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Abstract: The climate change issue has become a growing concern due to the increasing green-
house gas emissions. To achieve carbon neutrality for mitigating the climate problem, the oxy-fuel
combustion (OFC) technique on internal combustion engines (ICEs) has attracted much attention.
Furthermore, the water injection (WI) strategy was proven effective in improving the combustion
process and thermal efficiency in engines under OFC mode. However, WI strategy effects on gasoline
direct injection (GDI) engines fuelled with gasoline–alcohol blends have not been reported. This
study quantitatively analysed WI mass and timing effects on oxy-fuel combustion performance from
a GDI engine fuelled with E10 (10% ethanol and 90% gasoline in mass) by simulation. The results
show that equivalent brake-specific fuel consumption (BSFCE) shows a monotonically decreasing
trend with the increase in the water–fuel mass ratio (Rw f ) from 0 to 0.2. However, further increasing
Rw f would cause a deterioration in BSFCE due to the enhanced cooling effects of water vaporisation.
Moreover, an appropriate water injection timing (tWI) could be explored for improving OFC perfor-
mance, especially for large Rw f conditions. The difference in BSFCE between tWI = −100◦CA and
tWI = −60◦CA can be up to around 6.3 g/kWh by increasing Rw f to 0.6.

Keywords: oxy-fuel combustion (OFC); water injection (WI); gasoline direct injection (GDI) engine;
E10; simulation

1. Introduction

In the past few years, global warming concerns have become more serious, and
extreme heat conditions appear more frequently [1]. Achieving the goals of carbon peaking
and carbon neutrality has been proposed to minimise carbon dioxide (CO2) emissions for
mitigating global warming issues. Hence, various carbon reduction technologies have
been implemented in the transportation sector, such as battery electric vehicles (BEVs) [2],
ammonia or hydrogen fuel engines [3,4], and fuel cell vehicles [5]. These technologies have
attracted much attention because of their carbon-free characteristics. However, it is still
very valuable and attractive to achieve CO2 capture and storage for internal combustion
engines (ICEs), which account for the largest proportion of transportation power sources
nowadays.
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As shown in the chemical process of Equation (1), the combustion products of oxy-fuel
combustion (OFC) technology proposed by Yaverbaum are almost CO2 and H2O, which has
been an attractive alternative for decreasing and capturing carbon emissions [6–9]. Figure 1
shows a schematic diagram of a novel OFC system with carbon capture and storage (CCS)
in the application of ICE. During the working process, intake air can be replaced by pure
oxygen and CO2 from exhaust gas recirculation (EGR). Hence, without N2 involved in
combustion, NOX emissions can be totally eliminated. Moreover, the extra CO2 can be
compressed by a compressor after separating from H2O, and then easily captured and
stored into a tank.

CxHyOz +
(

x +
y
4
− z

2

)
O2 → xCO2 +

y
2

H2O (1)

Sustainability 2023, 15, x FOR PEER REVIEW 2 of 17 
 

still very valuable and attractive to achieve CO2 capture and storage for internal combus-
tion engines (ICEs), which account for the largest proportion of transportation power 
sources nowadays. 

As shown in the chemical process of Equation (1), the combustion products of oxy-
fuel combustion (OFC) technology proposed by Yaverbaum are almost CO2 and H2O, 
which has been an attractive alternative for decreasing and capturing carbon emissions 
[6–9]. Figure 1 shows a schematic diagram of a novel OFC system with carbon capture 
and storage (CCS) in the application of ICE. During the working process, intake air can be 
replaced by pure oxygen and CO2 from exhaust gas recirculation (EGR). Hence, without 
N2 involved in combustion, NOX emissions can be totally eliminated. Moreover, the extra 
CO2 can be compressed by a compressor after separating from H2O, and then easily cap-
tured and stored into a tank. C H O + x + − O → xCO + H O  (1)

 
Figure 1. Configuration of OFC technology in ICE. 

When comparing OFC mode to conventional air combustion (CAC) mode, the differ-
ences in physicochemical properties between CO2 and N2 should be noticed and stressed, 
as shown in Table 1 [10,11]. First and foremost, the molecular weight of CO2 is 57% higher 
than that of N2. Moreover, the specific heat capacity of CO2 is 106% of N2. Hence, com-
pared to N2, the mole heat capacity of CO2 is considerably higher, which would negatively 
impact the combustion rates and temperature under OFC mode. Second, the thermal dif-
fusivity of CO2 is only 64.4% of N2. Moreover, the mass diffusivity speed of O2 in CO2 is 
22.2% lower than the conditions of N2. These factors can help reduce the heat release rate 
and slow chemical reactions during the early combustion stage. Moreover, the thermal 
conductivity of CO2 is very close to that of N2, which would not easily cause discrepancies 
in the combustion. 

Table 1. Physicochemical properties of CO2 and N2 (1000 k, 0.1 MPa) [10,11]. 

Property CO2 N2 Ratio (CO2/N2) 
Molecular weight 44 28 157% 
Specific heat capacity (kJ/kgK) 1.2343 1.1674 106% 
Kinematic viscosity (m2/s) 7.69 × 10−5 1.2 × 10−4 63.1% 
Thermal diffusivity (m2/s) 1.1 × 10−4 1.7 × 10−4 64.4% 
Mass diffusivity of O2 (m2/s) 9.8 × 10−5 1.3 × 10−4 77.8% 
Thermal conductivity (W/mK) 7.057 × 10−2 6.599 × 10−2 107% 
Prandtl number 0.7455 0.7022 106% 
Emissivity and absorptivity >0 ~0 - 

Figure 1. Configuration of OFC technology in ICE.

When comparing OFC mode to conventional air combustion (CAC) mode, the differ-
ences in physicochemical properties between CO2 and N2 should be noticed and stressed,
as shown in Table 1 [10,11]. First and foremost, the molecular weight of CO2 is 57% higher
than that of N2. Moreover, the specific heat capacity of CO2 is 106% of N2. Hence, com-
pared to N2, the mole heat capacity of CO2 is considerably higher, which would negatively
impact the combustion rates and temperature under OFC mode. Second, the thermal
diffusivity of CO2 is only 64.4% of N2. Moreover, the mass diffusivity speed of O2 in CO2
is 22.2% lower than the conditions of N2. These factors can help reduce the heat release
rate and slow chemical reactions during the early combustion stage. Moreover, the thermal
conductivity of CO2 is very close to that of N2, which would not easily cause discrepancies
in the combustion.

Hence, although using OFC technology in engines has excellent potential for carbon
reduction, controlling the engine combustion process and maintaining thermal efficiency
under OFC mode is challenging. Ditaranto et al. [12] indicated that the low thermal
diffusivity properties of CO2 would lead to more heat loss than conventional air combustion,
resulting in lower thermal efficiency. It was also found that the flame characteristics in
OFC mode are closely related to the oxygen concentration. Li et al. [13] conducted some
numerical investigations of OFC combustion on dual-fuel spark ignition (SI) engines. The
results suggested that with the increase in oxygen mass fraction, significant changes can be
seen in combustion characteristics, leading to a reduction in brake-specific fuel consumption
(BSFC). Yu et al. [14] reported that a high oxygen fraction could accelerate combustion
and improve the maximum pressure rise rate. It indicated that pure O2 with no inert gas
would produce an excessively fast combustion rate accompanying abnormal pressure rise
rates of more than 4 MPa/CA. The powerful waves of engine super knock would rapidly
occur across the combustion chamber with substantial amplitude, significantly damaging
the engine.
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Table 1. Physicochemical properties of CO2 and N2 (1000 k, 0.1 MPa) [10,11].

Property CO2 N2 Ratio (CO2/N2)

Molecular weight 44 28 157%
Specific heat capacity (kJ/kgK) 1.2343 1.1674 106%
Kinematic viscosity (m2/s) 7.69 × 10−5 1.2 × 10−4 63.1%
Thermal diffusivity (m2/s) 1.1 × 10−4 1.7 × 10−4 64.4%
Mass diffusivity of O2 (m2/s) 9.8 × 10−5 1.3 × 10−4 77.8%
Thermal conductivity (W/mK) 7.057 × 10−2 6.599 × 10−2 107%
Prandtl number 0.7455 0.7022 106%
Emissivity and absorptivity >0 ~0 -

Moreover, in order to further improve the combustion process and thermal efficiency,
the water injection (WI) strategy has been implemented for engines under OFC mode.
Bilger et al. [15] proposed a new conception of the internal combustion Rankine cycle
(ICRC) engine, which employs preheated water directly injected into engine cylinders
to control combustion. The key research progresses on the effects of WI strategy on
the combustion characteristics in engines under OFC mode over the past decade are
summarised in Table 2.

Table 2. Research summary of WI strategy in engines under OFC mode.

Publication Year Focusing Parameter Engine Type Fuel Main Authors

2013 WI mass, timing, pressure PFI, SI Propane Yu et al. [14]
2014 WI temperature PFI, SI Propane Fu et al. [16]
2014 WI mass, temperature PFI, SI Propane Wu et al. [17]
2017 WI mass HCCI, CI N-heptane Kang et al. [18]
2018 WI mass, timing, temperature CI N-heptane Kang et al. [19]
2021 WI mass, timing, temperature Dual-injection, SI Gasoline Li et al. [20]

Based on a single-cylinder port fuel injection (PFI) engine fuelled with propane,
Yu et al. [14] studied the combustion performance under a quasi-ICRC engine after re-
placing air with oxygen as an oxidant. The study demonstrated that adding water to the
combustion chamber could inhibit the spontaneous combustion of the air–fuel mixture by
reducing the in-cylinder temperature. Meanwhile, the engine thermal efficiency could be
improved by extending the constant pressure process caused by water evaporation at the
beginning of the power stroke. Fu et al. [16] demonstrated that owing to the acceleration
of the water vaporisation process, a higher WI temperature would help further improve
cylinder pressure and engine thermal efficiency in a PFI engine under ICRC mode. For
example, under the conditions of 2.9 ms fuel injection duration and 120 ◦C WI temperature,
the engine indicated work and indicated thermal efficiency could be improved by 10.3%
and 3.1%, respectively. Wu et al. [17] provided new insights into the solution for improving
thermal efficiency by investigating the effects of WI duration and pressure in a PFI engine
under OFC mode. It was reported that the thermal efficiency could be improved from 32.1%
to 41.5%, and the higher WI pressure can make greater use of vaporisation heat, leading
to higher thermal efficiency. Kang et al. [18] designed a WI system to explore its potential
in stabilising the combustion process in an N-heptane homogeneous charge compression
ignition (HCCI) engine under OFC mode. It was found that a suitable WI strategy helps
maintain the engine thermal efficiency and mitigate combustion instability. A strategy
using 120 ◦C and 35 MPa WI would be helpful to eliminate the phenomenon of abnormal
combustion. Based on KIVA, Kang et al. [19] established a CFD model of an oxy-fuel diesel
engine fuelled with N-heptane to study the feasibility of utilising WI strategies in affecting
engine thermal efficiency. The study demonstrated that combustion stability is sensitive
to WI timing, which can be fixed near the engine top dead centre of firing. In addition, Li
et al. [20] investigated WI effects on OFC characteristics in a dual-injection SI engine fuelled
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with gasoline. The research indicated that all three fuel injection conditions of GDI, 50%
PFI plus 50% GDI and PFI would lead to different performances of cylinder pressure and
combustion phasing by changing the value of WI mass, timing, or temperature. It demon-
strated that appropriate WI strategies would be beneficial in optimising key combustion
characteristics, which leads to relatively low fuel consumption.

From existing studies of OFC engines, the WI strategy has been proven as a potential
benefit for the combustion process and thermal efficiency. Most of these studies focused on
engines fuelled with propane, N-heptane, or gasoline. However, almost no research was
reported about the effects of WI strategies on a gasoline direct injection (GDI) engine fuelled
with gasoline–alcohol blends. Furthermore, with more stringent emission regulations in
recent years, ethanol has been a clean burning fuel and common additive worldwide with
the advantages of reducing emissions and enhancing anti-knock capacity.

Therefore, a quantitative analysis was provided in this study for investigating the
WI mass and timing effects on OFC characteristics in a GDI engine fuelled with E10 (10%
ethanol and 90% gasoline in mass, which is 9.3% ethanol and 90.7% gasoline in volume).
The impacts of WI on OFC GDI engines fuelled with the gasoline−ethanol blend were
initially explored. The findings of this study will significantly contribute to understanding
the role of WI in the OFC process. Furthermore, the findings will provide novel information
and theoretical guidance for improving the fuel economy of GDI engines fuelled with E10
under OFC mode.

2. Research Approach and Numerical Method
2.1. Engine and Experimental Facilities

The engine test was conducted on a 2.0-litre turbocharged four-cylinder GDI engine.
The details of the engine technical specifications are listed in Table 3, and the schematic
diagram of the engine testbed is presented in Figure 2.

Table 3. Engine specifications.

Item Content

Engine type Four-cylinder; four-stroke
Bore × Stroke (mm) 82.5 × 92
Displacement (L) 2.0
Fuel system GDI
Intake system Turbocharged
Compression ratio 9.6:1
Rated speed (rpm) 5500
Rated power (kW) 160
Maximum torque (N·m) 320

During the test, an electrical dyno and a programable electronic control unit (ECU)
were mainly used to control the key engine operating parameters, such as speed, torque,
ignition, and fuel injection timing. The transient cylinder pressure traces were measured
with plug-type transducers (AVL-GH13Z), an amplifier (Kistler 5018A), and a combustion
analyser (AVL 641).

To eliminate the cycle-to-cycle fluctuations’ interference, the average cylinder pressure
from two hundred consecutive cycles was used in this work. The spark timings were
optimised to be the minimum advance for maximum brake torque (MBT) or the knock-
limited spark advance (KLSA). Before the test, E10 fuel was obtained by thoroughly mixing
10% ethanol with 90% gasoline in mass (9.3% ethanol and 90.7% gasoline in volume). The
properties of the gasoline and ethanol are listed in Table 4.
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Table 4. Fuel properties [13].

Fuel Type Ethanol Gasoline

Chemical formula C2H5OH C5-C12
Density (20 ◦C) (kg/L) 0.789 0.73
Relative molecular mass 46 95–120
Gravimetric oxygen content (%) 34.78 <1
Research octane number 107 95
Boiling range (◦C) 78 30–200
Kinematic viscosity (20 ◦C) (mm2/s) 1.52 0.71
Dynamic viscosity (20 ◦C) (mPa·s) 1.2 0.52
Low heating value (kJ/kg) 26,900 44,300
Surface tension (20 ◦C) (mN/m) 21.97 22
Latent heat of vaporisation (kJ/kg) 840 370
Laminar flame speed (20 ◦C) (m/s) 0.5 0.33
Stoichiometric air–fuel ratio 8.95 14.7

2.2. Research Approach and Model Description

In this study, an engine model was established and developed by GT-Power, which
has been widely used in the research of SI engines [21,22]. The settings of pipe geometry,
engine displacement, cylinder, valve profile, and other parameters were consistent with
engine specifications. The engine of this study was operated at 2000 rpm-10 bar brake
mean effective pressure (BMEP), a typical medium-high load of engine urban operating
conditions. The conversion from CAC mode to OFC mode in this simulation is achieved
by replacing N2 with CO2. Figure 3 presents the design of the WI components adopted in
this study, which can directly inject water into the cylinder and are more convenient for
practical engine implementation.
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Throughout this study, the WI pressure and water temperature are kept at 60 bar and
298 K, respectively. As shown in Equation (2), WI mass is represented by the water/fuel
ratio (Rw f ) to make the parameters more visual. In addition, the other key parameters are
fixed to control the variables in the investigation process, such as the intake oxygen mass
fraction, intake temperature, and throttle angle.

Rw f =
mwater

m f uel
(2)

where mwater and m f uel are water and fuel injection mass per engine working cycle, respec-
tively.

tWI represents the WI timing. ϕCA50 is the crank angle (CA) at 50% of cumulative
released heat; PM is the peak value of cylinder pressure. The equivalent brake-specific fuel
consumption (BSFCE) is used to assess the fuel consumption, as shown in Equation (3) [23].
Compared to BSFC, the advantage of BSFCE is that different fuels can be converted to
equivalent gasoline consumption based on heating values [24–27].

BSFCE =
τF × 1000

P
× (0.1× HE)× (0.9× HG)

HG
(3)

where P (kW) is engine brake power; τF (kg/h) is the fuel consumption rate of oxygen
and fuel under actual conditions; and HE and HG are the low heating value of ethanol and
gasoline, respectively.

In order to accurately predict the combustion process and heat transfer processes, “SI
turbulent flame combustion” and “Woschni” submodels are chosen in this study, as shown
in Equations (4) and (5) [28].

SL =
(

Bm − B∅(∅−∅m)
2
)( Tu

Tre f

)α(
p

pre f

)β

f (D) (4)

where SL is laminar flame speed; Bm is maximum laminar speed; B∅ is laminar speed
roll-off value; ∅ is in-cylinder equivalence ratio; ∅m is equivalence ratio at maximum
speed; Tu is unburned gas temperature; Tre f is 298 K; p is pressure; pre f is 101.325 kPa; α is
temperature exponent; β is pressure exponent; and f (D) is the dilution effect.

h = 110d−0.2P0.8T−0.53
[

C1cm + C2
VST1

P1V1
(P− P0)

]0.8
(5)

where h is the heat transfer coefficient; d is the cylinder bore diameter; P is the cylin-
der pressure; T is the in-cylinder mean gas temperature; C1 is a constant related to the
airflow velocity coefficient; cm is the mean piston speed; C2 is a constant related to the
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combustion chamber; VS is the cylinder volume; T1, P1, and V1 are cylinder temperature,
pressure, and volume, respectively; and P0 is the cylinder pressure at the beginning of the
compression stroke.

3. Results and Discussion
3.1. Model Validation

In order to ensure the accuracy of the simulation results, it was necessary to perform
model validation. Moreover, the model’s effectiveness was further guaranteed and en-
hanced by checking the time-step sensitivity. Figure 4 presents the comparison of the
cylinder pressure between the experimental and simulation results in the conditions of
2000 rpm-2 bar, 2000 rpm-6 bar, and 2000 rpm-10 bar under CAC mode. The corresponding
torques of these conditions are 31.8 N·m, 95.4 N·m, and 159 N·m, respectively. It can be
found that the curves’ peaks of simulation are just around 2% higher than those of the
experiment. Moreover, the peaks’ locations of the relevant curves are well matched. In
general, the overall trends of cylinder pressure match well, indicating that the model is
capable of making a reliable prediction.

3.2. Quantitative Analysis of WI Mass on OFC Performance

In this section, the first step is to optimise the engine spark timing to be MBT under
OFC mode without WI. The relevant trends for BSFCE and ϕCA50 can be seen in Figure 5.

With the spark timing advances from −58◦CA to −72◦CA, BSFCE decreases from
321.078 g/kWh to 311.35 g/kWh, which is the lowest value of the presented curve. Mean-
while, ϕCA50 has an apparent change of 8.6◦CA, which advances from 11.8◦CA to 3.2◦CA.
However, with further advancing spark timing from −72◦CA to −90◦CA, BSFCE shows an
obvious growing trend and reaches 320.827 g/kWh at −90◦CA spark timing. ϕCA50 shows
a monotonous decrease tendency from 3.2◦CA to −6.2◦CA. The deterioration of BSFCE is
closely related to the excessive early ϕCA50, which would negatively impact the effective
use of energy, leading to a deterioration in BSFCE. Hence, it is found that −72◦CA is the
optimal spark timing, which was fixed as a base in this study.
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Figure 4. Comparison of cylinder pressure in the conditions of 2000 rpm-2 bar, 2000 rpm-6 bar, and
2000 rpm-10 bar. (a) 2000 rpm-2 bar, (b) 2000 rpm-6 bar, (c) 2000 rpm-10 bar.

In order to explore the effects of WI mass on OFC performance, this section mainly
evaluates BSFCE, in-cylinder temperature, heat-release rate (HRR), PM and ϕCA50 under
different Rw f . In addition, to focus on the quantitative analysis of WI mass, tWI is fixed at
−60◦CA in the study of this section.

As shown in Figure 6, Rw f has a significant influence on BSFCE. Compared to other
conditions, a relatively low level of BSFCE can be found under the condition of zero
water injection (Rw f = 0). By increasing Rw f from 0 to 0.2, BSFCE shows a monotonically
decreasing trend and reaches a minimum of 310.836 g/kWh at Rw f = 0.2. This phenomenon
can be attributed to the increase in oxygen concentration caused by injecting water [14].
When Rw f is larger than 0.2, a rebound trend occurs. By further increasing Rw f , BSFCE
rises rapidly and achieves a maximum of 323.445 g/kWh at Rw f = 0.9. Afterwards, BSFC
stablises at approximately 323 g/kWh, indicating that the deterioration is counteracted
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by increased oxygen concentration. The variation of Rw f can be further explained and
explored through the results of the combustion characteristics, as follows.
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Figure 5. BSFCE and ϕCA50 with varying spark timings.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 17 
 

 
Figure 6. Effects of 𝑅  on BSFCE. 

Figure 7 shows the effects of 𝑅  on the in-cylinder temperature. The shapes and 
locations of these in-cylinder temperature curves are generally similar. However, a down-
ward trend can be found by increasing 𝑅 . The maximum in-cylinder temperature de-
creases from 2227 K to 2108 K with the increase in 𝑅  from 0 to 0.3. Subsequently, the 
maximum values reduce to 2001 K, 1950 K, and 1941 K under the conditions of 𝑅  = 0.6, 𝑅  = 0.9, and 𝑅  = 1.2, respectively. This trend is mainly attributed to the enhanced 
effects of heat absorption with a large amount of vapourised water, which could effec-
tively decrease the in-cylinder temperature.  

 
Figure 7. Effects of 𝑅  on in-cylinder temperature. 

With the increase in 𝑅 , HRR shows a similar tendency with that of the in-cylinder 
temperature, as presented in Figure 8. Under the conditions of 𝑅  = 0 or 𝑅  = 0.3, the 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
305

310

315

320

325

330

323.445

310.836

Rwf

BS
FC

E 
(g

/k
W

h)

311.35

-40 -20 0 20 40 60
200

600

1000

1400

1800

2200

2600
 Rwf = 0

 Rwf = 0.3

 Rwf = 0.6

 Rwf = 0.9

 Rwf = 1.2

Te
m

pe
ra

tu
re

 (K
)

Crank Angle (°CA)

Figure 6. Effects of Rw f on BSFCE.

Figure 7 shows the effects of Rw f on the in-cylinder temperature. The shapes and loca-
tions of these in-cylinder temperature curves are generally similar. However, a downward
trend can be found by increasing Rw f . The maximum in-cylinder temperature decreases
from 2227 K to 2108 K with the increase in Rw f from 0 to 0.3. Subsequently, the maximum
values reduce to 2001 K, 1950 K, and 1941 K under the conditions of Rw f = 0.6, Rw f = 0.9,
and Rw f = 1.2, respectively. This trend is mainly attributed to the enhanced effects of heat
absorption with a large amount of vapourised water, which could effectively decrease the
in-cylinder temperature.
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Figure 7. Effects of Rw f on in-cylinder temperature.

With the increase in Rw f , HRR shows a similar tendency with that of the in-cylinder
temperature, as presented in Figure 8. Under the conditions of Rw f = 0 or Rw f = 0.3, the
peaks of the HRR curves are higher than for other conditions. The variations of in-cylinder
temperature and HRR suggest that WI could obviously inhibit the heat release process of a
GDI engine fuelled with E10 under OFC mode.
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Figure 8. Effects of Rw f on HRR.

Regarding the PM and ϕCA50, it can be seen that by increasing Rw f from 0 to 0.6, PM
has a gradual reduction from 54.6 bar to 49.8 bar and ϕCA50 is postponed from 3.2◦CA
to 5.7◦CA, as shown in Figure 9. Moreover, when Rw f is larger than 0.6, PM and ϕCA50
are generally stable. This demonstrates that although a large amount of injected water
could provide more working medium and a higher oxygen concentration, the combustion
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phasing is still retarded because of the strong cooling effects during water vaporisation,
leading to an adverse impact on BSFCE.
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Figure 9. Effects of Rw f on Pmax and ϕCA50.

3.3. Quantitative Analysis of WI Timing on OFC Performance

As a key influencing factor, the effects of tWI on OFC performance should also be
clearly noted. Figure 10 shows the impacts of tWI on BSFCE. In general, under the
conditions of small Rw f , BSFCE remains at a relatively stable level by changing tWI . In
particular, BSFCE is largely unaffected by tWI when Rw f is 0.1 and 0.2. The lowest value of
BSFCE is 310.735 g/kWh, which appears at tWI = −100◦CA and Rw f = 0.1.
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However, under the conditions of large Rw f , an apparent deterioration of BSFCE
can be found with an inappropriate tWI . For example, when Rw f = 0.6, BSFCE could be
increased to 320.992 g/kWh and 319.726 g/kWh for tWI = −100◦CA and tWI = −30◦CA,
respectively. The gap in BSFCE between tWI = −100◦CA and tWI = −60◦CA can be up to
around 6.3 g/kWh. This demonstrates that BSFCE is particularly sensitive to tWI under high
Rw f conditions, which should be of concern for a GDI engine operating under OFC mode.

To explore the reasons for the variation in BSFCE affected by tWI , the change in HRR
is studied under Rw f = 0.1 and Rw f = 0.6, as shown in Figure 11. The overall trend is that
HRR could be influenced by continuously changing tWI , and the degree of influence can be
enhanced with a higher Rw f . When Rw f = 0.1, the HRR peak only increases by 2 J/◦CA,
while the phase just advances from 5.6◦CA to 4.4◦CA. Under Rw f = 0.6, as tWI postpones
from−80◦CA to−40◦CA, the phase of the HRR peak monotonically advances from 7.2◦CA
to 4.2◦CA. Meanwhile, the peak of HRR is increased by approximately 7 J/◦CA. This
suggests that the excessively advanced tWI could result in sufficient water vaporisation,
which postpones the heat release and combustion phase. Therefore, it is essential to look for
an optimal tWI to increase thermal efficiency, especially under the conditions of large Rw f .

As shown in Figure 12, the in-cylinder temperature can be influenced by the variation
of tWI . Under Rw f = 0.1, as tWI postpones from −80◦CA to −40◦CA, the maximum in-
cylinder temperature increases from 2175 K to 2191 K, with an improvement of around 16 K.
Furthermore, the degree of influence on in-cylinder temperature is increased significantly
with a higher Rw f . When the Rw f reaches 0.6, the relevant improvement of maximum
in-cylinder temperature can be up to 64 K. This can be attributed to the fact that stronger
cooling effects can be achieved with a relatively high amount of injected water under
tWI = −80◦CA.

Figure 13 shows the variation in PM and ϕCA50 with different tWI . The PM shows a
monotonic increasing trend as tWI postpones from −100◦CA to −30◦CA. Under Rw f = 0.1,
PM has an improvement of around 2.3 bar. Meanwhile, the change in magnitude is about
11 bar under Rw f = 0.6. On the contrary, ϕCA50 shows a highly advanced trend by postpon-
ing tWI . When tWI postpones from −100◦CA to −30◦CA, an advance of about 1.5◦CA can
be seen in ϕCA50 under Rw f = 0.1, whilst an advance of about 7◦CA occurs under Rw f = 0.6.
By postponing tWI , the variation characteristics of PM and ϕCA50 are mainly because the
short water vaporisation period weakens the inhibition impact on combustion.

From Figure 13, it is notable that when tWI is −40◦CA and −30◦CA, the distinction of
these combustion characteristics between Rw f = 0.1 and Rw f = 0.6 become quite slight. That
is because under the conditions of a late tWI , the effects of tWI on PM and ϕCA50 become
relatively small due to the shorter water vaporisation period before combustion.
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Figure 11. Effects of tWI on HRR. (a) Rw f = 0.1. (b) Rw f = 0.6.
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Figure 12. Effects of tWI on in-cylinder temperature. (a) Rw f = 0.1. (b) Rw f = 0.6.
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Figure 13. Effects of tWI on Pmax and ϕCA50.

4. Conclusions

The OFC technique has shown great potential in achieving zero CO2 emissions from
conventional GDI engines. To further improve the fuel economy of engines under OFC
mode, this study numerically investigates the effects of WI strategies on OFC characteristics
in a GDI engine fuelled with E10. The main conclusions can be listed as follows.

1. Under OFC mode without WI strategy, the optimum BSFCE is 311.35 g/kWh by
advancing spark timing to −72◦CA.

2. BSFCE shows a monotonically decreasing trend by increasing Rw f from 0 to 0.2, due
to the increasing oxygen concentration caused by the decomposition of water.

3. With the increase in Rw f from 0.2 to 0.9, strong cooling effects significantly decrease
the in-cylinder temperature and postpone the heat release. Hence, a deterioration is
caused owing to a larger Rw f .

4. In general, BSFCE is largely unaffected by tWI when Rw f is 0.1 and 0.2. BSFCE can be
optimised to 310.735 g/kWh under the condition of tWI = −100◦CA and Rw f = 0.1.

5. Under the conditions of a late tWI , the effects of tWI on PM and ϕCA50 become relatively
small due to the shorter water vaporisation period before combustion.

6. An appropriate tWI is very important to improve the OFC performance under large
Rw f conditions. When Rw f reaches 0.6, the gap in BSFCE between tWI = −100◦CA
and tWI = −60◦CA can be up to around 6.3 g/kWh.

According to the findings of this study, water injection mass and timing have been
proven to effectively impact the combustion characteristics and fuel economy of GDI
engines fuelled with E10 under OFC mode. Several proposals can be forwarded as follows
regarding the prospects for future studies in the specific knowledge area.

First, some other key parameters of WI strategy can be explored and studied for GDI
engines under OFC mode. For instance, increasing the WI pressure could be a potential
solution to optimise the combustion process and fuel efficiency by shorting the WI duration
under the conditions of fixed WI mass. The change in WI temperature is also a factor that
affects combustion quality, which can be a research direction.

Second, it is necessary to investigate OFC GDI engines fuelled with a high ethanol
ratio in the gasoline–alcohol blends. Changing the ethanol ratio in blends impacts the
fuel’s physicochemical properties, thereby resulting in a significant discrepancy in engine
performance.

Third, it is also valuable to study the most suitable EGR rate to impact fuel perfor-
mance for OFC engines fuelled with gasoline–alcohol blends. In the meantime, oxygen
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consumption rates should be noted, which will be a cost factor during the operation of
OFC engines.
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Abbreviations

BEVs Battery Electric Vehicles
BMEP Brake Mean Effective Pressure
BSFC Brake Specific Fuel Consumption
BSFCE Equivalent Brake-Specific Fuel Consumption
CA Crank Angle
CAC Conventional Air Combustion
CCS Carbon Capture and Storage
CO2 Carbon Dioxide
E10 10% ethanol and 90% gasoline in mass
ECU Electronic Control Unit
EGR Exhaust Gas Recirculation
ERDF European Regional Development Fund
GDI Gasoline Direct Injection
HCCI Homogeneous Charge Compression Ignition
HRR Heat Release Rate
ICE Internal Combustion Engine
ICRC Internal Combustion Rankine Cycle
KLSA Knock Limited Spark Advance
MBT Maximum Brake Torque
OFC Oxy-Fuel Combustion
PFI Port Fuel Injection
SI Spark Ignition
WI Water Injection
Rw f Water–Fuel mass ratio
tWI Water Injection Timing
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