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Abstract: In this work, we present the catalytic application of the naturally occurring zeolite, clinop-
tilolite, in the oxidation of α-pinene, a natural terpene compound. Clinoptilolites with different
average particle sizes, designated as (in µm) clin_1 (20), clin_2 (50), clin_3 (200), and clin_4 (500–1000),
were used as the green catalysts in the solvent-free oxidation of α-pinene with oxygen. Prior to their
application in catalytic tests, the catalysts were characterized by the following methods: nitrogen
sorption at 77 K, EDXRF, XRD, SEM, UV-Vis, and FTIR. The effects of the temperature, amount of the
catalyst, and reaction time on the product’s selectivity and α-pinene conversion were determined. At
the optimal conditions (a temperature of 100 ◦C, catalyst content (clin_4) in the reaction mixture of
0.05 wt%, and 210 min reaction time), the following compounds were obtained as the main products:
α-pinene oxide (selectivity 29 mol%), verbenol (selectivity 17 mol%), and verbenone (selectivity
13 mol%). The conversion of α-pinene under these conditions amounted to 35 mol%. Additionally,
the kinetic modeling of α-pinene oxidation over the most active catalyst (clin_4) was performed. The
proposed method of oxidation is environmentally safe because it does not require the separation of
products from the solvent. In addition, this method allows for managing the biomass in the form of
turpentine, which is the main source of α-pinene. The catalytic application of clinoptilolite in the
oxidation of α-pinene has not yet been reported in the literature.

Keywords: clinoptilolite; zeolite catalysts; α-pinene; oxidation

1. Introduction

Minerals that belong to the group of porous materials of natural origin are currently
of interest to many research groups studying organic reactions in the presence of heteroge-
neous catalysts. Examples of such natural porous materials are vermiculite, sepiolite, and
mordenite. An additional advantage of the catalytic applications of these materials is their
easy availability and relatively low price. These materials also include clinoptilolite, which
is a porous zeolite material of natural origin. Due to its unique catalytic, cation exchange,
and adsorption properties, clinoptilolite is widely used in the construction, energy, paper,
and cosmetics industries [1], as well as in agriculture (as an additive to animal feed) [2].
The medicinal properties of clinoptilolite are also well known. This porous material is
used as an anti-diarrheal drug [3–5], included in preparations used to treat wounds on the
skin [3,6,7], used in kidney dialysis [3], and it is also applied as a carrier for drugs [8–11].
The anticancer [5,12], antioxidant, immunostimulating [13], antiviral [14], and detoxifica-
tion properties of clinoptilolite are also of great interest [15]. The list of uses of clinoptilolite
presented above shows that it has many practical applications, but one more important
application of this material is that clinoptilolite, due to its specific zeolite structure, can be
one of the most valuable natural catalysts in organic syntheses.
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Clinoptilolite has found applications as the catalyst in the processes of oxidation and
isomerization of monoterpenes. These processes can provide valuable compounds for
medicine, as well as for the perfume, food, and cosmetic industries. An example of such
a process is the isomerization of α-pinene on H2SO4-modified clinoptilolite. Performing
the isomerization at 70 ◦C and for 4 min allowed for the complete conversion of α-pinene.
The main products identified in this process, camphene and limonene, were formed with
the selectivity of 50 and 30 mol%, respectively [16]. The first main product, camphene, is
widely used in organic syntheses, in the cosmetic industry and in medicine. The medical
applications of camphene are for the treatment of bacterial and fungal infections [17],
treatment of skin diseases such as eczema and psoriasis [18], and lowering the level
of cholesterol and triglycerides in the blood (reducing the incidence of cardiovascular
diseases) [19,20]. The second main product, limonene, finds applications in agriculture, in
the polymer industry, in organic syntheses and in medicine. It was confirmed that limonene
exhibits antibacterial and antimicrobial activity [21] and, for example, can be used in the
treatment of respiratory infections [22,23]. Moreover, limonene is applied in the treatment
of mood disorders [24], diabetes, and cancer [25].

Clinoptilolite was also used as the catalyst in the isomerization of geraniol. It was
shown that the process was most favorably performed at 140 ◦C, with the catalyst content of
12.5 wt% and for 3 h. This made it possible to obtain 6,11-dimethyl-2,6,10-dodecatrien-1-ol
and thumbergol with the selectivity of 14 and 47 mol%, respectively, while, at the same
time, a very high conversion of geraniol was achieved, amounting to 98 mol%. Due to its
neuroprotective effects and anticancer properties, thumbergol is a valuable compound for
medicine [26].

Another example of an organic process in which clinoptilolite was applied as the
catalyst is S-carvone isomerization to carvacrol. It was shown that this process was most
favorably performed at 210 ◦C, with the catalyst content of 15 wt% and for 3 h. Under
these conditions, the yield of carvacrol amounted to 90 mol%. The therapeutic properties
of carvacrol, such as, its analgesic, antioxidant, antibacterial, antiparasitic, and antifungal
properties, make it suitable for use in medicine [27].

Other applications of clinoptilolite as the heterogeneous catalyst are the polypropylene
cracking process [28], degradation of polystyrene [29], and etherification of glycerol [30].
Moreover, Gurdal et al. described the use of cobalt and manganese supported on ion-
exchanged clinoptilolite catalysts in the reaction of the complete oxidation of n-hexane [31],
and Khalilzadeh et al. described the use of clinoptilolite as the catalyst for carbohydrate
modification [32].

The main natural source of α-pinene is turpentine, which is obtained by the steam
distillation of the resin of coniferous trees, mainly pine [33], but also cedar and larch.
In addition to α-pinene (content about 75–85%), turpentine contains the following com-
pounds: limonene (5–15%), β-pinene (0–3%), and also camphene, carene, terpinolene, and
myrcene [33–36]. The composition of turpentine depends on the type of pine trees and
the geographic area where the pine grows [35,36]. The source of α-pinene is also sulfate
turpentine, which is obtained as a waste in the Kraft process during the processing of
cellulose into paper [33,36,37]. α-Pinene is extracted from the waste turpentine by vacuum
rectification (content of α-pinene amounts to about 70%) [34,35].

α-Pinene, as one of the most important terpene compounds, is used as the raw material
for the syntheses of valuable chemical compounds, e.g., in oxidation and isomerization
processes. These compounds are readily used in the cosmetic and food industries, as well
as in medicine as raw materials for obtaining perfumes, flavors, pharmaceuticals, and
vitamins [38–40]. α-Pinene derivatives include such compounds as α-pinene oxide, camp-
holenic aldehyde, L-carveol, verbenol, verbenone, trans-pinocarveol, myrtenal, myrtenol,
carvone, and 1,2-pinanediol [41,42]. α-Pinene oxide is used in organic syntheses as the raw
material for obtaining valuable compounds such as campholenic aldehyde, isopinocam-
phone, p-cymene, trans-sobrerol, and trans-carveol [43]. Campholenic aldehyde is a valu-
able compound for the cosmetic industry. This compound is used to obtain fragrances, for
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example, santalol. Campholenic aldehyde has found applications in the detergent industry
as a replacement for the nitro musks used in laundry detergents [44,45]. Verbenone is one
of the main components of the oil extracted from rosemary. Due to the antibacterial and an-
tifungal properties of rosemary oil, it is an alternative to some antibiotics. This oil is readily
used in the food industry as a food preservative. The essential oil obtained from rosemary
is effectively used in the agricultural industry as a fungicide [46,47], and its main compo-
nent, verbenone, is used as the anti-aggregation pheromone for bark beetles [48,49]. This
monoterpene is used to produce taxol, a drug with anticancer properties [50]. Verbenone is
readily used to synthesize (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol,
which shows therapeutic activity in the treatment of Parkinson’s disease [51]. Verbenol
is a component of citrus fruits, for example, Citrus limon (L.). The main components of
the oil extracted from Citrus limon (L.) are limonene (55.40%) and neral (10.39%), and
verbenol is found in this lemon in the amount of 6.43% [52]. Verbenol, like verbenone, has
found widespread use in the food and agricultural industries, as well as in the syntheses of
valuable chemical compounds used as flavorings, insecticides, and drugs in medicine [39].

Various catalysts were used for the oxidation of α-pinene, including titanium-silicate
catalysts such as Ti-MCM-41 [53,54], TS-1 [42], and Ti-MMM-2 [55], and transition metal
salts such as CuI, CuCl, CuCl2, PdCl2, and PdBr2 [56]. Carbonaceous materials obtained
from pine cones were also described as catalysts for the oxidation of α-pinene [41]. The
oxidation process of α-pinene was performed using various solvents (acetonitrile, acetone,
and methylene chloride). As the oxidants in this process, H2O2, t-butyl hydroperoxide
(TBHP), and N-hydroxyphthalamide were used [39]. So far, there are no reports in the
literature on the use of clinoptilolite in the oxidation of α-pinene.

This paper describes the application of clinoptilolite as the catalyst in the solvent-free
oxidation of α-pinene with oxygen. The purpose of the application of clinoptilolite in
this reaction is to determine whether it will be a better catalyst for this oxidation reaction
than, for example, the synthetic titanium-silicates (zeolite and zeolite-like materials), as
well as carbon materials obtained from waste biomass (pine cones), which we studied
earlier in our works. The catalysts mentioned above are obtained by complicated, multi-
stage methods (TS-1 by the hydrothermal crystallization, and carbon materials by the
carbonization method). In addition, TS-1 requires very expensive reagents for synthesis,
which are neither waste nor renewable. The advantage of carbon catalysts obtained from
pine cones is that they are made from waste biomass. However, these syntheses of catalysts
are often burdensome for the environment and cause emissions of harmful compounds
into the atmosphere (e.g., amines during the calcination of the TS-1 catalyst). It should be
emphasized that, by using clinoptilolite of natural origin as the catalyst, we eliminate the
process costs associated with the synthesis of this catalyst. It should also be emphasized
that, due to the fact that clinoptilolite is a zeolite of natural origin, its use perfectly fits
into the modern trends in organic syntheses related to green chemistry and sustainable
technologies for the production of organic compounds. Another advantage of clinoptilolite
is that, as a zeolite, it is characterized by a specific structure whose channels, as in the case
of other zeolites, both natural and synthetic, ensure that the reaction occurs in a specific
environment, facilitating the formation of only appropriate products—the shape-selective
action of zeolites. In this case, it is important to compare the pore size of the zeolites used
as catalysts, because this parameter may determine what products we obtain in the process.

During the tests with clinoptilolite, the most favorable conditions for conducting this
process were evaluated, and these include temperature, catalyst content, particle size, and
reaction time. The studied clinoptilolites were characterized using the following methods:
nitrogen sorption at 77 K, EDXRF, XRD, SEM, UV-Vis, and FTIR. The aim of this study is
to perform a physical and chemical characterization of clinoptilolite and to determine the
main factors affecting the catalytic activity of this natural zeolite.
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2. Materials and Methods
2.1. Clinoptilolite Materials Used in Catalytic Tests

The clinoptilolite materials were obtained from Rota Mining Corporation (Turkey). The
clinoptilolite materials were marked as follows: clin_1 (20 µm average particle size), clin_2
(50 µm average particle size), clin_3 (200 µm average particle size), and clin_4 (500–1000 µm
average particle size). Figure 1 presents photographic images of the clinoptilolite materials
used in the studies.
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2.2. Characteristics of Clinoptilolite Materials with Instrumental Methods

The porosities and specific surface areas of the clinoptilolites were calculated based on
nitrogen adsorption–desorption isotherms at the temperature of 77 K in the ASAP Sorption
Surface Area and Pore Size Analyzer (Micrometrics, Novcross, GA, USA). The specific
surface area was estimated using BET equations. The total pore volume was calculated on
the basis of N2 volume adsorbed at p/p0 value close to 1. Pore size analysis was performed
utilizing the BJH method. The elemental compositions of the clinoptilolites were evaluated
by means of the EDXRF (energy dispersive X-ray fluorescence) Epsilon 3 PANalytical
spectrometer (Malvern, UK). The crystal structure of the clinoptilolites was examined by
the powder X-ray diffraction using Empyrean diffractometer (Malvern PANalytical Ltd.
Company, Almelo, The Netherlands) in the range of 2θ from 5 to 80◦ (Cu Kα = 0.15418 nm).
The morphology of the clinoptilolite samples surface was explored by scanning electron
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microscopy (SEM) at 10 kV and 15,000 magnification with the Hitachi SU8020 Ultra-High
Resolution Field Emission Scanning Electron Microscope. UV-Vis spectra in the 190–900 nm
wavelength range were obtained using a Jasco 650 spectrometer. Infrared spectra, for the
400–4000 cm−1 wavenumber range, were measured using a Thermo Electron Nicolet
380 spectrometer.

2.3. Oxidation of α-Pinene over Clinoptilolite Materials

The following conditions were used for the oxidation of α-pinene: 25 cm3 round-
bottom glass flask, reflux condenser, magnetic stirrer, oxygen flow regulator, and glass
bubbler supply. Amounts of 10–20 g of α-pinene (98%, Sigma–Aldrich, Poznań, Poland)
and 0.05–1.5 wt% clinoptilolite were introduced into the flask. Then, oxygen (99.99%,
Messer, Szczecin, Poland) was supplied at a rate of 40 mL/min. The contents of the flask
were stirred at 500 rpm. After the process was completed, 1 mL of the post-reaction mixture
was collected in an Eppendorf tube. The plastic tube was then placed in a centrifuge to
separate the post-reaction solution from the solid clinoptilolite catalyst.

2.4. Identification of the Oxygenated Derivatives of α-Pinene by the Gas Chromatography Method

The products of α-pinene oxidation were analyzed quantitatively by the gas chro-
matography (GC) method using a FOCUS apparatus with an FID detector and a ZB-1701
column. The conditions for conducting these analyses were described in detail in our earlier
work [41]. The composition of the post-reaction solution was determined using the internal
normalization method.

Qualitative analyses of oxygen derivatives of α-pinene were performed by gas chro-
matography coupled to mass spectrometry (GC-MS) using ThermoQuest apparatus with
Voyager detector and with a DB-5 column. The conditions for conducting these analyses
were previously described [41].

Prior to the quantitative and qualitative analyses, the samples were diluted with
acetone in a 1:5 weight ratio.

3. Results and Discussion
3.1. Characteristics of the Clinoptilolite Materials

According to the IUPAC classification, all the isotherms in Figure 2 exhibited Type
II isotherms with H3 type hysteresis according to the IUPAC classification [57]. Type
II indicates physisorption over nonporous or macroporous materials. A H3 hysteresis
loop is typical for aggregated plate-like particles but also macropores not entirely filled
with condensate.

The textural properties of clinoptilolites are presented in Table 1.

Table 1. Textural properties of the samples.

SBET
[m2/g]

Vtot
[cm3/g]

Vmeso
[cm3/g]

clin_1 32 0.149 0.093
clin_2 34 0.150 0.098
clin_3 32 0.153 0.091
clin_4 31 0.148 0.102

According to Table 1, the contribution of macropores is about 30–40% of the total
pore volume, but it should be considered that we were able to measure pores smaller
than 100 nm. It can therefore be assumed that these are macroporous materials containing
some amount of mesopores. The pore size distribution, calculated by the BJH method, is
presented in Figure 3. The highest contribution of macropores smaller than 100 nm was
observed for clin_3, whereas, for clin_4, the highest mesopore volume was observed. The
mesopore volume, in terms of the contribution to the total pore volume, increased in the
order: clin_1 < clin_2 < clin_3 < clin_4.



Sustainability 2023, 15, 10381 6 of 19

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 21 
 

 

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
N

2@
ST

P 
[c

m
3 /g

]

p/p0

 clin_1
 clin_2
 clin_3
 clin_4

 
Figure 2. N2 adsorption–desorption isotherms of clinoptilolite samples. 

The textural properties of clinoptilolites are presented in Table 1.  

Table 1. Textural properties of the samples. 

 SBET 
[m2/g] 

Vtot 
[cm3/g] 

Vmeso 
[cm3/g] 

clin_1 32 0.149 0.093 
clin_2 34 0.150 0.098 
clin_3 32 0.153 0.091 
clin_4 31 0.148 0.102 

According to Table 1, the contribution of macropores is about 30–40% of the total pore 
volume, but it should be considered that we were able to measure pores smaller than 100 
nm. It can therefore be assumed that these are macroporous materials containing some 
amount of mesopores. The pore size distribution, calculated by the BJH method, is pre-
sented in Figure 3. The highest contribution of macropores smaller than 100 nm was ob-
served for clin_3, whereas, for clin_4, the highest mesopore volume was observed. The 
mesopore volume, in terms of the contribution to the total pore volume, increased in the 
order: clin_1 < clin_2 < clin_3 < clin_4. 

Figure 2. N2 adsorption–desorption isotherms of clinoptilolite samples.
Sustainability 2023, 15, x FOR PEER REVIEW 7 of 21 
 

 

10 20 30 40 50 60 70 80 90 100
0.000

0.005

0.010

0.015

0.020

0.025

0.030

In
cr

em
en

ta
l P

or
e 

Vo
lu

m
e 

[c
m

³/g
]

Pore Size [nm]

clin_1

 
10 20 30 40 50 60 70 80 90 100

0.000

0.005

0.010

0.015

0.020

0.025

0.030

In
cr

em
en

ta
l P

or
e 

Vo
lu

m
e 

[c
m

³/g
]

Pore Size [nm]

clin_2

 

10 20 30 40 50 60 70 80 90 100
0.000

0.005

0.010

0.015

0.020

0.025

0.030

In
cr

em
en

ta
l P

or
e 

Vo
lu

m
e 

[c
m

³/g
]

Pore Size [nm]

clin_3

 
10 20 30 40 50 60 70 80 90 100

0.000

0.005

0.010

0.015

0.020

0.025

0.030

In
cr

em
en

ta
l P

or
e 

Vo
lu

m
e 

[c
m

³/g
]

Pore Size [nm]

clin_4

 

Figure 3. Pore size distributions calculated by the BJH method for clinoptilolite samples. 

The results in Figures 2 and 3 and Table 1 were consistent and proved that all the 
clinoptilolites were meso-macroporous materials.  

The main components of clinoptilolite were silica and aluminum. Table 2 summarizes 
the results of the elemental analyses. These results are similar to those reported in the 
literature [58,59]. 

Table 2. Elemental compositions (in wt%) in clinoptilolite samples as measured via EDXRF. 

 Al Si Ca Fe K 
clin_1 4.2 25.3 3.2 1.9 3.4 
clin_2 4.6 28.1 3.3 1.8 3.4 
clin_3 4.7 28.3 3.1 1.8 3.6 
clin_4 3.7 22.0 2.6 1.6 2.9 

The XRD diffractograms of the samples are shown in Figure 4. The characteristic 
peaks of a clinoptilolite (2θ = 9.799, 11.18, 22.27, 22.48, 22.67°) were observed (according 
to JCPDS No. 70-1859). All the X-ray diffraction patterns were very similar, and no signif-
icant structural differences were observed.  

Figure 3. Pore size distributions calculated by the BJH method for clinoptilolite samples.



Sustainability 2023, 15, 10381 7 of 19

The results in Figures 2 and 3 and Table 1 were consistent and proved that all the
clinoptilolites were meso-macroporous materials.

The main components of clinoptilolite were silica and aluminum. Table 2 summarizes
the results of the elemental analyses. These results are similar to those reported in the
literature [58,59].

Table 2. Elemental compositions (in wt%) in clinoptilolite samples as measured via EDXRF.

Al Si Ca Fe K

clin_1 4.2 25.3 3.2 1.9 3.4
clin_2 4.6 28.1 3.3 1.8 3.4
clin_3 4.7 28.3 3.1 1.8 3.6
clin_4 3.7 22.0 2.6 1.6 2.9

The XRD diffractograms of the samples are shown in Figure 4. The characteristic
peaks of a clinoptilolite (2θ = 9.799, 11.18, 22.27, 22.48, 22.67◦) were observed (according to
JCPDS No. 70-1859). All the X-ray diffraction patterns were very similar, and no significant
structural differences were observed.
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Figure 5 shows the SEM images of the clinoptilolite samples. Irregular shapes were ob-
served on the surface, with some narrow lamellar shapes. Many narrow lamellar particles,
nearly needle-shaped, were observed for clin_4.

All clinoptilolite materials show three bands at 260, 370, and 495 nm in their UV/Vis
spectra (Figure 6). The band at 260 nm can be attributed to the tetrahedral framework of
aluminum bonded to oxygen. The band at 370 nm is attributed to the presence of octahedral
extra-framework aluminum [60]. The band at 260 nm can also be attributed to the oxygen
charge transfer to Fe3+ cations in the octahedral coordination and the band at 370 nm to the
presence of extra-framework FeOx oligomers. The weak broad band at around 500 nm is
connected with the presence of Fe2O3 on the zeolite surface or of oxygen-to-metal charge
transfer transitions that involve octahedral Fe3+ species [61].
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The FTIR bands in the range of 3700–1600 cm−1, seen in Figure 6, can be attributed
to adsorbed water molecules [62,63]. The 1628, 3410, and 3622 cm−1 bands visible in the
figure can be attributed to the OH-stretching vibration mode of adsorbed water in zeolite,
intermolecular hydrogen bonding, and Si-OH-Al bridges [63]. Specifically, the 3622 cm−1

band is attributed to the hydroxyl group of water bound to Na and Ca in the zeolite
channels and cages [62,64]. The 3414 cm−1 band is attributed to the hydrogen bonding of
the water molecule to surface oxygen, and the 1637 cm−1 band is attributed to the bending
vibrations of the water molecules [62]. The 3622 cm−1 band is assigned to the bridging OH
groups’ vibrations in ≡Al-OH-Si≡ and it corresponds to the location of hydrogen atoms in
the vicinity of oxygen atoms in the aluminosilicate framework [61].

The most intense band in the studied range of wavenumbers is the band observed
at 1016 cm−1 (Figure 7). This band is attributed to the asymmetric stretching vibrations
of T-O bonds in tetrahedral TO4, where T = Si and Al. This is the main zeolitic vibration
related to Si–O–Si, which can be covered by the stretching vibration of Al–O–Si and Al–O.
The position of this band is governed by the Al/Si ratio and is considered to be indicative
of the number of Al atoms per formula unit. The highest shift was observed for clin_4,
and the band was detected at 1040 cm−1. The 796 and 465 cm−1 bands observed in the
figure are attributed to stretching vibrations of O-T-O groups and bending vibrations of
T-O bonds [64]. The band at 441 cm−1 is characteristic of the pore opening. The 727, 671,
and 600 cm−1 bands, seen in Figure 6, are assigned to extra-framework cations in the
clinoptilolite matrix [63].
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3.2. Studies on the Catalytic Activity of the Clinoptilolite Materials in the Oxidation of α-Pinene
with Oxygen

The first stage of the studies consisted of checking the activity of four clinoptilolite
materials in the oxidation of α-pinene. The process conditions were as follows: temperature
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of 100 ◦C, catalyst content 0.1 wt% in relation to the mass of α-pinene introduced into the
reactor (the mass of α-pinene amounted to 10 g), and 3 h reaction time. Based on these
catalytic tests, it was concluded that all clinoptilolite materials were active in the oxidation
of α-pinene (Figure 8), and can be used as catalysts in this process.
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The oxygenated derivatives of α-pinene that were formed in this process are shown in
Figure 9. The main products of this process were α-pinene oxide, verbenol, and verbenone,
and these were obtained with the highest selectivities.

From the four clinoptilolites that were tested, the most active was the clin_4 zeolite
with an average particle size of 500–1000 µm, for which the highest conversion of α-pinene
(36 mol%) and the highest selectivity of α-pinene oxide (24 mol%) were observed. More-
over, for clin_4, the selectivity of verbenol was 17 mol%, and the selectivity of verbenone
amounted to 12 mol%. For the remaining three clinoptilolites (clin_1, clin_2, and clin_3),
the α-pinene conversion was slightly lower and amounted to 26–32 mol%. For these three
clinoptilolites, the selectivity of transformation to epoxide was lower than for clinoptilolite
clin_4, and was maintained at the level of 15–20 mol%, whereas the selectivity of trans-
formation to verbenol (17–19 mol%) and the selectivities of transformation to verbenone
(about 14 mol%) were very similar to the sample of clin_4. The increase in the activity of
the clin_4 zeolite can be related to the intensity of the bands in the FTIR spectra (Figure 7).
The ≡Si-OH and ≡Al-OH groups constitute the active centers of clinoptilolite. Ca, K, and
Mg cations can occupy the negatively charged active sites of the zeolite, while reducing
its activity [61]. It can be deduced from Figure 7 that clin_4 has the most free active sites,
which are characterized by the least intense band at 3622 cm−1, and are attributed to the
hydroxyl group of water bound to Ca, K, and Mg atoms. This allows clin_4 to increase its
activity in the oxidation of α-pinene. The lower activity of the other clinoptilolites may be
related to the effect on the -OH groups present in ≡Al-OH-Si≡ by calcium, potassium, and
magnesium cations. The FTIR data are consistent with the XRF data, as the clin_4 sample
contains the least Ca, K, and Mg cations compared to the other clinoptilolites (Table 2).
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The activity of clinoptilolites in the α-pinene oxidation reaction may also be related to
the intensity of the 796 cm−1 band (Figure 7). Clin_4 has the most intense band at 796 cm−1,
which is associated with the stretching vibrations of O-Si-O and O-Al-O, and both silicon
and aluminum constitute the clinoptilolite’s active center, allowing clin_4 to increase its
activity in the process. For clin_4, a 1016 cm−1 band shift toward a higher wave number
(1043 cm−1) was observed. The shift was not apparent for the other materials. This shift
is related to the Si/Al ratio in the clinoptilolite backbone. The results obtained by FTIR
analysis are consistent with those obtained by XRF analysis, as the amount of Al and Si in
the clin_4 material is lower compared to the amount of Al and Si in the other clinoptilolites
(Table 2).

The increased activity of clin_4 can also be related to the intensity of the UV-Vis bands
(Figure 6). Among the studied clinoptilolites, clin_4 has the most intense bands at 260,
370, and 495 nm. The first two bands are attributed to the presence of aluminum, which is
present in the ≡Al-OH group that constitutes the clinoptilolite’s active center. The higher
intensity of the band at 495 nm obtained for clin_4, compared to the band obtained for
the other materials, may be related to an increase in the number of Fe2O3 molecules and
mononuclear Fe species, which may play an important role (active phase) in the α-pinene
oxidation reaction. Similar findings were described by Kumar and co-workers [65].

Among the instrumental studies of the four clinoptilolite catalysts, the results pre-
sented in Figure 3, which show the pore size distribution calculated by the BJH method,
are also noteworthy. These results indicate that the clin_4 sample of clinoptilolite contains
the largest amount of mesopores, which may indicate that it is precisely this size of pore
that is responsible for the greater catalytic activity of this clinoptilolite sample, and that the
oxidation process occurs mainly in them.

In order to establish the most favorable conditions for conducting the oxidation of α-
pinene for the most active catalyst selected in the first stage of the studies (clin_4), the effects
of temperature, amount of the catalyst, and reaction time on the conversion of α-pinene
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and selectivities of the products were studied. The parameters influencing the course
of the oxidation process were changed in the following ranges: temperature 80–110 ◦C,
catalyst amount 0.05–1.5 wt%, and reaction time 15–360 min. For the studies on the effects
of temperature and amount of catalyst, the mass of α-pinene was 10 g, and for the studies
on the effect of reaction time, the amount of α-pinene was increased to 20 g. The reaction
mixture was sampled every 1 h in an amount of 1 mL.

Figure 10 shows the effect of temperature on α-pinene conversion and the products’
selectivities. The process was performed under the following conditions: a catalyst content
of 0.1 wt% in relation to the mass of α-pinene and a reaction time of 3 h.
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Figure 10. Influence of temperature on the conversion of α-pinene and selectivities of products in the
oxidation of α-pinene over clin_4 clinoptilolite.

It is noticeable that the conversion of α-pinene increases with increasing temperature
and reaches the maximum value (43 mol%) at 110 ◦C. The selectivity of α-pinene oxide
also increases with increasing temperature and reaches the maximum value (29 mol%) at
90 ◦C, then it decreases to 11 mol% (at 110 ◦C). The selectivity of transformation to verbenol
is maintained at the level of 13–20 mol% over the entire range of tested temperatures.
Verbenone is formed only at temperatures in the range of 90–110 ◦C; the maximum value
of its selectivity is achieved at 110 ◦C and it amounts to 17 mol%. The most favorable
temperature determined for clin_4 clinoptilolite is 100 ◦C. At this temperature, the selectiv-
ity of α-pinene oxide amounts to 24 mol%, verbenol 17 mol%, verbenone 12 mol%, and
conversion of α-pinene is 36 mol%.

Studies on the effect of the amount of catalyst were conducted at 100 ◦C for 3 h. The
results obtained during these studies are shown in Figure 11.

Figure 11 shows that increasing the catalyst amount from 0.05 to 1.5 wt% causes a
decrease in the conversion of α-pinene from 39 to 28 mol%. This increase in the clin_4
material content also causes a decrease in the selectivity of α-pinene oxide from 30 to
6 mol%. It should be emphasized that the value of 30 mol% was the highest selectivity
of the transformation to α-pinene oxide observed so far in this work. The increase in
the catalyst amount did not cause an essential change in the values of the selectivities of
verbenol (13–17 mol%) and verbenone (10–15 mol%). The most favorable amount of catalyst
was taken as 0.05 wt%. For this amount of catalyst, the highest selectivity of α-pinene
oxide was obtained (30 mol%) at the conversion of α-pinene of 39 mol% (the selectivity
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of verbenol was 16 mol% and the selectivity of verbenone amounted to 13 mol%). The
increase in the catalyst amount in the post-reaction mixture increases the content of other
products in this mixture by up to 50 mol%, when taking into account their total selectivity
(in Figure 11 these products are marked as “others”). Among these products, there may be
oligomeric compounds with different molecular sizes, which, remaining in the pores, may
block the access of α-pinene molecules to the active centers, and this, in turn, may lead to a
decrease in the conversion of α-pinene. The solution here could be to calcinate the catalyst
in order to restore its activity and, thus, it would be able to be reused in the oxidation
process. Figure 11 also shows that the catalyst content of 0.25 wt% should not be exceeded
in the post-reaction mixture, because, for higher catalyst amounts, the formation of other,
less desirable products, and a decrease in the conversion of α-pinene, are observed.

Figure 12 shows that, with prolongation of the reaction time, the conversion of α-
pinene increases, reaching the maximum value (54 mol%) for the reaction time of 360 min.
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Figure 11. Influence of catalyst content on the conversion of α-pinene and selectivities of the prod-
ucts in the oxidation of α-pinene over clin_4 clinoptilolite. 
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It can be seen that, as the reaction time increases from 15 to 120 min, the selectivity
of α-pinene oxide increases from 14 mol% (15 min) to 31 mol% (120 min). The selectivity
of this epoxide compound remains at the level of 29–31 mol% over the range of reaction
time of 60–210 min. After the reaction time of 210 min, the selectivity of transformation
to the epoxide compound decreases to 3 mol% (reaction time of 360 min). The analysis of
the studies on the influence of reaction time for the clin_4 catalyst shows that reaction time
from 15 to 60 min is too short to obtain such products as campholenic aldehyde, verbenone,
and myrtenal (the selectivities of these derivatives amount to 0 mol%). After the reaction
time of 60 min, the selectivity of the transformation to campholenic aldehyde increases
from 0.2 mol% (90 min) to 6 mol% (360 min), and the selectivity of the transformation
to verbenone increases from 5 mol% (90 min) to 20 mol% (360 min). The selectivity of
the transformation to verbenol remains at the level of 8–18 mol% in the range of studied
reaction times from 15 to 360 min.

Taking into account the results presented in Figure 12, it can be assumed that, after
a sufficiently long reaction time (210 min), part of the formed α-pinene oxide undergoes
two subsequent reactions (Figure 13). The first is the isomerization of the epoxide leading
to campholenic aldehyde and carveol, and the second is the hydration of the epoxy ring, re-
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sulting in diol formation (1,2-pinanediol); the increase in the selectivity of these compounds
in Figure 12 is observable. Taking into account the selectivities of the transformation to
α-pinene oxide, verbenol, verbenone, and the conversion of α-pinene, the reaction time of
210 min can be taken as the most beneficial for the clin_4 catalyst sample; for this reaction
time, the selectivity of α-pinene oxide amounts to 29 mol%, verbenol 17 mol%, verbenone
13 mol%, and the conversion of α-pinene is 35 mol%.
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Figure 12. Influence of reaction time on the conversion of α-pinene and selectivities of the products
in the oxidation of α-pinene over clin_4 clinoptilolite at 100 ◦C (catalyst amount 0.05 wt%).

It is also interesting to note the changes in the selectivity of the transformation of
α-pinene to other products (“others”) in the studied process. Figure 12 shows that, for very
short reaction times of 15–60 min, very high values of this selectivity are observed, from
about 75 mol% (reaction time 15 min) to 48 mol% (reaction time 60 min). The formation of
such a large amount of other products at the beginning of the process can cause catalyst
pores to be blocked, because, among these products, there are oligomeric compounds with
different molecular weights that remain in the pores and can block the access of α-pinene
molecules to the active sites. As a result, we can observe the low conversion of α-pinene
(3–8 mol%). In our earlier publication [42] concerning the oxidation of α-pinene on the
TS-1 catalyst, for such short reaction times, the formation of such a large amount of “other
products” was not observed, and their amount was about 40 mol%, but also, in this case, a
low conversion of α-pinene of about 4 mol% was achieved. For the reaction time of 360 min,
the conversion of α-pinene on the TS-1 catalyst was about 18 mol%, and the synthesis
conditions were as follows: a temperature of 80 ◦C and a catalyst amount of 2.5 wt%. With
the sample of clinoptilolite clin_4, a conversion of 54 mol% was obtained after 6 h. This
value is three times higher than for the TS-1 catalyst. Taking into account the conditions in
which the catalytic tests were carried out on the clin_4 sample (temperature 100 ◦C, catalyst
amount 0.05 wt%), the clin_4 sample of the catalyst is much more active than our previously
described TS-1 catalyst. It is particularly noteworthy that 50 times less TS-1 catalyst was
used. It is also very interesting to compare the selectivity of the transformation to α-pinene
oxide on the clin_4 catalyst and the TS-1 catalyst. On the clin_4 catalyst, the selectivity of
this compound for reaction times of 60–120 min remains at the level of about 30 mol%, then
the selectivity of α-pinene oxide gradually decreases to 25 mol% after 4 h, and 15 mol%
after 5 h. In the case of the TS-1 catalyst, the high selectivities of α-pinene oxide persist
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longer, i.e., until the reaction time of 6 h (23–30 mol%), while, for the reaction time of 7 h,
the selectivity of α-pinene oxide is reduced to 15 mol%. This proves the greater stability of
the α-pinene oxide molecule under the reaction conditions on the TS-1 catalyst. This may
be due to the shape and size of the pores of the TS-1 catalyst (0.5 nm pores, microporous
material), which hinder further transformations of α-pinene oxide in the pores.
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During our research with carbon catalysts obtained from pine cones [41], other reaction
products were formed for the reaction time of 60 min with the selectivity of 28 mol%, and
the value of this selectivity increased with the extension of the reaction time. For the
reaction time of 6 h, the selectivity was 35 mol% (catalyst sample marked as PC_850, where
850 means the temperature at which carbonization was carried out, the temperature of the
oxidation of α-pinene 100 ◦C, and the amount of catalyst 0.5 wt%). For the reaction time of
1 h, a low α-pinene conversion of about 12 mol% was observed for this sample. However,
this value was slightly higher than for the clin_4 and TS-1 catalysts. For the reaction time
of 6 h, for the PC_850 catalyst sample, the α-pinene conversion was 52 mol% and it was a
value close to that obtained for the clin_4 catalyst. However, considering that the content
of the PC_850 catalyst was 10 times higher in the reaction mixture than that of the clin_4
catalyst, the PC_850 catalyst was characterized by a lower activity than the clin_4 catalyst.
For the clin_4 catalyst, the selectivity of the transformation of α-pinene to α-pinene oxide
was obtained at the level of about 27–30 mol% for the reaction time of 4 h; for the reaction
time of 5 h, it was about 22 mol%, and, for the reaction time of 6 h, it was about 12 mol%.
Thus, in the case of this catalyst, the high selectivity of the transformation to α-pinene
oxide could be maintained a little longer than for the clin_4 catalyst (3.5 h), but shorter
than for the TS-1 catalyst (6 h). The research presented in our publication [41] shows that
the PC_850 catalyst was characterized by a large number of micropores with diameters
of 1–1.25 nm, which may be the reason for the increased stability of α-pinene oxide. At
the same time, this would confirm the conclusion that catalysts containing micropores
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can be used to obtain α-pinene oxide with higher yields compared to other products of
this process.

4. Conclusions

Our studies showed that clinoptilolite can be effectively used as a green catalyst
in α-pinene oxidation. Once the reaction is complete, clinoptilolite contains no harmful
substances and is easy to dispose of. This zeolite is active at low temperatures. The trace
amounts of clinoptilolite (0.05–1.5 wt%) used in the oxidation of α-pinene make it possible
to obtain the main products with high selectivities. For 0.05 wt% (temperature 100 ◦C, and
reaction time 210 min), the selectivities of the main products were as follows: α-pinene oxide
29 mol%, verbenol 17 mol%, verbenone 13 mol%, and α-pinene conversion was 35 mol%.
Our method for the oxidation of α-pinene on clinoptilolite is cost-effective and energy-
efficient, and our results indicate that clinoptilolite can be used as a non-conventional,
environmentally friendly, reusable, and promising catalyst in organic reactions. It should
be noted that the described method of the oxidation of α-pinene on clinoptilolite requires
only a simple glass apparatus and atmospheric pressure, and the reaction itself does not
require an initiator or solvent, making the method environmentally safe and requiring no
separation of products from the solvent.

Taking into account the conversion of α-pinene, the clinoptilolite catalyst turned out
to be much more active than the TS-1 catalyst and carbon catalysts obtained from pine
cones, which we studied earlier. The big advantage is that it can be used in the case
of a very small amount of reaction mixture compared to the catalysts mentioned above.
Taking into account the selectivity of the transformation to α-pinene oxide, the use of
clinoptilolite allows for the use of short reaction times (up to 210 min) with the selectivity of
this compound of up to 30 mol%, while the conversion of α-pinene is about 30 mol%. The
other two catalysts, for reaction times up to 4–6 h, enable the maintaining of such a high
selectivity of α-pinene oxide, and for which it is possible to obtain the higher conversion of
α-pinene (even above 40 mol% for the catalyst obtained from pine cones). Therefore, in
order to obtain α-pinene oxide with the selectivity of about 30 mol%, and, at the same time,
the high conversion of α-pinene, it is better to use microporous catalysts. Further research
on the use of clinoptilolite in the oxidation of α-pinene should be aimed at determining the
most favorable conditions for obtaining the other valuable products of this process, e.g.,
verbenol, verbenone, myrtenol or myrtenal.
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