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Abstract: This paper sought to analyze the moderating effect of clean energy innovation on the rela-
tionship between corporate carbon footprint and corporate profits in fossil fuel intensive industrial
sectors in which it is “hard to abate” CO2e emissions. We used a longitudinal design consisting of
a panel study with a structural equation modeling (SEM) method, based on partial least squares.
For the analysis of longitudinal moderation, this paper employed a Bayesian multiple-indicator
latent growth curve model (B-LGC model). A global sample was used, consisting of 7827 firm-year
observations between 2015 and 2021 for 167 international firms. The results showed that the corporate
carbon footprint had a very significant impact on corporate profits and that innovations in clean
energy—measured as renewable energy consumption—positively moderate the relationship between
Scope 3 value chain greenhouse gas emissions (according to the Greenhouse Gas (GHG) Protocol) and
the gross profit margin obtained. In addition to the academic contributions made by the moderating
effect of clean energy innovation, these findings imply that a more detailed understanding of total
value chain emissions (Scope 3 CO2e) among executives and managers at high CO2e-emitting compa-
nies offers an effective mechanism for obtaining higher profits and creating competitive advantages,
while at the same time achieving a net zero emissions strategy. More importantly, public policymak-
ers will be able to use these results to revise CO2e-related policies, paying closer attention to the
Scope 3 CO2e emissions produced by these companies to design regulatory and control mechanisms
that stimulate clean energy innovation.

Keywords: clean energy innovation; corporate carbon footprint; corporate profits; high CO2e emis-
sions; longitudinal panel model; latent growth curve (LGC)

1. Introduction

The mitigation of climate change by reducing greenhouse gas emissions (GHG) is one of
the most important challenges facing society today [1]. To this end, the Paris Agreement of
2015 seeks to limit the increase in global warming to less than 2 ◦C. Among other things, this
requires the deep decarbonization of industrial sectors with a high demand for conventional
fossil fuels [2,3]. Energy-intensive firms increasingly face demands that they act decisively
to reduce these emissions and make a positive impact on climate change [4], since they are
considered the largest emitters of anthropogenic carbon dioxide and equivalent GHGs (CO2e),
and thus the main contributors to global warming [1,5–9]. Consequently, these companies
face the twofold challenge of generating profits for shareholders while achieving lower CO2
emissions in their production processes [10–12]. In achieving these goals, clean and renewable
energy sources can contribute to deep decarbonization, especially in “hard-to-abate” CO2
emissions sectors associated with high energy consumption [13,14].

While there is a large body of recent literature with evidence of a direct relationship
between environmental performance—measured by using the addition of Scope 1 and
Scope 2 corporate carbon footprints—and corporate profits [15–19], the results are still
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inconclusive. For instance, those studies used absolute metrics associated with Scope 1
and Scope 2 CO2e emissions, but none used Scope 3 CO2e emissions to measure total
corporate carbon footprints. They also used other relative metrics, such as carbon intensity
and environmental, social, and governance (ESG) ratings. Consequently, this study filled
an existing research gap, involving the total measurement of corporate carbon footprint
in a longitudinal study to measure its impact on corporate profits. This is the first study
to do this. Another research gap addressed by this research was the measurement of the
moderating effect of clean energy innovation (CEI) on the relationship between corporate
carbon footprint (CCFP) and corporate profits (CP).

The relationship between carbon footprint and profits in fossil-based energy-intensive
global companies from different sectors and countries is of particular interest to academia
and governments. While technological innovation has been widely recognized as an effec-
tive means for combating negative environmental impacts [20], technological innovations
take time to develop and implement, and their impact on companies’ performance is only
perceived in the long term [21]. This means that studies with a longitudinal design are a
particularly effective means for firm-level research to examine the effect of clean energy
innovation on GHG reduction and increased profits. As a result, clean energy innovation
has gradually become an important topic in the business field [22].

The literature has so far paid little attention to the potential moderating effect of
firms’ clean energy innovation on the link between their carbon footprint and profits,
particularly among leading CO2e-intensive global firms in various industrial sectors that
are active in different countries around the world [23]. This paper sought to address the
gap in the literature and examine the moderating effect of clean energy innovation on this
relationship, focusing on large firms from primary industries with the most intensive use of
fossil fuel generated energy. To accomplish this, this study developed a moderation model
with longitudinal panel data obtained from the Carbon Disclosure Project (CDP) and the
Thomson Reuters Refinitiv database, which were then analyzed using a Bayesian growth
curve model. This paper contributes to the literature by proposing a longitudinal structural
model for the moderation effect of clean energy innovation, using Bayesian multiple-
indicator latent growth curve models (B-LGC models), on the link between corporate
carbon footprint and corporate profits. This study also highlights the importance of
renewable energy consumption as a moderating indicator for measuring clean energy
innovation in the relationship between corporate value chain emissions (Scope 3 CO2e)
and gross profit margin (Pr_Mrg) in energy-intensive industries.

2. Theoretical Framework and Hypothesis

The ecological modernization theory (EMT) supports the concept of clean energy
innovation. EMT states that ecology and the economy can be combined to achieve a better
result for the company, the country, and society [24,25]. It also states that increases in energy
and resource efficiency can lead to improved productivity and therefore to more available
resources for future growth. This knowledge encourages energy- and pollution-intensive
firms to embrace clean energy technologies that allow them to lessen the environmental
effect of their economic operations [24]. Similarly, the natural resource-based view (NRBV)
theory proposes that competitive advantage is directly related to the company’s relationship
with the natural environment [26]. It then supports the idea that competitive advantages
can be based on institutional capabilities that support natural resources conservation.
An example is pollution prevention through the reduction of greenhouse gas emissions
as an effective strategy for protecting the environment while also being profitable for
business [25]. On the other hand, the anthropogenic theory of global warming predicts that
human influence is the dominant cause of global warming and of other adverse impacts of
climate change [26–28]. Likewise, [29] suggested that “anthropogenic influence is evident
from the emission of greenhouse gases such as CO2 from human activities” (p. 1141).
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2.1. Corporate Carbon Footprint

Corporate carbon footprints are dominated by emissions of carbon and equivalent
gases resulting from intensive energy consumption [27], with a size value that is often
expressed in absolute CO2e emissions [28,29]. As a result, one widely accepted taxonomy
for accounting and reporting absolute CO2e emissions is based on the philosophy and
classifications of the Greenhouse Gas Protocol (or GHG Protocol, for short) [30,31]. At the
corporate level, the World Business Council for Sustainable Development (WBCSD) and
the World Resources Institute (WRI) Corporate Accounting and Reporting Standard [32]
provide guidance for drafting a GHG emissions inventory. This paper defined three
different scopes for CO2e: Scope 1, Scope 2, and Scope 3. The Scope 1 CO2e inventory, as
defined by the WBCSD and WRI (2015), consists of “direct GHG emissions from sources
owned or controlled by the company” [32] (p. 25). Scope 2 CO2e comprises indirect
GHG emissions from electricity [27,30]. More specifically, the WBCSD and WRI (2015)
state that Scope 2 CO2e “accounts for GHG emissions from the generation of purchased
electricity consumed by the company” [32] (p. 25). For its part, Scope 3 CO2e also refers
to indirect GHG emissions, in this case from the upstream and downstream supply chain,
which are mainly related to the use of goods and services sold [27,33,34]. To this end, the
WBCSD and WRI (2011) Corporate Value Chain (Scope 3 CO2e) Accounting and Reporting
Standard [35] permits companies to prepare a GHG emissions inventory that includes
Scope 3 CO2e emissions and to determine where they should focus their activities to reduce
these emissions [32].

2.2. Linking Corporate Carbon Footprint and Profits

Drawing from Barney’s resource-based view (RBV) of business [36] and Freeman’s
stakeholder theory [37], it can be argued that reducing their carbon footprint provides
companies with a way to achieve greater competitive advantage [38]. Although a significant
body of both accounting-based (e.g., profits, sales, ROA, ROE, ROS, EBITDA, etc.) and
market-based (e.g., Tobin’s Q) empirical investigations [17,18,28,33,39,40] has examined
the direct relationship between carbon footprint and certain indicators of profitability,
the results are still inconclusive. For instance, some authors have found a statistically
significant positive relationship [17–19,28], while others concluded that this relationship
was not statistically significant [39,41]. Several authors found mixed results [33,40,42].
Furthermore, essentially all of this research is based on cross-sectional studies, a major
limitation when it comes to reaching firm conclusions.

Consequently, there is a clear lack of empirical studies with a longitudinal analysis
of the relationship between an (absolute) size value, such as carbon footprint, and a per-
formance indicator based on a monetary metric, such as profit [43]. Thus, the relationship
between carbon footprint and profit in energy-intensive global companies was of particular
interest in this study. In light of these arguments, the first hypotheses proposed were the
following:

H1a. Scope 1 CO2e has a positive influence on gross profit margin.

H1b. Scope 1 CO2e has a positive influence on EBITDA margin.

H1c. Scope 1 CO2e has a positive influence on operating margin.

H2a. Scope 2 CO2e has a positive influence on gross profit margin.

H2b. Scope 2 CO2e has a positive influence on EBITDA margin.

H2c. Scope 2 CO2e has a positive influence on operating margin.

H3a. Scope 3 CO2e has a positive influence on gross profit margin.

H3b. Scope 3 CO2e has a positive influence on EBITDA margin.

H3c. Scope 3 CO2e has a positive influence on operating margin.
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H4a. Scope 1 + 2 CO2e has a positive influence on gross profit margin.

H4b. Scope 1 + 2 CO2e has a positive influence on EBITDA margin.

H4c. Scope 1 + 2 CO2e has a positive influence on operating margin.

H5a. Scope 1 + 2 + 3 CO2e has a positive influence on gross profit margin.

H5b. Scope 1 + 2 + 3 CO2e has a positive influence on EBITDA margin.

H5c. Scope 1 + 2 + 3 CO2e has a positive influence on operating margin.

2.3. Clean Energy Innovation

From an operational standpoint, clean energy innovation is defined as “the set of
processes leading to new or improved energy technologies that can increase energy re-
sources; enhance the quality of energy services; and reduce the economic, environmental, or
political costs associated with the supply and use of energy” [44] (p. 193). More specifically,
renewable energy innovations involve “process innovations that lead to a substitution
of fossil energy sources with renewable sources within companies,” as defined by [45]
(p. 405). The concept of clean energy innovation builds upon the evolutionary theory of
innovation [46] and Joseph Huber’s ecological modernization theory (EMT) [47]. According
to the first theory, technological change is driven by the search for better technologies and
the selection of successful innovations in the market [48]. However, others argue that
a truly competitive industry responds to global environmental challenges by reducing
pollution through technological innovations that redesign industrial processes [49]. More
recently, the authors of [50] have stated that the neo-Schumpeterian approach (evolutionary
model) raises the possibility of clean energy innovation acting as a major driver of radical
transformation to a low-carbon economy. For its part, the EMT theory encourages energy
intensive (and thus, high-pollution) industries to use clean energy technologies that enable
them to reduce the environmental impact of their business activities [51].

2.4. The Moderating Role of Clean Energy Innovation on the Relationship between Carbon
Footprint and Profits

The Porter hypothesis [49] asserts that companies that design and execute environ-
mental strategies using innovative pollution prevention technologies can simultaneously
improve their environmental performance and increase their competitiveness [52]. Sub-
sequently, [53] argued that, at a corporate level, carbon footprint management promotes
cleaner and greener technological innovations. Harangozo and Szigeti [30], meanwhile,
claimed that in order to achieve a lower carbon footprint, companies must make greater
efforts at clean energy technological innovation.

Ecological modernization theory (EMT), on the other hand, offers an approach to a
corporate environmental strategy rooted in innovation and technology, also called “eco-
efficient innovation” (or eco-innovation) [51]. Seen from this standpoint, clean energy inno-
vation is a radical innovation that stems from the ecological modernization approach [54].
Indeed, one of the fundamental tenets of this approach is that technological innovation
in clean energy helps improve both corporate environmental performance and financial
performance [55]. Wedari et al. [19] recently reviewed the current state of research on the
relationship between environment-related innovation, on the one hand, and environmental
and economic performance on the other. Their findings shed new light on the role of
innovation in the adoption of proactive environmental innovation strategies as a source
of competitive advantage. According to [23], the influence of clean energy innovation in
different industrial sectors has not yet been explicitly tested. Thus, we formulated the
following research hypotheses:

H6a Clean energy innovation positively moderates the relationship between Scope 1 CO2e and gross
profit margin.
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H6b. Clean energy innovation positively moderates the relationship between Scope 1 CO2e and
EBITDA margin.

H6c. Clean energy innovation positively moderates the relationship between Scope 1 CO2e and
operating margin.

H7a. Clean energy innovation positively moderates the relationship between Scope 2 CO2e and
gross profit margin.

H7b. Clean energy innovation positively moderates the relationship between Scope 2 CO2e and
EBITDA margin.

H7c. Clean energy innovation positively moderates the relationship between Scope 2 CO2e and
operating margin.

H8a. Clean energy innovation positively moderates the relationship between Scope 3 CO2e and
gross profit margin.

H8b. Clean energy innovation positively moderates the relationship between Scope 3 CO2e and
EBITDA margin.

H8c. Clean energy innovation positively moderates the relationship between Scope 3 CO2e and
operating margin.

H9a. Clean energy innovation positively moderates the relationship between Scope 1 + 2) CO2e and
the gross profit margin.

H9b. Clean energy innovation positively moderates the relationship between Scope 1 + 2 CO2e and
EBITDA margin.

H9c. Clean energy innovation positively moderates the relationship between Scope 1 + 2 CO2e and
operating margin.

H10a. Clean energy innovation positively moderates the relationship between Scope 1 + 2 + 3 CO2e
and gross profit margin.

H10b. Clean energy innovation positively moderates the relationship between Scope 1 + 2 + 3 CO2e
and EBITDA margin.

H10c. Clean energy innovation positively moderates the relationship between Scope 1 + 2 + 3 CO2e
and operating margin.

Figure 1 presents an overview of the conceptual model used in this paper.Sustainability 2023, 15, x FOR PEER REVIEW  6  of  22 
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3. Research Methodology
3.1. Data and Sample

The sample used consists of a set of the world’s largest companies that are included in
CDP reports and that have a significant impact on climate change due to their high CO2e
emissions. Data on CO2e emissions and clean energy innovation were collected from the
database of the CDP, a well-known international organization dedicated to improving the
quality of available data on corporate carbon emissions worldwide [56]. Detailed financial
data were taken from the Thomson Reuters Eikon database. Using the industrial sector-level
classification of the Global Industry Classification Standard (GICS), seven energy-intensive
primary industries were selected for analysis: materials, consumer discretionary, industrials,
utilities, technology, energy, and health care. Table 1 summarizes the composition of the
sample of firms by region and industry sector.

The final sample, as shown in Table 2, consisted of 7827 firm-year observations made
between 2015 and 2021 among 167 large firms from 27 countries and various energy-
intensive industry sectors. This is an unbalanced panel, since the number of firm-year
observations is not always the same for each company. The firm-year observations with
missing values for more than two consecutive years were removed from the data set.
Following previous studies [31,57,58], distortion caused by outliers was taken into account
by winsorizing the lowest and highest percentiles of all continuous variables used in the
study. Winsorization was performed on 2.41% of the total data points in this research.

3.2. Data Collection
3.2.1. Corporate Carbon Footprint

The independent variable was the corporate carbon footprint (hereafter, CCFP). Fol-
lowing the practices of previous research [17,33,39], this study used absolute metrics to
measure the CCFP, specifically absolute firm-level carbon emissions expressed in CO2
equivalent units, that is, in total tons of CO2e reported annually. This took into account not
just carbon dioxide (CO2) but other GHGs with a high global warming potential, which
were then transformed into carbon dioxide equivalent (CO2e) [27,59]. This metric is most
suitable for precisely measuring the carbon footprint of those companies and industries
with a high absolute GHG intensity [60]. Following [29], Scope 1 + 2 CO2e were added
together to capture a company’s total annual carbon footprint. Similarly, following the
model proposed by [33] for the breakdown of corporate carbon emissions, which expands
the firm’s total carbon footprint by including indirect Scope 3 CO2e emissions to account
for the entire GHG supply chain, all emissions were added together to obtain an annual
snapshot of total absolute CO2e (Scope 1 + 2 + 3).

Table 1. Distribution of the sample of firms by sector and region.

Region

GICS SECTOR
Total

Number
of Firms

% of
Total

Consumer
Discre-
tionary

Energy Health
Care Industrials Technology Materials Utilities

OECD Eurasia 1 1 0.60%
OECD Oceania 1 2 3 1.80%
Non-OECD Americas 2 3 5 2.99%
Non-OECD Asia 1 3 8 1 13 7.78%
OECD Asia 16 1 8 5 12 1 43 25.75%
OECD Americas 8 3 10 3 12 8 44 26.35%
OECD Europe 13 5 8 2 22 8 58 34.73%
Total 37 11 1 26 13 58 21 167 100.00%
% of Total 22.16% 6.59% 0.60% 15.57% 7.78% 34.73% 12.57% 100.00%

Note: Firms are classified according to the Global Industry Classification Standard (GICS).
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Table 2. Sample description.

Firm-Observations Per Year Firm-Year
Observations

2015 2016 2017 2018 2019 2020 2021 Total

Region
OECD Eurasia 6 7 7 7 7 7 7 48
OECD Oceania 20 20 17 21 21 21 21 141
Non-OECD

Americas 34 35 31 35 35 35 35 240

Non-OECD Asia 81 89 84 90 83 89 91 607
OECD Asia 282 288 285 299 295 295 301 2045
OECD Americas 272 282 258 299 306 308 304 2029
OECD Europe 374 384 352 402 398 402 405 2717

Total 1069 1105 1034 1153 1145 1157 1164 7827
Sectors

Health Care 7 7 7 7 7 7 7 49
Energy 70 74 66 77 77 77 77 518
Technology 87 87 81 91 90 91 91 618
Utilities 127 139 130 143 146 147 147 979
Industrials 172 173 159 181 178 178 178 1219
Consumer

Discretionary 232 240 229 257 253 258 259 1728

Materials 374 385 362 397 393 400 405 2716
Total 778 798 750 835 824 836 842 7827

3.2.2. Corporate Profits

Given the multidimensional nature of corporate profits (hereafter CP), empirical
research on the concept tends to adopt different proxy metrics, with accounting-based
performance metrics being the most prevalent [40,61]. Along these lines, [43] distinguished
between two types of metrics: money metrics and ratio metrics. For the sake of convenience,
and given the current availability of detailed and reliable financial data for the same
period (2015–2021) as the corporate carbon footprint panel data, this study measured
profits by gross profit margin (Pr_Mrg), EBITDA margin (EBITDA Mrg), and operating
margin (Op Mrg). Gross profit margin (Pr_Mrg) was also included because profits are
significantly influenced by operating costs [62] and are therefore suitable for examining the
effect of corporate carbon footprint reduction. EBITDA—which has been used in similar
studies [16,43,63]—was included as a way of capturing the financial cost–benefit ratio
for companies resulting from climate initiatives to reduce GHG emissions [64]. Finally,
operating margin (Op Mrg) was used because of its prevalence as an indicator in previous
studies [18,65,66] but above all because it is an effective financial indicator for managerial
decision-making [67].

3.2.3. Clean Energy Innovation

Our model’s moderating variable was clean energy innovation (hereinafter CEI), quan-
titatively measured by renewable energy consumption (RENC) and quantified in billions of
kilowatt hours (kWh). While output metrics, such as the number of new technologies used,
energy consumption from renewable sources, and the number of patents granted [68–70],
are usually used in the final stages of clean energy technology innovation processes [44],
not all of these are appropriate. On the other hand, the use of renewable energy sources
is a proxy metric for the development of clean energy technology innovation [69]. More
importantly, renewable energy consumption is more plausible as an indicator of progress
in the adoption of clean energy technologies in energy-intensive industries with a high
level of environmental pollution [71,72].

Table 3 contains the definitions and a brief explanation of the metrics being examined.
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Table 3. Operational definitions of the variables used in this research.

Variables Symbols Details Data Source

Dependent Variables

Gross Profit Margin Pr_Mrg Ratio of gross profit (revenue minus
cost of goods sold) to revenue (%) Refinitiv Workspace®

EBITDA Margin EBITDA_Mrg
Ratio of EBITDA (Earnings Before
Interest, Tax, Depreciation, and
Amortization) to total revenue (%)

Refinitiv Workspace®

Operating Margin Op_Mrg Ratio of operating income to
revenue (%) Refinitiv Workspace®

Independent Variables
Direct Emissions

Scope 1 Emissions Scope1 CO2e Organization’s gross global Scope 1
emissions in metric tons of CO2e CDP

Indirect Emissions

Scope 2 Emissions Scope2 CO2e

Organization’s gross global Scope 2
emissions in metric tons of CO2e,
including location-based and
market-based accounting

CDP

Scope 3 Emissions Scope3 CO2e

Organization’s gross global Scope 3
emissions, disclosing and
explaining any exclusions, in metric
tons of CO2-e

CDP

Moderator Variable

Renewable Energy
Consumption RENC

Organization’s total energy
consumption (excluding feedstocks)
in MWh from renewable sources

CDP

3.3. Data Analysis

This study used a longitudinal design consisting of a panel study with a structural
equation modeling (SEM) method. One approach widely adopted in the literature is the
latent growth curve (LGC) model, based on the maximum likelihood estimation (MLE)
method [73–75]. We also used a Bayesian multiple-indicator latent growth curve model,
which is becoming an increasingly popular specialized model [76], primarily in longitudinal
research in the field of developmental psychology [76–78]. The Bayesian LGC approach
was adopted for three reasons. First of all, according to [77,79], this method is suitable
for improving the accuracy of estimates in the modeling of latent variables. Secondly,
compared to the MLE method, Bayesian estimation is a more plausible technique for
analyzing longitudinal data sets in small sample sizes [78,79]. Third, the availability of
Bayesian computational methods in software packages (e.g., Mplus, Amos, among others)
is driving their application in different fields of social research [80], in particular, in social
science research on climate change. Finally, we analyzed the longitudinal data collected
with version 8.8 of the Mplus statistical software, mainly because it permits the moderation
of latent variables.

Bayesian LGC Model Implemented

The statistical model used for the moderation analysis was a Bayesian latent growth
curve model (hereafter, B-LGC model) with structural equations [81,82]. Figure 2 presents
the longitudinal structural model for this B-LGC model, which includes three continuous
latent variables measured by multiple observed indicators. In particular, following the
latent growth models proposed by [83–85], this B-LGC model contains six time-changing
latent growth predictors, that is, five latent exogenous variables Xi (i = 1,2,3 . . . ,5) and one
latent moderation variable Z, as well as three latent growth outcome variables Yj (j = 1,2,3)
and an INT cross-product indicator representing the interaction (moderation) of Z. Because
the observed metrics of the predictor variables Xi and Z correspond to the same point in
time, the product indicator INT is determined by the cross product of the latent growth
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factors (slopes) ξ2 and ξ4 of Xi and Z, respectively. For their part, ηj1 and ηj2 correspond to
the initial level (intercept) and the rate of change (slope) of Yj. In this case, being a linear
growth model, all intercept factors are restricted to a constant value of 1 as a starting point
(initial state) for any change (growth) over time. Likewise, all slope factors are specified
using fixed-value restrictions (i.e., 0, 1, 2, 3, . . . , 6) that represent straight-line growth in
order to capture the rate of change in the trajectories over time [83]. On the other hand,
the Xi and Z growth curve factors interact with each other to influence the Yj endogenous
growth factors. Lastly, the model’s three latent variables (Xit, Zt and Yjt) were measured
in total with 63 observed variables, each measured at seven equidistant points in time
(t1, t2, t3, . . . t7).
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Figure 2. Path diagram of the b-lgc model for a latent growth curve model for three constructs and
seven time points (t = 1,2, . . . ,7). Note: Yjt = latent growth outcome variables (j = 1,2,3); Xit = latent
growth predictor (i = 1,2,3, . . . ,5); Z = latent moderation variable; ξ3, ξ4 = intercept and slope factors
for Z; η1, η2 = intercept and slope factors for Yjt; INT = latent product indicator for slope factor of
moderating interaction term; ζ1, ζ2 = latent residual variables; ε, δ = measurement error variables.
Adapted with permission from [85]. Copyright © 2014, Taylor & Francis Group, LLC. by Z. Wen.

Appendix A contains the full formula needed to estimate the hypothesized B-LGC
model, specifically for relationships between corporate carbon footprint (Scope 1 CO2e),
clean energy innovation (RENC), and profits (Pr_Mrg). Appendix A also provides the
Mplus-specific syntax for this multiple-indicator measurement model, which describes the
relationships between latent moderation (Z), latent interaction terms (INT1 and INT2),
the latent growth predictor (Xit), and latent growth outcome (Yjt), as well as the structural
model specifications, using Mplus commands. For the distribution parameters (priors)
used in the Bayesian estimation, this study adopted previous non-informative priors, that
is, Mplus default priors [79].
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4. Empirical Results
4.1. Diagnostic Testing of B-LGC Model Fit

To verify the reliability of the results of the B-LGC model, this study employed two
diagnostic tools. First, posterior predictive checks were used together with posterior
predictive p-values (PPP) [77,79,80]. Essentially, this approach is based on the idea that
Bayesian p-values seek to assess the quality of the model, that is, to ensure that the data
generated by the model closely resemble the observed data. Any deviation would suggest
an incorrect specification of the model [86,87]. For the proposed B-LGC model, the model’s
fit is acceptable for calculated PPP greater than zero and close to 0.5 [79,80].

Secondly, from a Bayesian perspective, using Markov chain Monte Carlo (MCMC)
algorithms, we examined whether the B-LGC model converges correctly, using the potential
scale reduction (PSR) factor [86], which is a specific numerical measurement of the default
convergence criterion in Mplus [74,88]. The B-LGC model is estimated using a larger
number of MCMC iterations (between 20,000 and 30,000) in which PSR values close to 1 are
considered evidence of convergence, which “means that convergence is achieved when the
between-chain variation is smaller than the within-chain variation” [79] (p. 335). However,
it is recommended to examine model convergence using other diagnostic tools, such as
trace plots, autocorrelation plots, and posterior parameter distribution plots [80].

4.2. Hypothesis Testing

The numerical results of the analysis are shown in Table 4 (a) and (b). Both tables
provide the standardized parameter estimates of the B-LGC model for each of the pro-
posed hypotheses. For example, the fifth column presents the mean obtained from the
posterior distribution in each simulation. The sixth column contains the posterior stan-
dard deviation (SD) for the mean of each interaction. In the seventh column, one-tailed
PPP, based on posterior distribution, is provided for the significance tests of each of the
proposed hypotheses. For each interaction parameter, the posterior probability inter-
val [79,80], also known as the Bayesian 95% credible interval (CI), is shown. Finally, the
level of statistical significance is shown for each of the proposed hypotheses. In a Bayesian
context, “significant interaction” must be inferred when the credible interval does not
contain zero [79].

Table 4 (a) shows the results of the hypotheses of direct interaction between CCFP and
CP. In this table, we can see that the PSR measurements dropped rapidly to values close to
1.0 and remained at 1.0 between 10,000 and 20,000 MCMC iterations, which indicates that
the convergence of the B-LGC model was achieved in all the MCMC hypotheses. Moreover,
all the point estimates of the mean slope parameters reached PPP values greater than
zero and below 0.05, which indicates an absolute fit of the B-LGC model in the Bayesian
framework. With respect to the statistically significant results of the direct CCFP→CP
interaction, only hypotheses H1b, H3a, H4b, H4c, H5a, H5b and H5c obtained plausible
values at a significance level of 5%, since their corresponding CIs [−0.602, −0.101], [0.167,
0.643], [−0.647, −0.101], [−0.512, −0.020], [−0.521, −0.004], [−0.635, −0.098] and [−0.501,
–0.014] do not contain zero.

Table 4 (b) presents the results for the longitudinal moderation of clean energy innova-
tion (CEI) on the direct CCFP→CP relationship. All hypotheses achieved convergence for
the estimated parameter (mean), including hypothesis H8c, which reached a PSR value of
1.048 at 29,300 iterations. However, according to [79], PSR values less than or equal to 1.1
are also considered evidence of convergence. Similarly, all PPP values indicated the good
fit of the B-LGC model and the moderating effect of the CEI construct on the relationship
between the exogenous (corporate carbon footprint) and endogenous variables (corporate
profits). In fact, only hypothesis H8a showed the statistical significance of the moderating
effect of the CEI construct, measured by the continuous observed moderator variable RENC,
on the direct relationship between the observed variables Scope3 CO2e→Pr_Mrg, given
that its Bayesian 95% CI of [−0.991, −0.774] does not include zero, implying a positive
intervention (moderation) effect. Figure 3 shows the standardized solution, confidence
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intervals, variance estimates, and standard errors provided by the Mplus diagram for
H8a. This output diagram shows a value of 0.886 and a confidence interval of (−0.991,
−0.774) for INT2. However, hypotheses H7a, H7b, and H8c displayed a PPP of 0.405,
0.490, and 0.357, respectively—all close to 0.5 but with a very narrow CI that includes zero.
These can be interpreted as marginal effects caused by the moderating interaction of the
CEI variable [79].
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4.3. Graphic Illustrations of Longitudinal Moderating Effect

Figure 4 shows the Bayesian trace plot of each chain of the MCMC process during
the 20,000 iterations, which indicates a proper convergence of the autoregressive slope
parameter corresponding to the moderating interaction term (INT) of the B-LGC model.
This can be seen by the fact that there are no trends or large fluctuations in the trace plot,
which confirms that there were no abnormalities in the model’s convergence [89]. On
the other hand, Figure 5 presents the autocorrelation plot for the autoregressive slope
parameter, also corresponding to the interaction term INT, where the autocorrelation
value is shown on the y-axis and the time lag between the 20,000 MCMC iterations on the
x-axis. More specifically, this plot shows a relatively high autocorrelation (just over 0.5) for
shorter lags between iterations. As the time lag increases, however, the autocorrelation
becomes smaller (close to zero). This is a positive result, considering that “ideally, each
MCMC iteration should result in independent information for the posterior distribution of
a parameter (autocorrelation of zero)” [74] (p. 267). Finally, Figure 6 shows the posterior
distribution of the mean slope parameter of the INT term. As we can see, this distribution
is roughly symmetric. In fact, these distributions do not need to be normal or symmetrical
in Bayesian analysis [88]. The mean, median, and mode were 0.886, 0.902, and 0.927,
respectively. The posterior SD was relatively small (0.112), indicating negligible uncertainty
about the true value of the mean slope parameter of the INT term. This is reflected in
the narrow CI range obtained, which goes from −0.99108 to −0.77367 and does not cover
zero. Consequently, it can be argued that the number of data points used (N = 167: 4509
total data points) to test hypothesis H8a was sufficient to obtain low uncertainty and high
statistical power.
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Table 4. (a) Numerical summary of B-LGC model estimate parameters for direct interaction effects
between corporate carbon footprint (CCFP) and profits (CP). (b) Numerical summary of B-LGC
model estimate parameters for the interaction (moderating effects) of CEI (measured by RENC) on
the CCFP→CP relationship.

(a)

Simulation Direct Interaction Effect Number of
Iterations

PSR Estimate Posterior One-
Tailed
PPP

95% CI
Significance

(Hypothesis) (CCFP→CP) Measurement (Mean) SD Bottom
2.5% Top 2.5%

Direct CO2 Emissions
H1a Scope1 CO2e→ Pr_Mrg 14,300 1.000 −0.200 0.128 0.058 −0.444 0.057

H1b Scope1 CO2e→
EBITDA_Mrg 10,800 1.000 −0.354 0.128 0.004 −0.602 −0.101 **

H1c Scope1 CO2e→ Op_Mrg 16,200 1.000 −0.226 0.120 0.032 −0.464 0.008
Indirect CO2 Emissions

H2a Scope2 CO2e→ Pr_Mrg 9700 1.000 −0.164 0.116 0.082 −0.391 0.061

H2b Scope2 CO2e→
EBITDA_Mrg 17,200 1.000 −0.190 0.127 0.071 −0.429 0.066

H2c Scope2 CO2e→ Op_Mrg 9400 1.000 −0.005 0.004 0.127 −0.013 0.003
Supply-Chain CO2

Emissions
H3a Scope3 CO2e→ Pr_Mrg 14,000 1.000 0.403 0.123 0.003 0.167 0.643 **

H3b Scope3 CO2e→
EBITDA_Mrg 22,500 1.000 0.213 0.183 0.118 −0.229 0.517

H3c Scope3 CO2e→ Op_Mrg 29,300 1.048 0.062 0.261 0.352 −0.464 0.458
Direct and Indirect

H4a [Scope 1 + 2 CO2e]→
Pr_Mrg 11,700 1.000 −0.259 0.133 0.026 −0.518 0.006

H4b [Scope 1 + 2 CO2e]→
EBITDA_Mrg 9900 1.000 −0.374 0.140 0.004 −0.647 −0.101 **

H4c [Scope 1 + 2 CO2e]→
Op_Mrg 13,700 1.000 −0.264 0.126 0.018 −0.512 −0.020 **

Corporate Value Chain

H5a [Scope 1 + 2+3 CO2e]→
Pr_Mrg 14,700 1.000 −0.260 0.132 0.023 −0.521 −0.004 **

H5b [Scope 1 + 2+3 CO2e]→
EBITDA_Mrg 18,100 1.001 −0.371 0.137 0.003 −0.635 −0.098 **

H5c [Scope 1 + 2+3 CO2e]→
Op_Mrg 11,500 1.000 −0.259 0.124 0.018 −0.501 −0.014 **

(b)

Simulation
(Hypothesis)

Moderation Interaction
Effect

of RENC

Number of
Iterations

PSR
Measurement

Estimate
(Mean)

Posterior
SD

One-
Tailed
PPP

95% CI
SignificanceBottom

2.5% Top 2.5%

Direct CO2 Emissions

H6a Scope1 CO2e→ Pr_Mrg 14,300 1.000 −0.044 0.033 0.090 −0.109 0.019

H6b Scope1 CO2e→
EBITDA_Mrg 10,800 1.000 −0.063 0.035 0.037 −0.132 0.007

H6c Scope1 CO2e→ Op_Mrg 16,200 1.000 −0.032 0.031 0.154 −0.095 0.028
Indirect CO2 Emissions

H7a Scope2 CO2e→ Pr_Mrg 9700 1.000 −0.016 0.062 0.405 −0.140 0.107 *

H7b Scope2 CO2e→
EBITDA_Mrg 17,200 1.000 0.001 0.067 0.490 −0.134 0.133 *

H7c Scope2 CO2e→ Op_Mrg 9400 1.000 −0.001 0.002 0.285 −0.005 0.003
Supply-Chain CO2

Emissions
H8a Scope3 CO2e→ Pr_Mrg 14,000 1.000 −0.886 0.112 0.003 −0.991 −0.774 **

H8b Scope3 CO2e→
EBITDA_Mrg 22,500 1.000 −0.733 0.554 0.111 −0.995 0.914

H8c Scope3 CO2e→ Op_Mrg 29,300 1.048 −0.266 0.855 0.357 −0.985 0.960 *
Direct and Indirect

H9a [Scope 1 + 2 CO2e]→
Pr_Mrg 11,700 1.000 −0.050 0.033 0.059 −0.115 0.014

H9b [Scope 1 + 2 CO2e]→
EBITDA_Mrg 9900 1.000 −0.060 0.035 0.042 −0.130 0.009

H9c [Scope 1 + 2 CO2e]→
Op_Mrg 13,700 1.000 −0.034 0.031 0.135 −0.096 0.026

Corporate Value Chain

H10a [Scope 1 + 2+3 CO2e]→
Pr_Mrg 14,700 1.000 −0.050 0.032 0.056 −0.116 0.012

H10b [Scope 1 + 2+3 CO2e]→
EBITDA_Mrg 18,100 1.001 −0.060 0.035 0.042 −0.130 0.008

H10c [Scope 1 + 2+3 CO2e]→
Op_Mrg 11,500 1.000 −0.034 0.031 0.133 −0.093 0.028

** p-value ≤ 0.05 and C.I does not include zero, implying a positive moderating effect. * p-value ≤ 0.05 and
C.I includes zero, implying a marginal positive moderating effect. Note: All estimates are standardized model
results. RENC = Renewable Energy Consumption; Pr_Mg = Gross Profit Margin %; EBITDA = EBITDA Margin %;
Op_Mrg = Operating Margin %; CI = Credible Interval; S.D. = Standard Deviation; PSR = Potential Scale Reduction;
PPP = Posterior Predictive p-Value.
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5. Discussion

These results clearly illustrate that the reduction of the CO2e emissions inventory
in those industrial sectors with a high consumption of fossil fuel-based energy sources
helps to improve corporate environmental and financial performance. Two conclusions
can be drawn from these results. First, continuing to focus on measuring and reducing
emissions solely from their own operations (Scope 1 CO2e) and from their own electricity
consumption (Scope 2 CO2e) continues to be profitable for these companies in the short
term. Secondly, the world’s largest energy-intensive companies appear to derive greater
economic benefits from having a more accurate and detailed understanding of their supply
chain’s GHG emissions (Scope 3 CO2e). Consequently, these empirical results are consistent
with the resource-based view (RBV) of the firm.

On the other hand, this study suggests that, although clean and renewable energies
can aid in the deep decarbonization of the sample of companies studied, the results show
that the changeover to new sources of clean and renewable energy is a gradual process that
requires considerable capital investment [15], thus dampening the effect of Scope 2 CO2e
and Scope 3 CO2e emissions reduction on the efficiency of energy- and CO2e-intensive firms
to generate greater profits. Likewise, our results indicate that innovation based on clean
and renewable energy technologies, when driven by government environmental policies
aimed at reducing corporate value chain emissions (Scope 3 CO2e), represents an effective
mechanism to help these companies achieve the objective of net zero emissions and increase
the profitability of their businesses, since value chain emissions (Scope 3 CO2e) represent
most of a company’s total carbon footprint [90]. According to ecological modernization
theory (EMT), this result is consistent with an “eco-innovation” strategy [51,55].

This paper makes three main contributions to the literature on business and envi-
ronmental sustainability. First, it integrates two theoretical frameworks—eco-innovation
theory [91–93] and ecological modernization theory [51,94]—using a structural equation
model which has predictive and explanatory power [95]. Second, it provides empirical
evidence of the positive moderating effect of clean energy innovation on the efforts of
high-polluting industries to reduce their carbon footprint while generating higher returns
for their shareholders, and at the same time reducing this negative impact on climate
change. Third, it identifies the importance of technological innovation in clean energy as
part of the transition towards deep and accelerated decarbonization in these industries.



Sustainability 2023, 15, 10326 15 of 19

6. Conclusions and Implications

The findings reveal that corporate carbon footprint has a significantly positive impact
on profits. More specifically, we found a significant positive relationship among the
following direct interactions: (a) Scope 1 CO2e on EBITDA Mrg; (b) Scope 3 CO2e on
Pr_Mrg; (c) Scope 1 + 2 CO2e on EBITDA Mrg and Pr_Mrg; and d) Scope 1 + 2 + 3
CO2e on EBITDA Mrg, Pr_Mrg, and Op Mrg. On the other hand, the results of the B-
LGC model also support the hypothesis that clean energy innovation, when measured
using renewable energy consumption, positively moderates the relationship between value
chain emissions (Scope 3 CO2e) and gross profit margin in energy- and CO2e-intensive
industries. Furthermore, we found only marginal effects due to the moderating interaction
of renewable energy consumption on the relationship of Scope 2 CO2e emissions with
gross profit margin and EBITDA margin, as well as the relationship between Scope 3 CO2e
emissions and operating margin.

This paper has several important implications for academics, senior executives of
companies with significant fossil CO2e emissions, and those who make public policy asso-
ciated with GHG emissions and climate change. For researchers and academics, this study
provides empirical evidence of the impact of clean energy innovation on CO2e-intensive
companies in a global context of deep industrial decarbonization, and also substantiates
the importance of the concept of eco-innovation taken from the ecological modernization
approach [54] in management practices and corporate environmental strategies. For ex-
ecutives and managers of CO2e-intensive companies, it shows that greater competitive
advantages can effectively be obtained by placing importance on the emissions of the firm’s
entire value chain (Scope 3 CO2e) and not only Scope 1 and Scope 2 CO2e emissions. Ac-
cording to [32], carbon reduction policies focus on achieving significant reductions within
specific countries or regions. Extrapolating from this, one policy implication is that particu-
lar attention needs to be paid to Scope 3 CO2e emissions produced by CO2e-intensive firms
operating in different industries and countries in order to design regulatory and control
mechanisms that incentivize renewable energy consumption. Second, applying greater
pressure to energy-intensive firms to disclose their upstream and downstream supply
chain emissions (Scope 3 CO2e) can lead to more effective eco-innovation strategies and
greater CO2e reductions. Third, policies and regulatory frameworks for clean energy inno-
vation must engage in a harmonization process among countries and regions considered
high CO2e emitters by helping CO2e-intensive companies to build greater environmental
benefits and further competitive advantage.

This study had some limitations, however, that can be cleared up by future research.
First, given the obviously sparse literature on clean energy innovation metrics at the firm
level, we used a single output metric as an indicator for this construct. Future studies
could include additional input metrics, that is, those corresponding to the first stages of
the innovation process for clean energy technologies. Second, due to the relative lack
of reliable statistical data, the time horizon of this longitudinal study was limited to
7 years (2015 to 2021), while the existing literature on longitudinal studies suggests the
need for a minimum timeframe of 10 years to counteract random variation [96]. Therefore,
future research might explore extensions of this timeframe, even using data containing
missing values.
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Appendix A Mplus-Specific Syntax for the B-LGC Model

TITLE: Moderating Effect Analysis Based on the Bayesian
Latent Growth Curve (LGC) Model Title for the Bayesian analysis to be conducted.

DATA: FILE = w_Data2022_7.dat Data file to be used: w_Data2022_7.dat is the name of this
data file.

VARIABLE:
NAMES ARE Firm_ID Sector X11 X12 X13 X14 X15 X16

X17 Z4 Z5 Z6 Z7 Y11 Y12 Y13 Y14 Y15 Y16 Y17;
Name of the seven time points (t = 7) of data for observable
variables. We called them “X1t” here to represent seven
metrics of Scope 1 emissions, “Zt” for renewable energy
consumption (RENC) metrics, and “Y1t” for gross profit
margin (Pr_Mrg).

USEVAR ARE X11 X12 X13 X14 X15 X16 X17 Z4 Z5 Z6
Z7 Y11 Y12 Y13 Y14 Y15 Y16 Y17;
MISSING ARE ALL (−99).
ANALYSIS:

ESTIMATOR = BAYES; Request the Bayesian estimator.
TYPE = RANDOM;
POINT = MEAN; Use of mean-centered indicators.
CHAINS = 3;
PROCESSORS = 3;
FBITERATIONS = 20000;
BCONVERGENCE = 0.025;

THIN = 30.
By specifying THIN = 30, we request that only every 30th
iteration of the post-burn-in phase be used by Mplus to
compute the posterior distribution.

MODEL: Specification of the measurement model to be tested.

X11-X17*; Estimation of residual variances for independent variable
X1 (Scope 1) for each time point (t = 7).

Z1-Z7*; Estimation of residual variances for moderator variable Z
(RENC) for each time point (t = 7).

Y11-Y17*; Estimation of residual variances for dependent variable Y1
(Pr_Mrg) for each time point (t = 7).
The asterisk (*) is used to a free estimation of residual
variance parameters of independent variable (X1),
moderating variable (Z), and dependent variable (Y1).

KSI1 KSI2 | X11@0 X12@1 X13@2 X14@3 X15@4 X16@5
X17@6;

Specification of latent growth curve model with two latent
growth parameters, intercepts (KSI1, KSI3 and ETA1), and
slopes (KSI2, KSI4 and ETA2). All seven data time points
(X11–X17, Z1–Z7, Y11–Y17) are used. The numbers to the
right of @ indicate an equal time span between the data
points, i.e., 0, 1, 2, 3, 4, 5, 6, and 7, reflecting equidistant
points in time between 2015 and 2021)

KSI3 KSI4 | Z1@0 Z2@1 Z3@2 Z4@3 Z5@4 Z6@5 Z7@6;
ETA1 ETA2 | Y11@0 Y12@1 Y13@2 Y14@3 Y15@4

Y16@5 Y17@6;
KSI1*; KSI2*; KSI3*; KSI4*; ETA1*; ETA2*; Estimation of variances of latent growth parameters.

INT1 | KSI1 XWITH KSI3;
Definition of interaction (moderation) term. INT1
corresponds to the latent product variable between
intersections KSI1 and KSI3.

INT2 | KSI2 XWITH KSI4; Definition of interaction (moderation). INT2 corresponds to
the latent product variable between slopes KSI2 and KSI4.

ETA1 ON KSI1 KSI3 INT1; Structural model specification.
ETA2 ON KSI2 KSI4 INT2. Structural model specification.

OUTPUT: CINTERVAL(hpd) TECH8 STDYX.
PLOT: TYPE = PLOT2.

by S. Depaoli, H. M. Rus, J. P. Clifton, R. van de Schoot, & J. Tiemensma, 2017, Health Psychology Review, 11(3), 248–264. [76].
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