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Abstract: The technology of aero-engine gas-path fault diagnosis is an important way to improve
flight safety and reliability and reduce maintenance costs. With the maturity of the new-generation
engine distributed control system (DCS), uncertainties such as bus packet loss, time delay, and
node function degradation have increasingly highlighted new challenges to engine fault diagnosis.
At present, linear Kalman filter (LKF) is widely researched and used in engine fault detection
and isolation (FDI), but its robustness has proved to be not strong. However, the sliding mode
observer (SMO) is not only capable of fault reconstruction but also robust to system uncertainties and
disturbances due to its unique discontinuous switching term, which tends to be an effective way to
achieve robust fault diagnosis for aero engines and DCS with many uncertainties. This paper initially
develops a distributed bus packaging model that supports time-delay and packet-loss simulating and
timing planning based on SimEvents, providing a basis for the model-based design and verification.
Then the SMO is adopted to design a robust gas-path diagnosis method for engine DCS, and the
robust observing accuracy is improved by combining high-order sliding mode theory, LMI optimized
observation matrix, and variable gain. The simulation results show the effectiveness and advantages
in engine DCS application scenarios.

Keywords: aero-engine; distributed control system; bus; sliding mode observer; uncertainties

1. Introduction

The safety and reliability of aero-engines is an important premise to ensure flight safety.
Once fault or failure occurs, it may not only mean huge economic losses but even lead to
major catastrophic accidents. At present, aero-engine maintenance is not only concerned
with accident prevention but gradually emphasizes the improvement of performance
reliability. The maintenance methods are also transitioned from post-maintenance, timed
maintenance to condition based maintenance (CBM) based on real-time monitoring. The
performance monitoring technology is used to monitor engine performance parameters in
real time or regularly, so as to optimize the maintenance timing and schedule, which not
only ensures engine reliability, but also greatly saves operating costs [1,2].

Over repeated operations, the gas-path performance of aero-engines gradually deterio-
rates. Common causes of gradual degradations include the compressor fouling, increase in
the blade-tip clearance in the turbine, labyrinth seal leakage, wear and erosion, and corro-
sion in the hot sections. In addition, foreign-object damage, caused by impingement of such
foreign-objects as birds, pieces of ice, and runaway debris, will cause abrupt performance
shifts. The variations of efficiency and flow capacity of gas-path components, called “health
parameters”, capture the nature of engine performance. They deviate from the nominal
baseline gradually with time as engine parts wear from regular usage, and also abruptly
due to component fault events. The health parameters cannot be directly measured during
the flight, but fortunately, their degradations cause changes in the observable parameters,
such as temperature, pressure, and rotational speed. Additionally, sensors in aircraft en-
gines operate in severely hostile conditions, thus they are prone to faults and failures. Any

Sustainability 2023, 15, 10278. https://doi.org/10.3390/su151310278 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151310278
https://doi.org/10.3390/su151310278
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-2965-5380
https://doi.org/10.3390/su151310278
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151310278?type=check_update&version=1


Sustainability 2023, 15, 10278 2 of 18

undetected sensor faults may cause disastrous consequences to engine control loops, and
even threaten flight safety. Therefore, the evaluation of engine performance based on the
health parameters estimation and sensor fault detection helps operators determine the
regular maintenance schedule and arrange replacement of components when performance
reaches unacceptable levels.

Under this background, an engine health management system (EHM) has been put
forward [3,4]. EHM is a real-time management system integrating the latest engine fault
detection, analysis, and diagnosis technology, which is the key technology to realize the
CBM of aero-engine. In the EHM system, gas path fault diagnosis technology plays an
important role [5]. Gas path fault diagnosis technology uses the parameter information
collected by the engine gas path sensor, combined with the filter, intelligent algorithm,
and other ways to analyze the current health condition of the engine gas path, and detects
and locates faults. Typical fault diagnosis algorithms include analytic model-based [6–8]
methods (least square method, Kalman filter) and data-driven [9–11] methods (neural
network, wavelet analysis, fuzzy algorithm). Each of these methods has its own advantages
and disadvantages, but the model-based gas-path fault diagnosis method is based on the
physical equation reflecting the aero-thermodynamic properties of the engine to build a
model, and taking engine faults into the model can achieve more accurate quantitative
performance monitoring, and it has been widely concerned and studied.

For the aero-engine, applying distributed control systems [12] in the future, the current
gas-path fault diagnosis methods mainly have the following problems: First, since the
engine is a complex and variable strong nonlinear system, the modeling error is inevitable,
and the distributed system causes the delay and packet loss; therefore, the diagnosis system
faces strong uncertainty. How to achieve robust estimation and diagnosis needs to be
resolved in model-based approaches. Second, traditional filter/observer methods regard
the performance parameter as a state, which needs to assume that its derivative is zero. This
assumption is obviously contrary to the fact of fast time-varying faults, which leads to the
problem of slow convergence of the estimator when estimating abrupt fault cases. Third,
aero-engines are often maneuvered in a wide flight range, while the existing diagnostic
methods are mostly based on steady-state data. This is because the engine data in the
transition state changes greatly, which requires high diagnostic robustness, but it is difficult
to meet in existing methods.

In recent years, the application of sliding mode observer (SMO) in fault diagnosis
has been widely studied. This is due to the fault reconstruction capability of SMO and
its unique discontinuous switching terms, which ensure the robustness of the system to
model uncertainties and disturbances. There are many researches and applications of
sliding mode observer in the fault diagnosis of motor [13], ship [14], robot [15], and aircraft
control systems [16]. In the field of aviation, Alwi [17,18] designed a robust sliding mode
observer for actuator faults of aircraft control systems, and realized the fault diagnosis
within the full envelope range of aircraft by extending the sliding mode observer to the LPV
(linear parameter varying) model. Nader [19] designed an adaptive sliding mode observer
for fault diagnosis of gas turbine sensors, where the degraded performance was taken
into account, and accurate fault reconstruction can be realized throughout the lifespan.
Loza [16] designed a non-homogeneous high-order sliding mode observer for sensor fault
diagnosis of transport aircraft with good simulation results. Edwards [20] designed a
sensor fault diagnosis system for civil aircraft by using the sliding mode observer and
verified it on the flight simulator of an Airbus. At present, the application of the sliding
mode observer is mainly focused on the aircraft control/diagnosis system, and the research
on the aero-engine gas-path fault diagnosis can be rarely found. Previously, our research
team [21,22] proposed a robust diagnosis method based on unknown input reconstructed
sliding mode observer for aero-engine gas-path diagnosis, which could realize real-time
fault reconstruction by using fault information contained in discontinuous switching terms.
The assumption in LKF that the derivative of reconstructed signals is zero is avoided, which
improves the diagnosis speed and robust estimation accuracy.
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However, the application of sliding mode observer technology to the robust diagnosis
of aero-engine DCS is rarely reported. In fact, the robust fault diagnosis capability of
the sliding mode observer is an effective way to achieve a robust estimation of gas-path
performance and robust fault diagnosis for aero-engine DCS with a lot of uncertainties. At
present, one of the bottlenecks restricting the engineering application of gas path diagnosis
technology is that the system uncertainty restricts the technical reliability. Therefore, the
research of distributed system robust diagnosis technology based on sliding mode observer
is of great practical significance to solve the core problem and promote the application of
aero-engine DCS diagnosis.

2. Aero Engine Dynamic Model

The discussed engine plant in this paper is a dual-shaft separated-exhaust turbofan
engine with a high bypass ratio. The variable stator vane angle (θVSV) and the variable bleed
valve angle (θVBV) are adjustable. The main components and structural diagram are shown
in Figure 1. The notations used in this paper and their descriptions are shown in Table 1.
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Figure 1. The structure of a dual-shaft separated-exhaust turbofan engine.

Table 1. The notations and their descriptions.

Notation Description

H Height
Ma Mach number
NL Low pressure rotor speed
NH High pressure rotor speed
h Health parameter vector

SE1 (h1) LPC efficiency
SE2 (h2) HPC efficiency
SE3 (h3) HPT efficiency
SE4 (h4) LPT efficiency
SW1 (h5) LPC flow capacity
SW2 (h6) HPC flow capacity
SW3 (h7) HPT flow capacity
SW4 (h8) LPT flow capacity

f Sensor fault
Wf Fuel flow rate

θVSV Variable stator vane angle
θVBV Variable bleed valve angle
P25 HPC inlet pressure
T25 HPC inlet temperature
P3 Combustor inlet pressure
T3 Combustor inlet temperature

T495 Exhaust gas temperature

In this paper, the nonlinear mathematical model of the engine is established by the
component analytic method, and the nonlinear system can be expressed as:
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.
x = f (x, u, v)
y = g(x, u, v)

(1)

where x ∈ Rn is the state and y ∈ Rp is the output. u ∈ Rm is the control input and v
denotes the external parameters (flight condition). The function f and g are, respectively, the
engine process and measurement expressions. In the discussed engine plant, x = [NL, NH]

T,
y = [NL, NH, P25, T25, P3, T3, T495]

T and u = [Wf, θVSV, θVBV]
T.

The health condition of engine gas-path components (abrupt fault or gradual perfor-
mance degradation) can be characterized by component performance parameters. There-
fore, the health parameter h is introduced to quantify the degree of sudden and gradual
performance degeneration of each component after fault occurs. Since the inner ducted
fan is driven by the same shaft with and the LPC, its function is equivalent to the first
stage of the LPC. In the component-level model, the inner ducted fan and the low-pressure
compressor are often modeled as one component, while the bypass fan is modeled as
a separate component. Since all seven sensors involved in this paper are located in the
inner duct of the engine, the health parameters of the outer bypass are not considered.
In addition, the combustion chamber efficiency generally varies little during the engine
service life, therefore it is also not considered. Finally, the health parameter h is specifically
selected as the efficiency variation coefficient SE and the flow variation coefficient SW of
the rotating component, which is defined as follows:

SEi =
ηi
η∗i

, SWi =
Wi
W∗i

(2)

where ηi, wi are the actual efficiency and flow rate of the component, while η∗i , w∗i are the
corresponding ideal values, and the subscript i (i = 1, 2, 3, 4) represents the number of the
component. Limited by the positions and quantities of actual engineering sensors, health
parameters have to be selected [19,20]. In this paper, the flow rate of the low-pressure
turbine is abandoned because there are no LPT-related sensors, and the health parameter
vector is chosen as h = [SE1 SW1 SE2 SW2 SE3 SW3 SE4]T.

In this paper, the Newton–Raphson (N–R) method is adopted to obtain the component-
level model (CLM) of the aero-engine. The modeling technique of the CLM has been
relatively mature, and the calculation formula of each component can be referred to in
the literature [23]. Since the nonlinear model is seldom used in the design of control law
and fault diagnosis algorithm and the linear algorithm has been successfully applied to
practical control and diagnosis problems, a practical design method is to design linear
control law (or diagnostic filter) for steady-state points, and then add nonlinear features,
such as gain scheduling and switching, so that it can be applied to full envelope and state.
For various linear control and diagnosis algorithms, the linear state variable model (SVM)
is the basis of their design. Taylor expansion at a steady point (x0, u0, y0) of the engine and
retaining constant and first-order terms yields the following SVM:

.
x = f (x, u) ≈ f (x0, u0) +

∂ f
∂x

∣∣∣(x0,u0)
∆x + ∂ f

∂u

∣∣∣(x0,u0)
∆u

y = g(x, u) ≈ g(x0, u0) +
∂g
∂x

∣∣∣(x0,u0)
∆x + ∂g

∂u

∣∣∣(x0,u0)
∆u

(3)

and Equation (3) can be further depicted as

∆
.
x = A∆x + B∆u

∆y = C∆x + D∆u
(4)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m are the system matrices with appropriate
dimensions. Here, n = 2, m = 3, p = 7 and ∆x = x− x0, ∆y = y− y0, ∆u = u− u0. For
simplicity, the sign “∆” in Equation (4) is omitted in the following deductions. In this paper,
a hybrid fitting method is applied to obtain the SVM, which is depicted in [24].
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3. Integrated Model of Engine Distributed Control System

The discussed architecture of the engine control system is a partial DCS with high
bandwidth and high fault tolerance TTP/C bus. The smart nodes (SN) include engine
electronic central controller (EECC), front data concentrator (FDC), rear data concentrator
(RDC), smart main fuel pump (MFP), smart actuator, etc., which are all in dual redundancy
in hardware and software. Sensor signals are acquired, converted, filtered, and diagnosed
by FDC and RDC, then information flow into EECC to calculate the control schemes and
demands, which are the inputs of pump and actuators. Finally, currents are exported by
controllers affiliated to pump and actuators to realize the closed-loop control (Figure 2).
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Compared with the traditional centralized control system, the distributed control sys-
tem of aero-engines has the characteristics of distributed control functions, intelligent nodes,
and a lightweight system. It significantly reduces the system coupling, total weight, and
EECC calculating demands, and improves the anti-pollution, high-temperature resistance,
anti-interference capability of accessories, system maintainability, and reliability, while also
providing the basis for the application of advanced control technology. However, the exist-
ing aero-engine control system modeling methods cannot meet the requirements of DCS
research. Since in DCS, control programs and data flow programs are implemented asyn-
chronously, and system synchronization is achieved through the bus network; therefore,
control system data flow is more complex, and system design needs to comprehensively
evaluate the bus performance, timing scheduling, delay packet loss, and other influences
on the system control performance.

Figure 3 describes the fundamental principle of TTP/C bus protocol. The TTP/C
bus is a kind of time-triggered protocol, featured with TDMA (time division multiple
access). The physical bus has dual channels in architecture, and any SN in the network
broadcast its information to each channel. A TTP SN includes a TTP controller, a host
controller (including AS and OS), and a TTP CNI (container network interface). The MEDL
information is stored in a TTP controller, which contains information of the cluster cycle,
TDMA round, node slot allocation, and all scheduling in the network.

In order to deeply study the distributed control system of the aero-engine, it is nec-
essary to study the integrated modeling method. Although the Truetime toolbox [25]
is a bus-specific simulation tool, its scalability is poor, and it is not suitable for system
simulation including complex timing planning. Moreover, it does not support fixed-step
simulation, and it is not suitable for engine environment modeling. SimEvents® tool-
box (Matlab SimEvents R2017a) is a discrete event system modeling and simulation tool
in Simulink® (Matlab Simulink R2017a), in which the bus signal flow can be simulated
through “entity” to build a distributed network model so that simulating the bus net-
work characteristics in DCS can be realized. Using SimEvents can solve the problems
such as time-triggered TTP/C bus simulation and random bus fault injection simulation,



Sustainability 2023, 15, 10278 6 of 18

and realize the system-integrated simulation of engine control, system timing, and dis-
tributed bus behavior. In addition, it supports bus fault random injection during operation,
which provides convenience for function design, timing design, and security analysis of
distributed architecture.

Figure 3. The architecture of TTP/C bus and Smart Node.

In this paper, the TTP/C bus network model and node data transceiver model are
established by the SimEvents toolbox. Figure 4 shows the TTP controller model of the
smart node. A TTP controller model is combined with a MEDL module, communication
network interface (CNI) module, receiver module, transmitter module, and bus guardian
(BG) module. There are two “entities” in this network model: one is the TTP bus data, and
the other is the MEDL information. The MEDL decides the TTP controller which is the right
time slot to broadcast data onto TTP bus, and CNI is responsible for the interaction with the
host controller. The models of the engine, sensors, host control CPU of SNs, and actuators
are established by the Simulink toolbox and the Stateflow toolbox. Finally, all related
models are gathered and realized in the Simulink platform to build the integrated engine
DCS model (shown in Figure 5), to meet the development and verification requirements of
an aero-engine distributed control system. The integrated engine DCS model features dual
channel system architecture, and each channel can individually control the engine with full
authority and functionality. Each channel includes a central controller (EEC node), a front
digital concentrator (DC1 node), a rear digital concentrator (DC2 node), sensors, and smart
actuators. Pressure sensors are integrated in the digital concentrator. Other sensors such as
LVDT, RVDT, thermal resistance, or thermocouple are traditional sensors, and their raw
signals are collected by a digital concentrator to conduct AC/DC conversion and diagnosis,
then packaged to broadcast to TTP network. The central controller is the brain of the whole
system, which calculates the big closed-loop demands and makes decisions for the whole
of the manipulations. The smart actuator node such as smart electric pump and RDDV
valve receive the demands and control the fuel or location in small closed-loop.
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4. Fault Diagnosis of Aero-Engine Distributed Control System Based on Sliding
Mode Observer

Consider aero-engine state space model with health parameters and sensor faults:

.
x(t) = Ax(t) + Bu(t) + Lh(t)
y(t) = Cx(t) + Du(t) + Mh(t) + f(t)

(5)
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where L ∈ Rn×q, and M ∈ Rp×q (q = 7) are constant coefficient matrices, and f denotes
the sensor fault vector with dimension equal to y. Since y = [NL, NH, P25, T25, P3, T3, T495]

T,
f = [ f1, f2, f3, f4, f5, f6, f7]

T, where fi denotes the deviation fault of each sensor. Other
definition and dimension of each appropriate dimension matrix and system variable
corresponding to the Equation (5) have been given by the analysis in Section 2, where the
health parameter and its derivative and the sensor fault and its derivative are unknown
but bounded:

‖f(t)‖ < α1, ‖
.
f(t)‖ < β1, ‖h(t)‖ < α2, ‖

.
h(t)‖ < β2 (6)

where α1, α2, β1, and β2 are known real scalars. The notation ‖·‖ represents the Euclidean
norm for vectors and the induced spectral norm for matrices.

In the existing literature, robust sliding mode reconstruction often requires the output
dimension to be larger than the fault vector dimension. However, in the case discussed
here, there are seven available sensors, and the dimension of h and f are both 7. Therefore,
either in component fault or sensor fault cases, there is no such robust design freedom
mentioned in the relevant literature. In view of this problem, a robust SMO design method
for system with limited number of sensors using model construction and coordinate
transformation is proposed in this chapter, so as to achieve robust fault reconstruction
under any bounded uncertainty.

4.1. Introduction of Robust Design Degrees of Freedom under Limited Sensor Conditions

This section is concerned with the design of a SMO for an uncertain state variable
model (SVM) of an aero-engine subject to component fault, and the result of which can be
also applied to sensor fault diagnosis. A representative of the engine dynamic nonlinear
model in a small range around steady-state operating point can be expressed as

.
x(t) = Ax(t) + Bu(t) + Lh(t) + Q1ξ(t, x, u)
y(t) = Cx(t) + Du(t) + Mh(t) + Q2ξ(t, x, u)

(7)

where Q1 ∈ Rn×r and Q2 ∈ Rp×r represent the uncertainty distribution matrix, while
ξ(t) ∈ Rr×1 denotes uncertainties. Assume ξ(t) and its first-time derivatives are unknown
but bounded

‖ξ(t, x, u)‖ < π1, ‖
.
ξ(t, x, u)‖ < π2 (8)

where π1, π2 are known real scalars. Before observer design, a linear transformation is
introduced to y(t) to create

yV(t) = Vy(t) (9)

where V ∈ R(p+1)×p is a designed matrix with a full column rank, and yV(t) ∈ R(p+1)×1 is
the augmented output. Since V has a full column rank, the left pseudo-inverse of V is well
defined. Then y(t) can be directly calculated as

y(t) =
(

VTV
)−1

VTyV(t) (10)

This indicates a one-to-one correspondence between y(t) and yV(t). In Equation (7),
y(t) is substituted by yV(t) to obtain the state-space equation of the following form

.
x(t) = Ax(t) + Bu(t) + Lh(t) + Q1ξ(t, x, u)
yV(t) = VCx(t) + VDu(t) + VMh(t) + VQ2ξ(t, x, u)

(11)

In this way, yV(t) exceeds h(t) in dimension, and yV(t) retains all measurement
information in y(t). Although yV(t) has no physical meaning in itself, it creates a degree of
freedom in robust design structurally. Then h(t) is regarded as the unknown input of the
system, and the unknown input sliding mode observer can be constructed to reconstruct
the fault in real time.
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In order to make h(t) and ξ(t, x, u) appear only in the system equation, according to
reference [26], a filter transformation and a coordinates change should be introduced to
Equation (11) to get the following state-space equation:

.
xb(t) = Abxb(t) + Bbu(t) + Hbh(t) + Qbξ(t)
zat(t) = Cbxb(t)

(12)

Equation (12) is a canonical form from [26], which constitutes a useful starting point
for observer design. The detail deduction can be found in the Appendix A.

4.2. Robust Second-Order SMO with Super-Twisting Algorithm

Define ez(t) = ẑat(t)− zat(t) as output estimation error, where ẑat(t) is the estimate
value of zat(t). The proposed SMO has the following structure

.
x̂b(t) = Abx̂b(t) + Bbu(t)−Glez(t) + Gnν(t)
ẑat(t) = Cbx̂b(t)

(13)

where x̂b(t) is the estimate value of xb(t). Gl ∈ R
∼
n×∼p , Gn ∈ R

∼
n×∼p are linear gain matrix

and nonlinear gain matrix, respectively. The definition of
∼
n and

∼
p can be found in the

Appendix A. Define ez(t) =
[
ez,1(t), ez,2(t), .., e

z
∼
,p
(t)
]T

, then the discontinuous switching

term ν(t) =
[
ν1(t), ν2(t), .., ν∼

p
(t)
]T

is defined component-wise as

vi(t) = −ψisign(ezi(t))|ezi(t)|1/2 + di(t).
di(t) = −ςisign(ezi(t))− ϕiezi(t) , i = 1, 2, .., p̃

(14)

where ψ, ς, and ϕ are design scalars to be chosen. Assume that Gn has the structure

Gn =

[
−ETT

TT

]
(15)

where E ∈ R(
∼
n−∼p)×∼p represents the design freedom. A special structure is imposed on E

E = [E1, 0] (16)

with E1 ∈ R(
∼
n−∼p)×(∼p−∼q). Obviously only when

∼
p >

∼
q (sensor outnumbers fault) E1 (robust

design freedom) could exist. Define e(t) = x̂b(t) − xb(t) as state estimation error. The
following error system is obtained from Equations (12) and (13)

.
e(t) = Abe(t)−Glez(t) + Gnν(t)−Hbh(t)−Qbξ(t, x, u) (17)

According to the form of Cb, e(t) can be partition as
[
eT

1(t), eT
2(t)

]T where e1(t) ∈ R
∼
n−∼p. Let

Gl =

[
Gl1
Gl2

]
where Gl1 ∈ R(

∼
n−∼p)×∼p , and Qb =

[
Qb1
Qb2

]
where Qb1 ∈ R(

∼
n−∼p)×∼r , then the error

system can be written as[ .
e1(t).
e2(t)

]
=

[
Ab11 Ab12
Ab21 Ab22

][
e1(t)
e2(t)

]
−
[

Gl1
Gl2

]
ez(t) +

[
−ETT

TT

]
ν(t)

−
[

0
Hb2

]
h(t)−

[
Qb1
Qb2

]
ξ(t)

(18)

Consider a further coordinate transformation associated with the invertible matrix

TL =

[
Iñ− p̃ E

0 T

]
(19)
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Then

e(t) = TL

[
e1(t)
e2(t)

]
=

[
e1(t) + Eez(t)

ez(t)

]
=

[
e1(t)
ez(t)

]
(20)

Thus, the error system in Equation (17) can be written in the new coordinates as[ .
e1(t).
ez(t)

]
=

[
Ab11 Ab12
Ab21 Ab22

]
︸ ︷︷ ︸

Ab

[
e1(t)
ez(t)

]
−
[

Gl1
Gl2

]
︸ ︷︷ ︸

Gl

ez(t) +
[

0
Ip̃

]
︸ ︷︷ ︸

Gn

ν(t)

−
[

0
Hb2

]
︸ ︷︷ ︸

Hb

H(t)−
[

Qb1
Qb2

]
︸ ︷︷ ︸

Qb

ξ(t, x, u)
(21)

where Ab11 = Ab11 + EAb21, Ab21 = TAb21. Then a choice of the linear gain Gl is of the form

Gl =

[
Gl1
Gl2

]
=

[
Ab12

Ab22 + diag[χ1, χ2, .., χ p̃]

]
(22)

where χ is a scalar to be chosen. Substituting Equation (22) into Equation (20) yields[ .
e1(t).
ez(t)

]
=

[
Ab11 0
Ab21 −diag[χ1, χ2, .., χ p̃]

][
e1(t)
ez(t)

]
+

[
0
Ip̃

]
ν(t)

−
[

0
Hb2

]
h(t)−

[
Qb1
Qb2

]
ξ(t, x, u)

(23)

provided the structure of E in Equation (15),
−
Ab11 can be written as Ab11 + E1Ab211, where

Ab211 is the first
∼
p−∼q row of Ab21. As argued in [27], if condition (2) is satisfied, then the pair

(Ab11, Ab211) is detectable. Suppose that E in accord with Equation (16) has been chosen such

that
−
Ab11 is stable, i.e., there exists a symmetric positive definite matrix P11 ∈ R(

∼
n−∼p)×(∼n−∼p)

such that
AT

b11P11 + P11Ab11 < 0 (24)

The objective is to force the output error ez(t) to zero in finite time and induce a sliding
mode on the sliding manifold

S =
{[

eT
1 (t) eT

z (t)
]T|ez(t) = 0

}
(25)

Considering the structure of ν(t) in Equation (14), and substituting Equation (14) into
Equation (23), the equation related to ez(t) in Equation (23) can be written component-
wise as

.
ezi(t) = −ψisign(ezi(t))|ezi(t)|1/2 − χiezi(t) + Ab21ie1(t)

−Hb2ih(t)−Qb2iξ(t, x, u) + di(t)
.
di(t) = −ςisign(ezi(t))− ϕiezi(t) , i = 1, 2, .., p̃

(26)

where Ab21,i, Hb2,i, and Qb2,i are the ith row of Ab21, Hb2, and Qb2, respectively. By defining
a new variable

d0i(t) = Ab21ie1(t)−Hb2ih(t)−Qb2iξ(t, x, u) + di(t), i = 1, 2, .., p̃ (27)

the Equation (26) can be rewritten as

.
ezi(t) = −ψisign(ezi(t))|ezi(t)|1/2 − χiezi(t) + d0i(t).
d0i(t) = −ςisign(ezi(t))− ϕiezi(t) + φi(t) , i = 1, 2, .., p̃

(28)
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where φi(t) = Ab21,i
.
e1(t)−Hb2,i

.
h(t)−Qb2,i

.
ξ(t). Then

‖φi(t)‖ < ‖Ab21i‖ · ‖
.
e1(t)‖+ ‖Hb2i‖ · ‖

.
h(t)‖+ ‖Qb2i‖ · ‖

.
ξ(t, x, u)‖ (29)

Since Ab11 is stable by assumption in Equation (24), the autonomous system associated
with e1(t) is stable. Consequently both ‖e1(t)‖ and ‖

.
e1(t)‖ are bounded. Provided ‖

.
h1(t)‖

and ‖
.
ξ(t)‖ are bounded, then there exists a sufficiently large ε with which ‖φi(t)‖ < ε is

satisfied. As discussed in [28], choose the scalar gains from Equation (26) as

ψi > 2
√

εi, χi > 0, ςi > εi, ϕ >
χ2(ψ3

i + 5/4ψ2
i + 5/2(ςi − εi)

)
ψi(ςi − εi)

(30)

It can be proven that a sliding motion will take place and
.
ez,i(t) = ez,i(t) = 0 in

finite time.

4.3. The Design of Variable Gain Discontinuous Switching Term

From the form of ν(t) it is obvious that ψ and ς is the nonlinear part gains and they
determine the system chattering level, and the values of ψ and ς are all related with ε.
Therefore, in order to reduce chattering, the variable gain discontinuous switching term is
put forward here, the improved form of observer gain is as

ψi(t) = 2δ
√

ε̂i(t), ςi(t) = δε̂i(t) (31)

where δ > 1 is the safety coefficient, and ε̂i is the estimate value of εi, which is

ε̂i(t) =
∥∥Ab21i

∥∥ · ‖ .
e1(t)‖+ ‖Hb2i‖ · ‖

.̂
h(t)‖+ ‖Qb2i‖ · π2 (32)

In this way, the value of the discontinuous switching term varies depending on ε̂i. In
cases when there is no fault or minor fault, chattering could be restricted to a reasonable
level. Meanwhile, if disturbances or fault are severe, the adaptive gain is able to guarantee
the stability of sliding modes.

4.4. The Solve of Observer Gain by LMI

Once the sliding surface is reached, the error dynamics in Equation (23) are given by

.
e1(t) = Ab11e1(t)−Qb1ξ(t)
0 = Ab21e1(t) + Ip̃νeq(t)−Hb2h(t)−Qb2ξ(t)

(33)

Provided
−
Qb1 = Qb1 + EQb2,

−
Qb2 = TQb2, and

−
Hb2 = THb2, the Equation (33) can be

rearranged and rewritten as

.
e1(t) = (Ab11 + EAb21)e1(t)− (Qb1 + EQb2)ξ(t)
νeq(t) = −TAb21e1(t) + THb2h(t) + TQb2ξ(t)

(34)

where the signal νeq(t) is the so-called equivalent output injection signal. As in [27], νeq(t)
represents the averaged behavior of ν(t) and is required to maintain a sliding motion,
which can be obtained by

.
veq(t) = −Afvveq(t) + Afvv(t) (35)

where A f v is the filter matrix and A f v is in the form of a diagonal matrix with positive
entries where the diagonal elements represent inverse time constants.
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Define a weighting matrix W in the structure of

W =
[
W1 H−1

b0

]
(36)

where W1 ∈ R
∼
q×(∼p−∼q) represents design freedom. Then an estimation signal is defined as

ĥ(t) = WTTνeq(t) (37)

Note that WHb2 = I∼
p
. Multiplying the second equation in Equation (34) with WTT

and rearranging Equation (34) yields

.
e1(t) = (Ab11 + EAb21)e1(t)− (Qb1 + EQb2)ξ(t)

ĥ(t)− h(t) = −WAb21e1(t) + WQb2ξ(t, x, u)
(38)

From Equation (38) it is clear that the transfer function from ξ(t, x, u) to ĥ(t)− h(t) is

G(s) = WAb21(sIn − (Ab11 + EAb21)
−1)(Qb1 + EQb2) + WQb2 (39)

The objective is to minimize the effect of ξ(t, x, u) on the estimation error ĥ(t)− h(t).
In addition, note that the sliding surface can be reached only if Equation (24) is satisfied.
Thus, the design is aimed at stabilizing Ab11 +EAb21 while minimizing the effect of ξ(t, x, u)
on ĥ(t) − h(t). Using the Bounded Real Lemma in [29], if there exists a matrix P11 as

defined in Equation (24), and another matrix P12 ∈ R(
∼
n−∼p)×∼p in the form of

[
P121 0

]
,

where P121 ∈ R(
∼
n−∼p)×(∼p−∼q), such thatP11Ab11 + AT

b11P11 + P12Ab21 + AT
b21PT

12 ∗ ∗
−(P11Qb1 + P12Qb2) −γIr̃ ∗

−WAb21 WQ2 −γIq̃

 < 0 (40)

then
∥∥ĥ(t)− h(t)

∥∥ < γα1. It is a standard LMI problem which can be solved by function
“mincx” in LMI toolbox [29]. Once P11, P12 is synthetized, E is chosen as P−1

11 P121, and
it is obvious Equation (24) is satisfied. Then Gn is obtained and Gl can be calculated as
T−1

l Gl . Although the influence of system uncertainty on the reconstructed signal cannot
be completely decoupled, its transfer function is minimized through LMI optimization.
In addition, if the output vector dimension is equal to the fault vector dimension, then
there would be no degree of freedom for robust design such as E1 and W1. Therefore, it is
necessary to increase the output dimension by linear transformation as depicted in 4.1.

Finally, the estimation of health parameter (or sensor fault) is given by the signal ĥ(t)
defined in Equation (37).

5. Simulations

The gain of the observer is calculated at the cruise design point, then digital simulations
are carried out on the component-level model (CLM) and integrated model of engine DCS.
The simulating step of the engine CLM is 5ms, while that of the closed-loop control is 20ms.
The relevant parameters of the sliding mode observer are selected as follows: Af = 0.1I7,
Afv = 4.5I7, χi = 0.005, ϕi = 0.1 (i = 1, 2, .., 7). The variable gain method described in
Section 4.3 is adopted for the selection of ψi and ςi, and the safety factor δ = 1.5.

Aero-engine gas path sensors are usually installed in high-temperature and high-
pressure environments, plus, system vibration brought by high-speed rotating components
are inevitable, and they are easily affected by electromagnetic interference and system
noise. As a result, signals from sensors contain inherent noise, system noise and intrusion
noise, among which system noise caused by engine vibration is the main one. Due to the
symmetry of rotating parts, system noise is generally in the form of Gaussian white noise;
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therefore, Gaussian white noise is adopted to simulate the measurement noise. Referring to
the indicators of engine measurement noise in the existing literature [30,31], the magnitude
of injected measurement noise in this paper is shown in Table 2.

Table 2. The magnitude of injected measurement noise.

Sensor Type Standard Deviation (SD)%

N1 0.15
N2 0.20
temperature sensor (<600 K) 0.15
temperature sensor (>600 K) 0.20
pressure sensor 0.20

Two gas-path performance (health parameter) fault scenarios and two sensor fault
scenarios are simulated, respectively. The proposed SMO is used to observe the current
control system in real time, and results are shown in Figure 6. Scenario 1 simulates
compressor fault, where flow decreases by 2% and efficiency decreases by 4.5%. Scenario
2 simulates high-pressure turbine fault, corresponding to a 2% increase in flow and a
2% decrease in efficiency. Scenario 3 simulates a −10% bias fault of T3 sensor; Scenario
4 simulates both N2 sensor and T495 sensor with −11% and −9% bias faults, respectively.
In order to verify the estimation accuracy and the estimating speed of the observer, step
faults are injected in the simulation to simulate abrupt engine faults. As can be seen
from Figure 6, the sliding mode observer designed in this paper has achieved good fault
estimation results in all fault scenarios. Table 3 shows the quantitative comparison between
the proposed method and linear Kalman filter in RMSE, SD and estimated time. It can
be seen that RMSE and SD of the two methods are basically at the same level. In terms
of estimation time, the sliding mode observer based on the unknown input principle
avoids the influence of fault derivative on observer convergence, and the estimation time is
greatly shortened.

In dealing with sliding mode chattering, this paper optimized the observer design
successively by super-twisting algorithm and adaptive gain method. Considering the fact
that the low-pass filter featured with filter matrix Afv is adopted to recover νeq from ν, and
the low-pass filter can also inhibit high-frequency noise. Therefore, in order to independently
verify the chattering suppression effect, measurement noise is not added in the simulation
here, and other simulation conditions are the same as above. Figure 7 shows the lateral
comparison using different observers when the fan efficiency decreases by 6%. Figure 7a
shows the STA method without adaptive gain, where ψi = 0.283, ςi = 0.02 (i = 1, 2, 7), and
other design parameters remain same with observers above. In Figure 7b, STA method with
adaptive gain is adopted. It can be seen that some components of ĥ have large chattering in
Figure 7a, such as SE4 (ĥ7). This is because ψi or ςi have the same value in each dimension,
and the conservative design leads to the problem that the fixed values of ψi or ςi are too
large for no-fault cases, which creates a large ν that causes chattering. The average SD
of each dimension of ĥ is 5.13 × 10–4, and ĥ7 is 9.33 × 10–4. The chattering observed in
Figure 7b is controlled within an ideal range, and the average SD of each dimension of ĥ
is 3.8 × 10–5. At the same time, since the values of ψi and ςi will adaptively increase in
the process of dynamic convergence, Figure 7b is significantly better than Figure 7a in the
dynamic process of sliding mode convergence.
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In order to verify the influence of the related uncertainties introduced by the dis-
tributed system (time delay, packet loss, disturbance) on the diagnosis and the robustness
of the designed observer, the following form of uncertainty is added to the engine baseline
model: ξ =

[
ξ1 ξ2 ξ3

]T, where ξ1 ∈ R1×1 and ξ2 ∈ R1×1 represent model deviation,
and ξ3 ∈ R1×1 represents disturbance. Plus, the bus packaging model is used to simulate
the bus time delay and random packet loss behavior, in which the simulated delay is 50 ms
and the simulated packet loss rate is 1%. Let each element of ξ be:

ξ1(t) =
[
0.21 0.11

]
xa(t), ξ2(t) =

[
0.13 −0.17

]
xa(t)

ξ3(t) = 0.02 + 0.01sin(πt
3 )

(41)

and uncertainty matrices Q1 and Q2 are chosen as:

Q1 =

[
1 0 0
0 1 0

]
, Q2 =

0 0 1
0 0 1

0

 (42)

The forms of Q1 and Q2 reflect that ξ1 and ξ2 represent the deviation of the system
matrix A, while ξ3 represents the interference in the form of sine function in the speed
output channel. Figure 8 simulates fan flow (SW1) decreased by 5% and Figure 9 simulates
T25 decreased by 3%. In order to facilitate comparison, the estimation results of SMO
under this uncertainty, the results of SMO under no uncertainty and the simulation results
of LKF under the same uncertainty are both given. It can be seen that the addition of
uncertainty has almost no impact on the SD and estimated time of SMO, while the accuracy
is slightly decreased. However, compared with LKF under the same simulation conditions,
the accuracy of SMO is significantly higher, especially in the simulation shown in Figure 8.
This is because the LKF method is only robust against Gaussian white noise with averaged
value 0, and obviously in this case, the injected uncertainties are not Gaussian white noise.
However, the proposed method shows strong robustness in view of bounded uncertainties,
due to the transfer function of uncertainty onto the reconstructed signal is minimized
through LMI optimization.
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6. Conclusions

In this paper, a TTP/C bus packaging model supporting time-delay and packet loss
simulation and timing planning is developed based on SimEvents. Combined with the
development of component-level model, sensor, controller, and actuator model by Simulink,
the proposed engine distributed control model is capable of verifying aero-engine DCS
diagnosis method. Moreover, a robust gas-path diagnosis method for engine distributed
systems is proposed using sliding mode observer, aiming at gas-path parameter estimation
and fault diagnosis regardless of system uncertainties such as time-delay and packet loss.
With health parameters or sensor faults modeled as artificial inputs, the described approach
is applicable to both slow degradations and abrupt shifts. Considering the fact that the
involved engine contains an equal number of available sensors and health parameters,
a transformation has been introduced to create a fictitious output that dimensionally
outnumbers the health parameter (or sensor fault) vector, which makes room for the robust
design. Combining high-order sliding mode theory, observation matrix LMI optimization,
and variable gain methods, chattering is suppressed and robust observation accuracy is
improved. By comparing with the traditional Kalman filter, the simulation results show
the advantages of the proposed method in distributed system application scenarios, and a
range of fault cases can be faithfully detected and estimated, with suitable accuracy and
quick diagnosis speed by the described method. The limitation of the proposed method in
engine DCS application is that the considered plant is a commercial aero-engine, which is
usually operated in cruise flight condition, and only steady-state of several typical state
points are considered to be designed and verified. Further work can be expanded to jet
engines and diagnosis in dynamic or a wider flight envelope should be researched.
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Appendix A

In Section 4.1, a filter transformation and a coordinates change should be introduced
to Equation (11), to make the further deduction on a nominal base form described in [26].

In order to make h(t) and ξ(t, x, u) appear only in the system equation, a filter trans-
formation is introduced to yV(t):

.
z(t) = −Afz(t) + AfyV(t) (A1)

where−A f ∈ R(p+1)×(p+1) is a stable filter matrix. Typically, A f is in the form of a diagonal
matrix with positive entries where the diagonal elements represent inverse time constants.
Substituting zV(t) for yV(t) in Equation (5), and combining x(t) and zV(t) to create an
augmented state xa(t) ∈ R(n+p+1)×1, the following representation can be obtained[ .

x
.
zV

]
=

[
A 0

AfVC −Af

]
︸ ︷︷ ︸

Aa

[
x

zV

]
︸ ︷︷ ︸

xa

+

[
B

AfVD

]
︸ ︷︷ ︸

Ba

u +

[
L

AfVM

]
︸ ︷︷ ︸

Ha

h +

[
Q1

AfVQ2

]
︸ ︷︷ ︸

Qa

ξ

zat =

[
τ1In τ2In 0

0 0 Ip+1−n

]
︸ ︷︷ ︸

Cat

[
x

zV

] (A2)

where Aa ∈ R
∼
n×∼n , Ba ∈ R

∼
n×∼m, Ha ∈ R

∼
n×∼q , Qa ∈ R

∼
n×∼r , and Ca ∈ R

∼
p×∼n are coefficient

matrices, and I∼p ∈ R
∼
p×∼p denotes identity matrix. Comparing to the original system in

Equation (7), it gives
∼
n = n + p + 1,

∼
m = m,

∼
q = q,

∼
r = r, and

∼
p = p + 1. As analyzed

in [16], it can be proved that the necessary and sufficient conditions for the existence of a
stable sliding motion and feasibility of fault reconstruction [26] can be satisfied by Equation
(A2). Thus, there exists an invertible change of coordinates xb(t) = Tbxa(t), in which Cat
and Ha have transformed to the following structure.

Cb = CatT−1
b =

[
0 T

]
, Hb = TbHa =

[
0(ñ− p̃)×q̃

Hb2

]
=

0(ñ− p̃)×q̃
0( p̃−q̃)×q̃

Hb0

 (A3)

where T ∈ R
∼
p×∼p is orthogonal, Hb0 ∈ R

∼
q×∼q is non-singular, and Hb2 ∈ R

∼
p×∼q . With the

change of coordinates the Equation (A2) is given by

.
xb(t) = Abxb(t) + Bbu(t) + Hbh(t) + Qbξ(t)

zat(t) = Cbxb(t)
(A4)

where Ab = TbAaT−1
b and Bb = TbBa. Ab is in the form of

[
Ab11 Ab12
Ab21 Ab22

]
where Ab11 ∈

R(
∼
n−∼p)×(∼n−∼p). Equation (A4) is a canonical form from [26], which constitutes a useful

starting point for observer design.
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