sector Control Control Control Control
N 83,480 250,729 472,345 503,185
Corrected R2 0.601 0.537 0.558 0.571
WSSE 0.140 0.148 0.155 0.155

Note: *** denotes parameter estimates that are statistically significant at the 0.01, 0.05 significance level, and values
in parentheses are standard errors.

Overall, the results demonstrate the robustness of the results of the regional innovation
value models. After adjusting for the application year, the overall fitness of the models does
not vary much, and almost all estimates remain statistically significant. The absolute value
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of the estimated parameter µi0 tends to first decrease and then increase with the expansion
of the time window, which is consistent with the trending of the estimated coefficients of
the dummy variables for the application years in all models. The estimated coefficients of
the application year dummies (1988–2019) in model (III) are 0.123, 0.087, −0.012, −0.013,
0.460, 0.645, 0.586, 0.374, 0.305, 0.304, 0.190, 0.215, 0.163, 0.223, 0.132, 0.122, 0.077, 0.062,
0.074, −0.004, −0.143, −0.275, −0.385, −0.404, −0.413, −0.447, −0.512, −0.478, −0.435,
−0.428, −0.424, and −0.537. These represent the differences in the mean patent value in
each application year relative to the mean patent value in 1987. One can infer that the
mean of patent values first increases and then decreases during the years of application.
Similar results are found for all models, including the original patent renewal model. The
estimates for σ and d, as well as θs, are mostly consistent with the results in model (III).
The only differences are the estimates of b3 in the first column and θ1 in the second column,
which can be neglected because the sign of b3 is as expected and the decay rates could be
potentially increasing in a certain time window.

4.2. Regional Innovation Values in China
4.2.1. Calculation of Regional Innovation Value

Calculating the regional innovation value consists of two steps: first, calculate the
values of sample patents using the estimates from the previous results and the Monte
Carlo simulation; second, aggregate the total values of sample patents according to their
application years and cities. Note that the city-level innovation value is the benchmark in
this study.

Using the estimates from the regional innovation value model (III), the values of the
sample patents can be calculated based on the process described in Section 2.1. The fitted
parameters needed for the Monte Carlo simulation are given as follows:

µ̂i = µ̂i0 + b̂1 ln Inpi,L2 + b̂2 ln Envi,L2 + b̂3 ln Ecoi,L2 + B̂Di, (18)

σ̂i = σ̂, (19)

d̂rt = d̂ exp(θ̂1D1
rt + θ̂2D2

rt). (20)

With the parameters (Equations (18) and (19)) defining the lognormal distribution of
the initial returns of patents in the ith cohort, a set of pseudo-random numbers representing
the simulated initial returns is generated. Then, following the dynamics of the return
(i.e., Rit = Ri0·d−t) with the estimates for the decay rate (Equation (20)) and the renewal
condition (described in Inequality (2)), the optimal renewal period (T̃j

∗) (the last period
that a pseudo-number satisfies the renewal condition) along with the discount values
throughout the renewal period (calculated based on Equation (7)) of the jth pseudo-number
are simulated. Lastly, the average discount value of the pseudo-numbers for each optimal
renewal period (T̃∗ = 1, 2, . . . , 20) are calculated as the value of a patent in the ith cohort
and expired at each period:

V̂t =
∑j Ṽj

(
T̃∗
)

ñT̃∗
, t = T̃∗, (21)

where Ṽj

(
T̃∗
)

stands for the discount values throughout the renewal period of the jth
pseudo-number and ñT̃∗ denotes the number of simulated pseudo-numbers with the
optimal renewal period of T̃∗. In addition, for the sample patents that are not expired,
their values are simulated in the same way but the expected number of these patents that
will be expired in future periods (ñu

T̃∗
) is calculated based on the simulated proportions

of renewals.
Once the values of the sample patents are calculated, the summation of the patent

value for all cohorts across the application year and city is used as the estimate of a city’s
innovation value in the corresponding year. Thus, it follows that:
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City Innovation Value = ∑
i

20

∑
t=1

(
ne

i,t + ñu
i,t
)
·V̂i,t, (22)

where ne
i,t is the number of expired patents at age t in cohort i in the addressed year and

city, ñu
i,t is the simulated number of unexpired patents, and V̂i,t the estimated value of the

patents at age t in cohort i (as in Equation (21)). In addition to the benchmark (city-level
innovation value), the innovation values at the province, area, and nationwide levels can
be calculated in the same manner.

4.2.2. Nationwide Innovation Value

Using the above method, the nationwide innovation value as well as the average
values of all sample patents are calculated for each sample year. Figure 2 presents the
nationwide innovation value and the average innovation value (i.e., the average of the total
patent value in each year) from 1987 to 2019.
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It is noteworthy in Figure 2 that both the total value and average innovation value
rise first and then decline in recent years. This finding is consistent with the estimated
coefficients of the dummies representing the application year in the results of model (III).
Although the number of invention patents issued kept increasing for most of the year
(see Table 2), this finding provides evidence that China’s overall innovation output is
large in quantity but low in quality, which indicates the unsustainable development of
nationwide innovation, particularly after 2008, when both the total and average values of
innovation start to decline. However, this finding could be misleading. First, the decline in
the total and average innovation values started around 2008, while both were increasing
prior to 2008. Thus, for a longer period, the innovation values (as well as the amount
of innovation output) continued to increase. Second, the agglomeration of innovation
resources might cause a concentration of innovation values in specific regions, which could
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result in increases in both the quality and quantity of innovation output in those regions.
Therefore, further investigation of regional innovation value is required.

4.2.3. City-Level Innovation Value

The innovation value of all sample cities from 1987 to 2019 is calculated based on the
previous discussion. Table 6 presents the total innovation value, average patent value, and
patent count in cities whose total innovation values ranked in the top and bottom 10 of all
sample cities in 1987, 2000, 2010, and 2019. Overall, the average total city-level innovation
value changes from 1.072 million yuan in 1987 to a peak of 37.503 million yuan in 2010,
followed by a decrease to 9.514 million yuan in 2019, exhibiting a trend of increasing first
and then decreasing. A similar trend can be observed in terms of the average values of all
patents nationwide in these years (the second cell in the last row in each year).

Regarding the rankings of city-level innovation values in the four sample years, it is
clear that the innovation value of the ones at the very top is considerably different from
that of the others at the top. Such differences are even greater compared with the bottom-
ranked cities, indicating a severe imbalance in the spatial distribution of regional innovation
values. In addition, only Beijing, Shanghai, and Chengdu are consistently listed at the top,
and Beijing always has the highest innovation value. Tianjin, Wuhan, Guangzhou, and
Shenzhen are also regulars at the top of the list. The consistency of these cities in terms of
the innovation values implies that innovations value are potentially concentrated in the
regions anchored by these cities. Meanwhile, there is no notable pattern for cities in the
bottom 10. However, the calculated city-level innovation value for all sample cities behaves
in the manner of a skewed long-tailed distribution. In other words, most cities have minor
innovation value while a small number of cities have the most innovation value.

The situation is quite different in terms of the average value of patents in each city,
especially in 2010 and 2019. The average patent value in the bottom 10 cities during those
two years is much higher than in 1987 and 2000, and the differences across all cities are
not very large after 2010. This implies that the overall value of the innovation output has
increased nationwide, especially in cities whose total innovation value is much smaller
than that of the top cities, and is distributed more evenly in recent years.

In general, it can be inferred that only a small number of cities achieve relatively
sustainable innovation development, as these cities’ total innovation values remain rel-
atively high and increase in most years. Although the average value of innovation in
each city keeps rising notably in most years, the total innovation values for the majority
of cities, especially the bottom ranked cities, remain at low levels, which indicates that
the majority of cities are unable to sustain the continuous improvement of the quality of
technological innovation.

4.2.4. Area-Level Innovation Value

The total innovation value of China’s four major areas (i.e., Eastern, Central, Western,
and Northeast China; Eastern China includes Beijing, Tianjin, Hebei, Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Guandong, and Hainan; Central China includes Shanxi, Anhui,
Jiangxi, Henan, Hubei, and Hunan; Western China includes Inner Mongolia, Guangxi,
Chongqin, Sichuang, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, and Xinjiang;
Northeast China includes Liaoning, Jilin, and Heilongjiang) in each year is calculated to
provide a preliminary analysis of the spatial distribution of innovation values (Figure 3).

In general, the innovation value is notably higher in Eastern China than in the other
areas. Central and Northeast China’s innovation values are relatively close before 2009 but
Central China’s innovation value increases afterward. The innovation value of Western
China remains the lowest over the sample period. The trends in innovation value in all
four areas are similar; all increase prior to 2008 and decline afterward.
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Table 6. Total innovation values, average patent values, and numbers of patents in the top and bottom 10 cities.

City
1987

City
2000

City
2010

City
2019 3

Total
Value 1

Average
Value 2

Patent
Count

Total
Value 1

Average
Value 2

Patent
Count

Total
Value 1

Average
Value 2

Patent
Count

Total
Value 1

Average
Value 2

Patent
Count

(Top 10)
Beijing 43.047 156.534 275 Beijing 880.376 475.109 1853 Beijing 4447.088 212.150 20,962 Beijing 339.010 31.239 10,852
Shanghai 23.029 195.159 118 Shenzhen 434.092 885.903 490 Shenzhen 3237.263 253.446 12,773 Shenzhen 136.491 45.695 2987
Tianjin 7.398 117.423 63 Shanghai 307.806 386.691 796 Shanghai 2259.849 203.553 11,102 Zhuhai 125.842 83.174 1513
Xi’an 5.089 99.792 51 Chengdu 54.503 283.869 192 Hangzhou 816.793 167.857 4866 Shanghai 118.432 34.338 3449
Wuhan 4.830 74.304 65 Nanjing 52.611 256.640 205 Suzhou 779.760 209.051 3730 Hangzhou 114.926 28.645 4012
Guangzhou 3.656 130.573 28 Guangzhou 52.460 200.231 262 Guangzhou 681.848 187.013 3646 Nanjing 99.734 29.763 3351
Changchun 3.654 87.000 42 Suzhou 45.023 372.088 121 Nanjing 585.924 141.801 4132 Wuhan 95.802 28.487 3363
Kunming 3.582 132.664 27 Wuhan 42.881 180.931 237 Wuxi 497.617 198.017 2513 Guangzhou 87.470 33.694 2596
Chengdu 3.341 128.498 26 Tianjin 42.058 200.275 210 Tianjin 488.531 174.725 2796 Suzhou 65.593 40.766 1609
Shenyang 3.258 66.496 49 Hangzhou 41.008 262.871 156 Chengdu 440.580 162.997 2703 Chengdu 61.501 24.328 2528
(Bottom 10)
Anyang 0.005 4.824 1 Ji’an 0.023 11.743 2 Liupanshui 0.650 108.322 6 Guangyuan 0.047 15.573 3
Qinhuangdao 0.005 4.823 1 Anqing 0.019 9.643 2 Bazhong 0.620 155.021 4 Songyuan 0.037 36.718 1
Zaozhuang 0.005 4.819 1 Jixi 0.015 7.697 2 Yichun 0.602 150.454 4 Lijiang 0.037 36.535 1
Zhoukou 0.005 4.818 1 Wuzhong 0.012 11.826 1 Wuhai 0.542 90.315 6 Qitaihe 0.037 36.522 1
Hebi 0.005 4.816 1 Jinchang 0.012 11.621 1 Tongchuan 0.502 251.113 2 Baoshan 0.036 35.914 1
Zhangzhou 0.003 3.393 1 Chongzuo 0.012 11.614 1 Jiayuguan 0.464 115.906 4 Guangan 0.028 14.220 2
Baishan 0.003 3.362 1 Chizhou 0.012 11.607 1 Fangchenggang 0.403 134.370 3 Wuwei 0.025 12.630 2
Linfen 0.003 3.349 1 Baiyin 0.012 11.599 1 Chongzuo 0.372 123.833 3 Longnan 0.016 15.965 1
Xinyang 0.003 3.340 1 Tongling 0.008 7.697 1 Qitaihe 0.170 42.481 4 Pingliang 0.012 12.451 1
Zunyi 0.003 3.307 1 Xuancheng 0.008 7.693 1 Hegang 0.008 8.405 1 Zhaotong 0.012 12.287 1
Average of all
Sample Cities 1.072 127.201 8 10.815 327.895 33 37.503 111.990 335 9.514 31.523 302

Note 1: The total innovation value is measured in million yuan (in real terms). Note 2: The average innovation value is measure in thousand yuan (in real terms). Note 3: Some invention
patents applied in 2017 to 2019 were still under examination up to the time of data collection, and these patents were not included in the sample, which may cause underestimation of the
innovation values.
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The gap in innovation value between Eastern China and the other three areas also
shows a trend of first widening and then narrowing. This gap is not initially notable from
1987 to 1998. It then gradually widens from 1998 to 2008 and reaches its peak in 2008,
after which it begins to narrow. This narrowing of the gap in more recent years is not
caused by increases in innovation in the other areas but by a decline in innovation value
in Eastern China. In general, the value of innovation in the eastern region is significantly
higher than that in the other three regions, while the differences in innovation value in
the other three areas are not significant. This might be caused by different endowments
of innovation inputs such as human capital and different industrial structures between
these four areas, since both factors can significantly affect the efficiency of the technological
innovation [86,87].

In general, the preliminary analysis of the innovation values at the city and area
levels shows some variations in the spatial distribution of regional innovation values. The
findings for city-level innovation suggest a potential agglomeration of innovation values
in certain regions. The findings for area-level innovation, meanwhile, provide evidence
for spatial differences and their temporal dynamics in regional innovation values. These
findings suggest differences in the sustainability of regional innovation and indicate a need
to further analyze the spatial distribution of regional innovation values in China.

4.3. Spatial Distribution of Regional Innovation Values in China
4.3.1. Overall View of the Spatial Distribution of Regional Innovation Values

To illustrate the overall spatial distribution of regional innovation values in China
and the temporal dynamics, this study first calculates the average of each city’s innovation
values every 5 years. Then, using the natural breaks classification method, the 5-year-
averages of city-level innovation values are sorted into five categories based on the ranges
of innovation values. Lastly, the spatial distribution of the 5-year averages of city-level
innovation values are illustrated using ArcGIS 10.8. Figure 4 presents the results.
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In Figure 4, the regions colored in blue, green, yellow, orange, and red represent cities
whose 5-year average innovation values fall within the first category (smallest average
innovation values) to the fifth category (largest average innovation values). The figure
shows that the innovation values are generally unevenly distributed, and the cities with
higher innovation values are mostly concentrated in the Beijing–Tianjin–Hebei area (mainly
Beijing and Tianjin), Yangtze River Delta (mainly Shanghai and some surrounding cities),
Pearl River Delta (mainly Shenzhen, Guangzhou, and some surrounding cities), and
Chengdu–Chongqin area. The degree to which the innovation values are concentrated
in these regions is considerably high in that there are only a few cities whose innovation
values fall into the first or second category. This indicates the uneven spatial distribution of
regional innovation values in China during the sample period.

By comparing each subgraphic in the figure, some temporal characteristics of the
distribution of regional innovation values can be inferred. Initially, the degree to which
regional innovation values are unevenly distributed is relatively small in the early years,
as more regions that fall into the second, third, and fourth categories (colored in orange,
yellow, and green in the top left subgraphic, respectively) are observed for the period
1987–1991. However, from 1997 and 2006, the spatial distribution of regional innovation
values becomes increasingly uneven in that the innovation values of most cities in the fifth
category fall, while only Beijing, Shanghai, and Shenzhen are in the first or second category.
In more recent years, the distribution tends to be slightly more even, as the innovation
values of some other cities shift into higher categories. In addition, the regions where
innovation values are concentrated shift from Northeast to Southeast China. In the earlier
years, cities with higher innovation values are found in Northeast China. However, their
innovation values gradually decline to the lower categories while the innovation values of
cities in the southwest become more notable in the later years.

Overall, the innovation values are unevenly distributed in China during the sample
period. Some concentrations of cities with higher innovation values can be observed, while
most other cities have relatively lower innovation values, showing that most cities cannot
sustain the continuous enhancements of the quality of innovation. The spatial distribution
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of the innovation values is not always uneven. In fact, there are multiple cities with higher
innovation values, and some of them are concentrated in the northeast in the earlier sample
period. The spatial distribution of innovation values becomes increasingly uneven as the
concentrated regions shift to the southwest in the middle of the sample period. However,
the values tend to be slightly more evenly distributed in more recent years, which provides
some evidence for the balanced development of regional innovation in these years.

4.3.2. Spatial Correlation of Regional Innovation Values

In addition to the analysis of the spatial distribution of innovation values, this study
analyzes the spatial correlation of regional innovation values based on the local Moran’s
index as well as the spatial agglomeration effects. The local Moran’s index for each city is
measured as follows:

Ii =
yi − y

1
n ∑ (yi − y)2

n

∑
j 6=i

wij(yi − y), (23)

where Ii is the local Moran’s index, n is the total number of cities, wij is the spatial weight
between city i and city j (calculated based on the inverse of the geometrical distance between
cities), yi is the innovation value of city i, and y is the average of all cities’ innovation values.

(1) Analysis of the spatial correlation of city-level innovation values
Based on the local Moran’s index for each sample city, the sample cities are classified

into four groups in terms of the spatial correlation of their innovation values, which also
indicates the spatial agglomeration effects of the innovation values, with high–high agglom-
eration areas (HH cluster), which are areas centered in a city with a high innovation value
whose neighboring cities have high innovation values as well; high–low agglomeration
areas (HL outlier), in which the center city has a high innovation value while its neighbor-
ing cities have low innovation values; low–low agglomeration areas (LL cluster), which
are areas in which the central and neighboring cities all have low innovation values; and
low–high agglomeration areas (LH outlier), in which the center city has a low innovation
value while the neighboring cities have high innovation values.

The local Moran’s index for each city’s innovation value was calculated using ArcGIS
10.8. Then, based on the results, LISA cluster maps of city-level innovation value in certain
sample years were created (Figure 5). In Figure 5, areas colored in pink, red, blue, and light
blue represent the HH cluster, HL outlier, LH outlier, and LL cluster, respectively.

As shown in the figure, the HH cluster areas tend to expand during the sample period,
and a large HH cluster in the eastern coastal areas centered on the Yangtze River Delta
has formed in more recent years. Some other areas, including Tianjin and a few other
cities in Guangdong Province in the southern coastal areas, also form an HH cluster after
2011. In the early years, the only HH cluster occurs in Tianjin. The distribution of HH
clusters supports the finding that most cities with high innovation values are concentrated
in Eastern China, specifically in the Yangtze River Delta and Pearl River Delta, as in the
previous discussion.

In contrast, the LL cluster areas have been mostly distributed in Western and North-
eastern China in more recent years. Earlier in the sample period, however, few LL clusters
can be observed. This further confirms the fact that innovation value in the majority of
regions, especially in Western China, is at a low level, which could continue to be the case,
since the cities in the vast areas of the LL clusters might negatively influence each other’s
innovation value.

HL outliers are not common in the earlier years but can be observed in Beijing, the
northeastern area, the Chengdu–Chongqin area, and some other western areas in more
recent years. Furthermore, the HL outliers are mostly provincial capitals that resources for
innovation often flow to from the surrounding cities. Thus, instead of spilling over tech-
nologies, knowledge, human capital, and other innovation factors into their neighboring
areas, these cities attract innovation factors from their surroundings, resulting in a high
level of innovation in these cities and a low level of innovation in their neighboring cities.
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The LH outliers are mostly concentrated around Beijing throughout the sample period,
while some others lie outside the HH clusters in the Yangtze River Delta in 2019 and the
Pearl River Delta after 2002. The cities in the LH outlier areas often have lower innovation
value, and their innovation resources tend to flow out into neighboring cities with higher
innovation values, possibly seeking higher rent in return. The longer this trend continues,
the fewer opportunities these cities will have, leading to a risk of hollowing out. Therefore,
action should be taken to increase the innovation ability of cities with low innovation values.
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In general, the findings based on the LISA cluster maps of regional innovation values
confirm the polarization of innovation values throughout the sample period, which sup-
ports the previous findings regarding the uneven spatial distribution of innovation values
in China. The polarization of regional innovation values might be attributable to the large
LH outlier areas in the early years and the large LL cluster areas in more recent years. The
expansion of HH cluster areas in recent years might help reduce the imbalanced overall
distribution of innovation values if the synergy of interregional economic development
in their surrounding regions can be improved [7]. However, the cumulative innovation
capability, including the scale effects in regions with high innovation values, may also
widen the gap of overall regional innovation values [7]. In addition, the existence of HL
and LH outliers might exacerbate the polarization of innovation values since the high
innovation value regions in both HL and LH outliers have countereffects on the level of
technological innovation capability in the neighboring regions with low innovation val-
ues [8], further lowering the innovation values and causing the unsustainable development
of technological innovation if no measures are taken.

(2) Analysis of the spatial correlation of province-level innovation values
To investigate the province-level spatial correlation of innovation values, Moran’s

index of province-level innovation values is calculated and the corresponding groups based
on the spatial correlation patterns are identified. Table 7 presents the resulting classification
of provinces into four groups during the sample period.

Table 7. Agglomeration of province-level innovation values.

Year HH Cluster
(Promotion Area)

LH Outlier
(Transition Area)

LL Cluster
(Low-Level Area)

HL Outlier
(Radiation Area)

1987 Beijing, Tianjin, Hebei,
Shanghai Jiangsu, Zhejiang Jilin, Hainan

Shanxi, Inner Mongolia, Heilongjiang,
Anhui, Fujian, Jiangxi, Guangxi,
Chongqing, Guizhou, Yunnan, Gansu,
Qinghai, Ningxia, Xinjiang

Liaoning, Shandong, Henan,
Hubei, Hunan, Guangdong,
Sichuan, Shaanxi

1992 Tianjin, Shanghai,
Jiangsu, Zhejiang

Hebei, Jilin,
Anhui, Hainan

Shanxi, Inner Mongolia, Heilongjiang,
Fujian, Jiangxi, Guangxi, Chongqing,
Guizhou, Yunnan, Shaanxi, Gansu,
Qinghai, Ningxia, Xinjiang

Beijing, Liaoning, Shandong,
Henan, Hubei, Hunan,
Guangdong, Sichuan

1997 Shanghai, Jiangsu Tianjin, Hebei,
Fujian, Hainan

Shanxi, Inner Mongolia, Jilin,
Heilongjiang, Anhui, Jiangxi, Henan,
Guangxi, Guangxi, Chongqing,
Guizhou, Yunnan, Shaanxi, Gansu,
Qinghai, Ningxia, Xinjiang

Beijing, Liaoning, Zhejiang,
Shandong, Hubei, Hunan,
Guangdong, Sichuan

2002 Shanghai, Jiangsu,
Zhejiang, Hunan

Tianjin, Hebei, Fujian,
Jiangxi, Guangxi, Hainan

Shanxi, Inner Mongolia, Liaoning, Jilin,
Heilongjiang, Anhui, Henan, Hubei,
Chongqing, Sichuan, Guizhou,
Yunnan, Shaanxi, Gansu, Qinghai,
Ningxia, Xinjiang

Beijing, Guangdong,
Shandong

2007 Shanghai, Jiangsu, Zhejiang
Tianjin, Hebei, Anhui,
Fujian, Jiangxi,
Hunan, Guangxi

Shanxi, Inner Mongolia, Liaoning, Jilin,
Heilongjiang, Henan, Hubei, Hainan,
Chongqing, Sichuan, Guizhou,
Yunnan, Shaanxi, Gansu, Qinghai,
Ningxia, Xinjiang

Beijing, Shandong,
Guangdong

2012 Shanghai, Jiangsu, Zhejiang,
Anhui, Shandong

Tianjin, Hebei, Fujian,
Jiangxi, Hunan,
Guangxi, Hainan

Shanxi, Inner Mongolia, Liaoning, Jilin,
Heilongjiang, Henan, Hubei,
Chongqing Guizhou, Yunnan, Shaanxi
Gansu, Qinghai, Ningxia, Xinjiang

Beijing, Guangdong, Sichuan

2017 Shanghai Jiangsu, Zhejiang,
Anhui, Shandong

Tianjin, Hebei, Fujian,
Jiangxi, Hunan,
Guangxi, Hainan

Shanxi, Inner Mongolia, Liaoning, Jilin,
Heilongjiang, Henan, Chongqing,
Guizhou, Yunnan, Shaanxi, Gansu,
Qinghai, Ningxia, Xinjiang

Beijing, Hubei,
Guangdong, Sichuan

2019 Shanghai, Jiangsu, Jiangsu,
Zhejiang, Anhui, Shandong

Tianjin, Fujian, Jiangxi,
Hunan, Guangxi, Hainan

Hebei, Shanxi, Inner Mongolia,
Liaoning, Jilin, Heilongjiang, Henan,
Chongqing, Guizhou, Yunnan, Shaanxi,
Gansu, Qinghai, Ningxia, Xinjiang

Beijing, Hubei,
Guangdong, Sichuan
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In general, the province-level innovation values in China exhibit an agglomeration
effect, although this is primarily the agglomeration of provinces with low innovation values
(LL outliers). In 2019, there are 5 provinces in the HH cluster and 15 in the LL cluster,
together accounting for 66.67% of the total sample provinces. Most provinces (especially
those in Western China) are in the LL cluster, which indicates that the value of provincial
innovation is mainly clustered among provinces with low innovation values. The HH
clusters occur mostly in provinces in Eastern China (e.g., Shanghai, Jiangsu, Zhejiang). The
provinces classified as HL and LH outliers are essentially consistent with the results of the
previous analysis of city-level innovation values. Changes in the clustering pattern groups
can also be observed in Table 7. Such changes occur mostly between neighboring groups
(i.e., neighboring columns in Table 7). For instance, Shandong Province changes from an
HL outlier in 2007 to the HH cluster in 2012, and Liaoning and Henan change from HL
outliers in 1997 to the LL cluster in 2002. Provinces such as Qinghai, Gansu, Xinjiang, and
Ningxia in Western China remain in the LL cluster throughout the sample period.

In summary, there is an agglomeration effect of province-level innovation values
in China. However, such agglomeration is mainly characterized by the clustering of
provinces with low innovation values, and only a small number of provinces exhibit the
agglomeration of high innovation values. On one hand, the provinces in the HH clusters
that are mutually promoting the sustainable improvement of technological innovation are
in the Yangtze River Delta, which is consistent with previous findings. On the other hand,
the large number of provinces in the LL clusters indicates that many regions in China are
unable to promote sustainable growth in their innovation values. In addition, the changes
in the groups of clustering patterns are not significant, and most provinces remain in the
same clustering groups throughout the sample period. Therefore, regarding the spatial
correlation analysis of provincial innovation values in China, it can be concluded that only a
few provinces achieve innovation sustainability, while the majority of provinces are unable
to develop technological innovation sustainably and remain at low innovation values.

(3) Further analysis of the spatial agglomeration of regional innovation values
Using the hotspot analysis tool in ArcGIS 10.8, the regions are categorized into extreme

hot spots, hot spots, sub-hot spots, sub-cold spots, cold spots, and extreme cold spots based
on the Getis–Ord Gi* calculation (Getis–Ord Gi* is calculated based on city-level innovation
values using ArcGIS 10.8). Figure 6 shows the results, in which areas colored red, orange,
and light orange are, respectively, extremely hot, hot, and sub-hot spots, while those in
blue, light blue, and light green are extremely cold, cold, and sub-cold spots.

The figure indicates that there are only a small number of hot spots of regional inno-
vation values in China, with a stepped distribution of hot spots according to extreme hot
spots, hot spots, and sub-hot spots. In 2019, there are only two hot spots, both located in
Eastern China. This is closely related to China’s industrial base. For mature industries,
technological evolution is close to the saturation line of the technological paradigm, with
relatively fewer technological opportunities and fewer innovation achievements. Mean-
while, China’s integration into the international division of labor in its previous round of
economic development was based on the demographic dividend and comparative cost ad-
vantages. This brought about rapid growth in export trade while determining that China’s
pre-labor-intensive industries were better developed, placing its industrial structure on the
lower end and affecting its innovation efficiency.

In terms of temporal evolution, the hotspot agglomerations show a trend of increasing
in number and expanding in scope, with the hotspot agglomerations shifting from North-
east to Northern, Eastern, and Southern China. This is because the northeast region previ-
ously had a better industrial base but was mostly dominated by high-energy-consuming,
high-polluting industries, which had less room for technological innovation as the produc-
tion methods matured. Eastern and Southern China, meanwhile, have used their location,
economic base, and distribution of educational resources to attract innovative talent and
enterprises to cluster in the region, while optimizing their industrial structure and releasing
innovation space, thereby expanding the scope of hotspot clusters.
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In accordance with the analyses based on the LISA cluster map of city-level innova-
tion values and the spatial correlation of province-level innovation values in the previous
section, the hot-spot analysis further asserts that only a small number of regions (mainly
eastern coastal regions) in China in the sample years achieve relatively high innovation
values and exhibit the clustering of high innovation values, and most other regions’ innova-
tion values are low and exhibit the agglomeration of low innovation values. Therefore, the
second hypothesis (H2) is confirmed. Regions with geographic concentrations of innovative
activity often benefit from economies of scale related to the innovative inputs, market size,
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and knowledge spillover, which are conducive to long-term endogenous growth in such
regions [88]. Therefore, it is expected that regions of agglomeration of high innovation
values can promote sustainable technological innovation. On the contrary, regions with low
innovation value clusters may struggle in improving their innovation values, meaning they
cannot sustain their technological advancement due to the lack of adequate innovation in-
puts, sizeable markets, and accumulation of knowledge. Although the Chinese government
has implemented a series of policies promoting regional technological innovation, such as
establishing national high-tech industrial parks and issuing innovation city pilot policies,
such policies may have relatively minor effects on regional innovation efficiency [5,6], may
influence limited geographical regions [4], or may exert more significant impacts on rela-
tively developed cities such as the capital city of a province [6]. Therefore, regions of high
innovation value agglomeration, which are endowed with more resources of innovation
inputs and have better innovation and economic environments, may take advantage of
such policies and further sustain the technological innovation, while the influence of such
policies has not yet emerged in regions of low innovation value clusters.

5. Conclusions and Policy Recommendations

Using an improved regional innovation value model, this study estimated the regional
innovation values in China using invention patents. Then, the study explored the spatial
distribution of regional innovation values during the sample period. The findings are
summarized below.

First, the proposed regional innovation value model provides an effective way to esti-
mate parameters related to the distribution of invention patent values while incorporating
the effects of regional innovation factors. Thus, the model can be used as an effective way
to estimate regional innovation values, providing insights for regional innovation and
sustainability. Second, nationwide, the innovation value and average value of invention
patents in China show a temporal trend of first increasing and then decreasing. In addition,
only a small number of cities achieve sustainability in the development of technological
innovation, since the innovation levels of a few cities with the highest innovation val-
ues are much greater than the other cities. Moreover, Eastern China has a much higher
innovation value than Central, Western, and Northeastern China, and such differences
expanded during the earlier years and started to narrow after 2008. Third, the evidence
shows that the high innovation values have mostly clustered in eastern coastal regions,
while other regions have mainly experienced an agglomeration of low innovation values,
which indicates that only a few regions have achieved sustainable technological innovation
in terms of their innovation value. In addition, some regions have experienced a hollowing
out of innovation resources since their neighboring regions have much higher innovation
values, which has resulted in unbalanced and unsustainable development of technological
innovation across the regions. Fourth, a few regions in Eastern China mutually promote
sustainable innovation growth, as cities in these regions have highly concentrated inno-
vation values. However, similar to the above findings, most other regions do not have
concentrated innovation values or even have very low levels of concentrated innovation
values, as in Western China.

Some policy implications can be drawn based on the findings. First, given China’s lack
of high-quality innovation and its low level of innovation value clustering, China needs to
continue to promote its innovation-driven development strategy and focus on cultivating
high-value innovation to sustain the continuous development of technological innovation.
Second, to address the regional innovation value gap caused by resource endowments,
innovation environmental factors, and other economic factors, there should be an emphasis
on interregional industrial transfer; improving infrastructure access in underdeveloped
regions; strengthening the attractiveness of the central, western, and northeastern regions
for talent; and improving the innovation capacity of underdeveloped regions. Lastly, it
is necessary to overcome regional monopolies, give full play to spatial spillover effects,
and strengthen the interregional exchange of innovation information in order to achieve a
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balanced and sustainable development path for regional innovation, followed by balanced
regional economic growth in the long run.

6. Limitations and Future Researches

There are a few aspects of this paper that can be extended to future studies. First, due
to data limitations, other types of innovation outputs such as new products and services, the
improvement of production processes, and other inventions and scientific discoveries that
are not patented were not addressed in this paper. Future researches may investigate and
evaluate different types of innovation in order to provide estimations that can better reflect
the value of regional innovation. Second, examining the causality between innovation
inputs (along with the factors of innovation and the economic environment) and innovation
output values can help the innovators and policy makers to identify the interrelationships
between resources and innovation outcomes, allowing them to efficiently allocate resources
and provide sufficient incentives for innovative activities. Future research studies can focus
on analyzing the causality. Third, the Chinese government has implemented a series of
policies, including the establishment of high-tech industrial parks and national innovative
cities, to stimulate innovation. Although scholars have investigated their effects on the
innovation efficiency and capacity in regions across China, few studies have investigated
such policies’ potential effects on the value of regional innovation, which would be of
interest for future research studies.
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