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Abstract: Cycling is a sustainable mode of transportation with significant benefits for society. The 

number of cyclists on the streets depends heavily on their perception of safety, which makes it es-

sential to establish a common metric for determining and comparing risk factors related to road 

safety. This research addresses the identification of cyclists’ risk factors using deep learning tech-

niques applied to a Google Street View (GSV) imagery dataset. The research utilizes a case study 

approach, focusing on London, and applies object detection and image segmentation models to ex-

tract cyclists’ risk factors from GSV images. Two state-of-the-art tools, You Only Look Once version 

5 (YOLOv5) and the pyramid scene parsing network (PSPNet101), were used for object detection 

and image segmentation. This study analyzes the results and discusses the technology’s limitations 

and potential for improvements in assessing cyclist safety. Approximately 2 million objects were 

identified, and 250 billion pixels were labeled in the 500,000 images available in the dataset. On 

average, 108 images were analyzed per Lower Layer Super Output Area (LSOA) in London. The 

distribution of risk factors, including high vehicle speed, tram/train rails, truck circulation, parked 

cars and the presence of pedestrians, was identified at the LSOA level using YOLOv5. Statistically 

significant negative correlations were found between cars and buses, cars and cyclists, and cars and 

people. In contrast, positive correlations were observed between people and buses and between 

people and bicycles. Using PSPNet101, building (19%), sky (15%) and road (15%) pixels were the 

most common. The findings of this research have the potential to contribute to a be�er understand-

ing of risk factors for cyclists in urban environments and provide insights for creating safer cities 

for cyclists by applying deep learning techniques. 
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1. Introduction 

Cycling offers numerous societal benefits and has an impact on safety, the economy, 

the environment, equity and health [1–8]. However, the popularity of cycling as a mode 

of transportation varies significantly between countries [9]. The number of cyclists on the 

streets is highly influenced by their perception of safety [2], making it essential to establish 

a clear metric for identifying and comparing risk factors related to road safety. Moreover, 

bicycle accidents, particularly less severe incidents, are often underreported [10–14]. To 

pursue the Zero Vision goal [15,16], an approach focused on cyclists’ risk perception is 

suggested. 

Promoting cycling safety increases the number of cyclists on the streets, resulting in 

safety in numbers and improved overall safety for all road users [2]. Cycling and walking 

offer economic benefits for individuals, companies and communities [3] and contribute to 

reducing dependency on non-renewable energy sources, thereby lowering greenhouse 
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gas emissions [17]. Moreover, cycling encourages equity by providing a more affordable 

transportation option for low-income families [5,6] and promotes physical and mental 

health by fostering a less sedentary lifestyle [3]. By prioritizing cyclist safety, societies can 

enjoy many benefits, such as safer roads, decreased congestion and overall enhancements 

in public health and well-being. 

During the COVID-19 pandemic, governments promoted cycling as an alternative to 

driving or crowded public transport [18]. More polluted areas, where it may be hard to 

ensure social distancing, pose an additional risk of infection to their inhabitants and on 

public transport. For these reasons, the United Kingdom (UK) government is boosting this 

form of sustainable transportation with a package of GBP 2 billion [19]. Public mobility 

pa�erns have undergone significant changes since 2020. The impact of the pandemic on 

people’s way of life has not yet been fully understood [20], but there is a window of op-

portunity for safer and more environmentally friendly cities [18] with a demand to under-

stand cyclists’ risk factors. In the past, research studies were performed generally looking 

at city safety. In 2014, the analysis of color distribution in images, using color histograms, 

played a key role in predicting perceived safety in neighborhoods [21]. Later, in 2016, con-

volution neural networks were first employed with the same general objective—rating 

neighborhood safety [22]. 

The main objective of this research study is to create a scalable, robust and inexpen-

sive solution to detect the areas of high perceived risk for cycling in urban areas. This was 

made possible by using state-of-the-art applications in computer vision (CV) and deep 

learning (DL) and the image database in Google Street View (GSV), which is publicly 

available and covers most developed countries [23]. For this reason, this is a cost-effective 

approach to analyze city environments. Thus, large datasets and state-of-the-art models 

are used for object detection (OD) [24] and image segmentation (IS) [25] to achieve accu-

rate results. 

This project aimed at harnessing the power of AI to create safer urban environments 

for cyclists. The initial objective focused on identifying the most relevant risk factors af-

fecting cyclists, considering safety metrics such as accident, injury and fatality rates. A 

GSV image dataset from Greater London was employed to extract these risk factors using 

OD and IS methods. The study examined the distribution of safety factors across London’s 

Lower Layer Super Output Areas (LSOA), aiming to identify correlations among fre-

quently detected objects. LSOAs are geographic areas used for the collection and publica-

tion of small area statistics, comprising between 400 and 1200 households with a usually 

resident population between 1000 and 3000 persons in London [26]. Additionally, the re-

search aimed to pinpoint the most common misclassifications made by both algorithms 

and suggest methods for addressing them. Ultimately, the project sought to develop new 

guidelines on using OD and IS models to detect road safety risk factors. 

This article is structured as follows. The Background section introduces road safety 

indicators and then discusses cyclists’ risk factors and explains how they are captured 

using OD and IS algorithms. Details are provided on the YOLOv5 (OD) and PSPNet101 

(IS) models and the respective datasets used to train them. The Methodology section elab-

orates on handling and processing the GSV imagery dataset using the YOLOv5 and 

PSPNet101 models, selecting relevant parameters and the software and hardware utilized 

for execution. Lastly, the Results section offers an overview of the GSV imagery dataset 

across all London LSOAs and presents the outputs of the OD and IS trained models. 

2. Background 

2.1. Computer Vision and Deep Learning 

Computer vision, a rapidly growing field in computing, focuses on teaching comput-

ers to perceive and comprehend visual information, such as images and videos [27]. The 

goal is to replicate human vision. Deep learning, a branch of artificial intelligence, employs 

multi-layered neural networks to automatically identify representations required for 
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detection or classification, enabling machines to learn complex functions from raw data. 

Similarly, DL has improved the state of the art in domains such as speech recognition, 

visual object recognition and object detection [28]. However, disadvantages include de-

pendence on the quantity and quality of input data, computational costs and interpreta-

bility issues [29,30]. 

2.2. Road Safety Indicators 

Road safety indicators are essential for policymaking. According to the European 

Road Safety Charter [31], they help assess the current situation of the roads, assess the 

impact on accident rates after an intervention, monitor progress over time and predict 

further evolutions. According to the European Road Safety Charter [31], road safety indi-

cators should comply with several criteria: 

(a) Relate to specific aspects of road safety, such as the causes or consequences of a road 

accident; 

(b) Be measurable in a reliable way; 

(c) Be monitorable over time; 

(d) Allow road safety engineers or public health experts to set targets; 

(e) Help establish comparisons and benchmark different safety performances. 

Six criteria are common to all indicators: geographical scope, timespan, numerical 

format, representation/visualization, reliability/accuracy/representativeness and a spe-

cific level of road safety. Geographical scope refers to the area where the measurement is 

taken, such as an organization, city, region, country, continent or the world. Timespan 

concerns the time frame the analysis covers, ranging from a day to a decade or longer. The 

numerical format involves the units of measurement, which can be proportions, percent-

ages or other well-defined ratios. 

Visualization denotes how data is presented using maps, graphs or tables, while re-

liability, accuracy and representativeness are connected to the design and implementation 

of the measurement system. The level of the indicator varies based on its focus, which can 

include crash impacts, post-crash responses, crash outcomes, crash causes and predictors, 

road safety policy and measures, or safety culture and safety systems. 

In determining the risk factors discussed in the subsequent section, crash outcomes 

like mortality, injury severity and accident rates were considered. Moreover, road safety 

indicators were employed to rank the most relevant risk factors for cyclists. This compre-

hensive approach allows for a deeper understanding of the factors influencing cyclists’ 

safety and helps inform targeted interventions. 

2.3. Perceived Risks 

Various factors discourage people from cycling, such as perceived crash risks, 

weather conditions and lack of safety. Studies have shown that non-habitual cyclists are 

more prone to accidents, influencing their risk perception based on negative experiences 

[32,33]. Perceived risks are barriers to taking up cycling and must be addressed to create 

people-centered cities [33,34]. A bicycle should be regarded as a safe mode of transport to 

encourage its use. 

Cyclists’ risk perception is influenced by accidents or near misses, particularly among 

potential or occasional cyclists [33,35,36]. While cycling accidents are relatively rare and 

often underreported, events perceived as risky are more frequent. Therefore, reducing 

risky incidents is a more effective approach to avoiding crashes. This involves heeding 

“early warnings” to prevent severe situations that may result in hospitalizations. How-

ever, quantifying events that do not lead to accidents is challenging. Initiatives like PING 

[37] have emerged, allowing cyclists to report perceived risk situations by pressing a but-

ton on a device a�ached to their bicycle’s handlebars. This crowdsourcing process gener-

ates high-quality georeferenced data on the risks perceived by cyclists. 
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The approach proposed in this study differs because it achieves scalability and per-

meability within the city. By using DL techniques, areas with high perceived risk for cy-

clists were identified. By leveraging advanced techniques like object detection and image 

segmentation, it is possible to understand the factors contributing to road safety and in-

form interventions promoting cycling as a secure and appealing transport option. 

2.4. Risk Factors (Based on London LSOA Data) 

To list and order the most relevant risk factors for cyclists, accident, injury and fatal-

ity rates were considered. In London, the annual fatality rate for cyclists is relatively low, 

ranging from sixteen in 2011 to eight in 2016 [38]. Consequently, accident and injury rates 

were used to order all risk factors when designing the diagram presented in Figure 1. A 

strong qualitative and experience-based component was also inherent to these rankings 

since a common safety metric for all risk factors was not found. The top three most rele-

vant factors that influence cyclists’ safety are the presence or lack of a cycle lane, road 

speed limits and lane width. Statistical data that support the rankings defined in Figure 1 

have been provided, but few accidents involving cyclists are reported [10–14]. 

Considering Figure 1, the number of risk factors decreases from left to right in the 

diagram. The most unsafe situation was the absence of a cycle lane, followed by high 

speed limits with a narrow lane in an on-road scenario, high speed limits but with a wider 

lane and low speed limits regardless of the presence of a narrow or wide on-road lane. A 

physically separated cycle lane was considered the safest scenario. 

 

Figure 1. Five scenarios of risk factors for cyclists identified on the streets of London. Dark blue 

corresponds to risk factors identified using object detection, and light blue corresponds to structures 

identified using image segmentation. 

2.4.1. Cycle Lane 

Cycle lanes can be classified into two categories: physically separated lanes and on-

road lanes. Physically separated lanes reduce the probability of a crash, especially when 

a car tries to overtake a cyclist, or of hi�ing a cyclist if they fall off. When there are no 
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vehicles parked nearby, these lanes reduce the risk of injury among cyclists by half [39]. 

Furthermore, opening a car door poses a significant threat to bicycle riders [40]. For all 

these reasons, risks associated with high speed limits, narrow bicycle lane widths, road 

pavement quality and parked cars were not considered. 

In the case of on-road cycle lanes, vehicle speeds tend to be lower, and there are fewer 

interactions between vehicles and the cyclists compared to when there is no separate lane 

[41]. This makes the physically separate cycle lane the safest scenario, followed by on-road 

lanes and no cycle lane at all. Finally, having a cycle lane was considered the most decisive 

factor in preventing many previously identified risks. It was considered number one in 

the rankings of risk factors. 

2.4.2. Vehicle Speed 

Vehicle speed was one of the major factors involved in around 10% of all accidents 

and 30% of fatalities. The speed of vehicles involved in a crash is the most critical factor in 

determining the severity of injuries [42,43]. There are two distinct factors when consider-

ing speed. Not only are higher speeds known to be responsible for a higher rate of acci-

dents, injuries and deaths but so too are significant speed variations. Roads with many 

speed variations are more unpredictable as they favor a higher number of interactions and 

an increased number of overtaking maneuvers. Consequently, sometimes reducing speed 

limits may only decrease the vehicles’ average speed and not its variation in speed as it 

accelerates and brakes [44]. The crux of the danger posed by high speeds is the increase in 

the braking distance and kinetic energy transferred from the vehicle to the cyclist. As both 

increase by the square of velocity, the possibility of avoiding or surviving a crash de-

creases quadratically [44].  

From a biological perspective, the human body can only resist a limited amount of 

kinetic energy transfer in a crash [45]. This varies for different body parts, age groups and 

genders. Considering the most well-designed car, this limit can be exceeded if the vehicle 

exceeds 30 km/h [16]. Studies also show that if a car travels at less than 30 km/h, a pedes-

trian’s probability of surviving a crash is higher than 90%. When hit by a car at 45 km/h, 

the chance of surviving decreases to 50% [46]. Conclusively, this was considered the sec-

ond most relevant factor in cyclist safety. For an on-road cycle lane on a road with a low 

speed limit, the risk factors related to parallel traffic were considered negligible, regard-

less of the lane width. 

2.4.3. Lane Width 

In the United Kingdom, the recommended cycle lane width is 2.0 m (one way). The 

minimum requirement is 1.5 m, while cycle tracks accommodating two-way cycling 

should be 2.5 m wide. All values below 1.5 m are considered too narrow, allowing too 

li�le space to maneuver around obstacles, such as debris, potholes and drains. After the 

road speed limits, cycle lane width was considered the most important factor. Whenever 

it is considered wide, traffic risk factors were not considered. Regardless of the width of 

an on-road cycle lane, low speed limits were enough to rule out traffic-related risk factors. 

2.4.4. Street Lighting 

Street lighting was considered the next most relevant criterion for road safety. It af-

fects drivers’ and cyclists’ reaction time, and a lack of lighting makes cyclists difficult to 

notice, especially when they are not using any reflective or luminous gear. Moreover, from 

the cyclists’ perspective, poor lighting means they are less aware of other road risks, such 

as pavement quality. 

2.4.5. Pavement Quality, Tram/Train Rails and Water Drainers 

As frequently referred to in the literature, pavement quality is crucial when evaluat-

ing safety [47–49]. It refers to the quality of the road when there is no cycle lane or of the 
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cycle lane itself when there is one. Pavement defects, including potholes, along with water 

drainers and tram/train rails, contribute to an increased number of falls among bicycle 

riders. The impact of these factors decreases when street lighting is improved and when 

cycling is performed within the speed limit of 25 km/h. 

2.4.6. Number of Intersections and Intersection Visibility 

Intersections are naturally areas of interaction between different road users. There-

fore, the majority of bike and car crashes occur at intersections. Asgarzadeh et al. [50] re-

ported that 60% of total crashes happen at intersections. Additionally, as part of the same 

study, intersections where streets do not meet at right angles posed an additional danger 

to cyclists. Crashes in these areas were 31% more likely to cause serious injury to cyclists 

due to the lack of visibility. 

2.4.7. Lorries and Other Large Vehicles 

Economic development and consumer demand have increased in recent years and so 

has the number of trucks inside cities [51,52]. Cycling has followed the same trend, so the 

number of encounters between cyclists and trucks has significantly increased. For exam-

ple, 15% of the bicycle lane network in New York City overlaps with 11% of the truck road 

network [53]. The increased encounters have contributed to higher accident and mortality 

rates involving trucks. 

Truck–bicycle accidents usually have more severe consequences than any other type 

of accident [54–57]. In some European countries, 30% of all cycling fatalities are associated 

with trucks [58]. In the past two decades, studies have identified trucks as the most com-

mon vehicle category in London’s cyclist deaths [55,59,60]. 

2.4.8. Advanced Stop Line 

Advanced stop lines exist in several European countries, such as Belgium, Denmark 

and the United Kingdom, and they give a head start to certain types of vehicles (namely, 

bicycles) when the traffic signal changes from red to green. This has several advantages. 

First, drivers behind the line will be more aware of cyclists around them and take the 

proper precautions to avoid dangerous maneuvers. Second, it becomes safer for cyclists 

to turn left, avoiding crashes with cars behind them. A schematic layout can be seen in 

Figure 2. 

 

Figure 2. Schematic layout of advanced stop line [61]. 
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2.4.9. Bend Visibility 

Several sources identify bends as a risk factor. Bends and intersections are often 

jointly considered as they pose similar risks to the cyclist. From the cyclist’s perspective, 

low visibility when cycling around bends makes usually low-risk situations, such as the 

sudden presence of pedestrians or invasive vegetation, more dangerous. Poor visibility 

can make cyclists unnoticeable and vulnerable to drivers [47].  

2.4.10. Pedestrians 

In the USA, among all age groups, pedestrian fatalities most often occur in children 

younger than 14 years old, compared with adults aged between 15 and 64 or 65 or more. 

Regarding of gender, men are at a greater risk than women [62]. For these reasons, loca-

tions with a higher concentration of people satisfying these criteria (e.g., school areas) are 

at additional risk. Nevertheless, accidents between pedestrians and cyclists in car-free 

zones are rare and seldom serious [63]. Thus, pedestrian density was considered the least 

important of the risk factors. 

3. Tools Used to Capture Objects and Structures from Imagery Dataset 

3.1. Object Detection Using YOLOv5 

Object Detection is a computer technology associated with image processing and CV 

and used in applications like image annotation, activity recognition and face detection 

[64]. Objects have specific features that help classify them into distinct classes. OD meth-

ods can be divided into machine-learning-based or deep-learning-based approaches. Ma-

chine learning approaches, such as support vector machines, require a predefined list of 

relevant features, while deep learning approaches, like Convolution Neural Networks, 

perform end-to-end OD without specifying these features [64]. 

YOLOv5, a deep learning approach, operates within the PyTorch framework [24]. Its 

architecture consists of three essential parts: the model backbone, neck and head. These 

are responsible for extracting features, obtaining feature pyramids and generating output 

vectors, respectively. Cross stage partial networks, used in version 5, have significantly 

improved processing time with deeper networks. The model’s head applies anchor boxes 

on features and generates output vectors, including class probabilities and bounding 

boxes, with each potential detection having an associated confidence score. 

Due to the high accuracy and speed of YOLOv5x (see specifications in Table 1), this 

model was chosen to process the images. 

Table 1. YOLOv5x specifications [24]. 

Model APval APtest AP50 SpeedGPU FPSGPU Params Weights Size (MB) 

YOLOv5x 48.4 48.4 66.9 6.1 164 89.0 M 170 

Table 1 showcases the specifications of the YOLOv5x model, considered the most ac-

curate among the various YOLOv5 implementations. The table comprises several essential 

metrics to assess the model’s performance. Average precision (AP), a common metric in 

object detection, is provided for both validation (APval) and test (APtest) datasets. AP50 sig-

nifies the average precision at a 50% overlap threshold between the predicted and ground 

truth bounding boxes. The model’s processing speed on a GPU (SpeedGPU) is expressed in 

milliseconds per image. FPSGPU indicates the number of frames processed per second on a 

GPU, reflecting the model’s real-time performance. The Params column denotes the total 

number of parameters in the YOLOv5x model, while the Weights Size (MB) column dis-

plays the size of the model’s weights file in megabytes. 
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3.2. Image Segmentation Using PSPNet101 

In CV and image processing, image segmentation (IS) is the partitioning of a digital 

image into multiple segments or pixels. The goal is to simplify image representation to the 

point that multiple structures can be easily retrieved. More precisely, IS assigns a label to 

every pixel in an image, and the ones with the same label share characteristics. Conse-

quently, this method provides information on the presence of certain structures, shape 

and location in the image [65]. 

The pyramid scene parsing network (PSPNet) is one of the most accurate IS models. 

It won the ImageNet Scene Parsing Challenge 2016, PASCAL VOC 2012 and Cityscapes 

benchmarks. It achieved a mean intersection over union (mIoU) accuracy of 85.4% on PAS-

CAL VOC 2012 and 80.2% on Cityscapes [25]. In the past two years, its segmentation 

model accuracy has reached a plateau. Similarly, after 2017, the increase in the mIoU has 

been minimal [66]. 

After receiving an input image, PSPNet executes a convolutional neural network 

(CNN) to extract a feature map from the last convolutional layer. Then, a pyramid parsing 

module is used to harvest different sub-region representations, followed by upsampling 

and concatenation layers to create the final feature representation. This carries both local 

and global context information. The representation is fed into a convolution layer and the 

final per-pixel prediction is obtained in the last step. 

3.3. Training Datasets 

Several datasets exist that contain labeled objects and segmented images. For object 

detection (OD) model training and benchmarking, MS Coco [67] and Open Images V6 [68] 

are two widely used datasets with a high number of road categories. For image segmen-

tation (IS), Cityscapes [69] and ADE20K [70] represent the current state-of-the-art datasets. 

Table 2 compares these four datasets based on their relevant categories for assessing cy-

clists’ road safety. Some road safety objects can be extracted directly, while others require 

an indirect approach. The same applies to segmented structures. 

Table 2. Comparison between four of the biggest OD and IS datasets, with relevant data to assess 

road safety. 

 Object Detection Image Segmentation 

Risk Factor MS Coco Open Images V6 Cityscapes ADE20K 

Cycle Lane - - Sidewalk - 

Streetlight - Streetlight - Streetlight|Street Lamp 

Pedestrians People Girl|Man|Person Person 

Person|Individ-

ual|Someone|Some-

body|Mortal 

Water Drainers - - - - 

Tram/Train Rails Train Train - - 

Number of Intersec-

tions 
- - Sidewalk|Road Sidewalk|Pavement 

Intersection Visibility - - Sidewalk|Road Sidewalk|Pavement 

Bend Visibility - - - - 

Vehicle Speed 
Stop Sign|Traffic 

Light  

Stop Sign|Traffic Light 

|Traffic Sign  

Traffic Light|Traffic 

Sign 

Traffic Light|Traffic Sig-

nal|Stoplight 

Parked Cars Car|Parking Meter Car|Taxi|Vehicle Parking 
Car|Auto|Automo-

bile|Machine|Motorcar 

Lorries and Other 

Large Vehicles 
Bus|Train|Truck Bus|Train|Van 

Bus|Truck|On 

Rails|Caravan 
Truck|Motortruck|Van 

Road Width - - Road Road|Route 

Pavement Quality - - - - 
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Advanced Stop Line - - - - 

A direct or indirect method was used to identify each risk factor in the images. Within 

the OD category, the following cyclist risk factors were identified: cars and parking meters 

for parked cars; people for pedestrians; trucks and buses for truck circulation; bicycles for 

the number of cyclists; traffic lights and stop signs for vehicle speed as they serve as traffic 

calming factors; and trains for the presence of tram/train rails due to their close associa-

tion. Roads, sidewalks and streetlights were used for the IS category to obtain road and 

sidewalk widths and streetlighting. 

3.3.1. MS Coco 

Microsoft Coco is one of the biggest and most popular datasets used for OD, segmen-

tation and captioning. It contains 330 K images, with 200 K that are labeled, and features 

1.5 M labeled objects across 80 categories. Figure 3 provides examples of labeled objects. 

The dataset includes several classes of everyday objects, from home appliances to those 

commonly seen on roads [67]. In the image below, annotated objects are highlighted in 

color (top), and a list of the objects annotated in the image is also displayed (bo�om). 

 

Figure 3. Example of annotated images in the MS Coco dataset [67]. 

3.3.2. Cityscapes 

The Cityscapes dataset focuses on the semantic understanding of urban street scenes. 

It contains 20,000 coarsely annotated images and 5000 finely annotated images from 50 

German, French and Swiss cities. These were captured over several months (summer, 

spring and fall) in good or medium weather conditions during daytime, and the dataset 

features 30 classes of structures (Figure 4) [69]. The image segments divide class structures 

into three different city environments. 

 

Figure 4. Example of three segmented images available in Cityscapes [69]. 

Finally, MS Coco and Cityscapes datasets are the most complementary and contain 

the most relevant objects and road structures. Based on these two datasets, pre-trained 

YOLOv5x and PSPNet101 models were employed to detect objects and segment images, 

respectively. 
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4. Materials and Methods 

4.1. GSV Imagery Dataset 

Instead of considering a road safety analysis of London, we chose to perform it at an 

LSOA level. Greater London can be divided into smaller areas: output area, Middle Layer 

Super Output Area and LSOA. Each one of these subdivisions of London differs on a ge-

ographical scale. A zip folder containing multiple shapefiles for each division was ob-

tained from London Datastore (data.london.gov.uk/dataset/statistical-gis-boundary-files-

london accessed on 18 May 2020). The GSV imagery dataset was obtained using Street 

View Static API and the respective geographical coordinates. A separate file associating 

each image identification to a given London LSOA was produced using LSOA Atlas from 

Greater London Authority [71]. Due to the high memory requirements, all images used in 

this project were stored in the Imperial College London servers. 

The GSV dataset contains 518,350 images from Greater London, with 512,812 identi-

fied with a London LSOA. Of those, 478,724 are unique (Table 3). Each datapoint has four 

images available, covering 0 to 360 degrees. There are 119,681 unique LSOA identified 

points, each with four 90-degree images (Figure 5). There are more images available near 

Central London, and this number decreases as you move out to the periphery. In Figure 

6, an LSOA Atlas is shown, along with the respective geographical distribution of all im-

ages. The LSOA with the highest number of datapoints, 211, is in Central London. On 

average, 27 datapoints are available per LSOA, with one LSOA in the dataset having only 

one datapoint (Table 4). The wide distribution of images compromises the accuracy of 

estimating the number of objects and segmented structures in less-well-represented 

LSOAs. 

Table 3. Images in the GSV dataset. 

N. of Images 
N. of LSOA-Identified Im-

ages 

N. of Non-Repeated 

Identified Images 

N. of LSOAs with 

Images 

518,350 512,812 478,724 4832 

 

Figure 5. Four-angle-associated images for each datapoint. 
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Figure 6. (Left) LSOAs colored according to the number of available images; (right) geographical 

distribution (latitude and longitude) of the same set of images. 

Table 4. Availability of GSV points in the dataset across all London LSOAs. 

Minimum Maximum Mean Standard Deviation Mode Median 

1 211 27 24 25 11 

4.2. YOLOv5 

The imperial high-performance computing cluster was utilized to run YOLOv5. Due 

to the model’s fast execution, a single P1000 GPU was used. The implementation with the 

most accurate set of weights of YOLOv5 was chosen—YOLOv5x. Also, a minimum confi-

dence of 0.5 was defined for each detection (higher than the standard value of 0.4). Only 

text files containing the detected objects and respective locations were saved. Each line 

includes a numerical designation for each object and the coordinates of the center of the 

detection box, along with two values for the width and height of the rectangle. 

Python visualization frameworks Matplotlib and Seaborn were used to plot the cor-

relation matrix for the top 15 most detected objects. Pearson correlation factors and p-val-

ues were obtained using SciPy Pearson function (Figure A3). Misclassifications, limita-

tions and future directions analysis focused on the objects identified before as relevant for 

road safety. Moreover, all observations resulted from the individual assessment of one 

image from all London LSOAs and the overall project experience (Figure A5). 

4.3. PSPNet101 

Although it was already available, a preliminary version of the implementation exe-

cuting PSPNet101 was made, provided by Esra Suel. Modifications were made to over-

come incompatibilities with the new version of TensorFlow. IS methods are generally 

slower than OD. Originally, the Python multiprocessing tool was used to accelerate exe-

cution. At the end, the original GSV dataset was split into 13 batches and executed paral-

lelly in 13 P100 GPUs. Consequently, 13 jobs were submi�ed to the high-performance 

computing (HPC) cluster. P100 was the chosen GPU due to its higher processing power 

for numerical analysis (Table 5). All images in the GSV dataset were segmented. After that, 

two Python functions were implemented: one that generates a dictionary linking each 

RGB color to a given object class and one that receives the full dataset of segmented images 

as input and outputs the total number of labeled pixels for each category. Relative and 

absolute distributions of all labels were analyzed and represented using Pandas Data-

Frame Python library. Misclassifications, limitations and future directions analysis fo-

cused on the structures identified before as relevant for road safety. Moreover, all obser-

vations resulted from the individual assessment of one image from all London LSOAs and 

the overall project experience (Figure A6). 
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Table 5. GPU used was available on the imperial high-performance computing cluster. 

GPU Type 
Single Precision 

(TFLOPS) 

Double Precision 

(TFLOPS) 
Memory (GB) 

Memory Bandwidth 

(GB/s) 

P100 8.0 4.0 16 730 

5. Results 

5.1. Object Detection Using YOLOv5 

Figure 7 shows an example of image processing with YOLOv5. All cars, trucks and 

people in the image were accurately detected with high confidence values. All relative and 

absolute distributions of objects can be presented at a dataset level. As the dataset exclu-

sively contains street view images, it was expected to detect a significant percentage of 

cars. London has a high population density and a large public transport system. This jus-

tifies the high number of pedestrians and buses that are detected. Po�ed plant detections 

are closely related to London’s number of parks and green areas. Table 6 contains the ab-

solute numbers of the top 15 most common objects detected in the GSV dataset. High-

lighted in black are those identified as contributing positively to cyclists’ road safety. Grey 

ones are the negative risk factors. In addition to the risk factor objects in Table 6, trains 

(657) and parking meters (968) were also considered to extract the risk factors in Figure 1. 

 

Figure 7. Example of a GSV image after executing YOLOv5. 

Figure 8 displays the distribution of objects relevant to identifying cyclists’ risk fac-

tors across different LSOAs. Bicycles are primarily detected in Central London as they are 

commonly used for short distances. There is also a higher concentration of buses in Cen-

tral London, whereas trucks are found in greater numbers outside the city center due to 

the London Lorry Control Scheme restrictions. Both buses and trucks have long-tailed 

distributions, increasing the likelihood of unexpected events and pu�ing cyclists at higher 

risk. 

Car distribution is considerably denser outside Central London, where roads have 

more lanes, making it easier to detect cars. The reduced number of parking meters in the 

city center correlates with the lower presence of cars there. A significantly higher number 

of people are detected in the center, especially in the City of London and Westminster, 

which are the historical center and the central business district. 

Stop signs and traffic lights are predominantly detected outside Central London, 

with their similar histogram distributions. However, the number of detected traffic lights 

is nearly five times greater than that of stop signs. 
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Table 6. Absolute and relative counting for the top 15 most detected classes of objects involved in 

road safety. Colored objects were used to extract cyclists’ road safety factors. Highlighted in black 

are those identified as contributing positively to cyclists’ road safety. Grey ones are the negative risk 

factors. 

Object Detections Detections (%) 

Car 1,510,000 81.190 

Person 107,000 5.753 

Truck 70,100 3.769 

Po�ed Plant 37,900 2.038 

Bus 11,500 0.618 

Bicycle 10,900 0.586 

Motorcycle 8970 0.482 

Traffic Light 6310 0.339 

Bench 5010 0.269 

Clock 2750 0.148 

Chair 2190 0.118 

Handbag 2090 0.112 

Backpack 1940 0.104 

Stop Sign 1280 0.069 

Fire Hydrant 1170 0.063 

Total 1,779,110 100 

In the context of road safety, the strongest positive correlations include Person vs 

Bicycle (0.52), Person vs Bus (0.48), Bus vs Bicycle (0.25) and Bus vs Truck (0.20), while the 

strongest negative correlations are Person vs Car (−0.23) and Bicycle vs Car (−0.20) (Figure 

A3). The high Person vs Bicycle correlation suggests pedestrians and cyclists feel safe shar-

ing the same space. The relatively high Person vs Bus value is expected since buses are 

public transport, and many people are usually nearby. 

A significant difference exists between Bicycle vs Bus and Bicycle vs Truck correla-

tions, indicating that cyclists feel safer near buses than trucks. This is not surprising as bus 

drivers are more experienced with vulnerable pedestrians, and buses generally move 

slower than trucks. The relatively high correlation between buses and trucks, combined 

with their similar shapes, suggests they might sometimes be misclassified. 

The statistically significant negative correlations of Person vs Car and Bicycle vs Car 

imply that areas with high car concentrations discourage cycling and walking. One factor 

that cannot be ruled out is the possibility of larger objects obscuring smaller ones, leading 

to a negative correlation. However, given the height at which the GSV images were cap-

tured, this is unlikely to be a frequent occurrence. 
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Figure 8. Distribution of detected objects and the respective distribution histograms across London 

LSOAs. 
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5.2. Image Segmentation Using PSPNet101 

Figure 9 presents an example of a segmented image with labels for detected struc-

tures. Buildings (19%), the sky (15%), roads (15%), vegetation (12%) and cars (11%) ac-

count for 72% of the total area in all images. The prevalence of these structures is due to 

their inherent size, and since the dataset contains images from the streets of London, a 

higher number of cars is expected. Pixel frequency is related to object size and occurrence 

in images, and both OD and IS techniques seem consistent. 

 

Figure 9. GSV image after segmentation using PSPNet101. 

The relative distribution of segmented pixels across categories indicates that objects 

on the roads, as well as surrounding structures like buildings and the sky, can be detected. 

Some objects without a clear correlation to road safety also demonstrate the versatility of 

using GSV images for detecting structures in various locations. For example, 2750 clocks 

were misclassified as satellite dishes; 37,917 po�ed plants were identified in the building 

landscape; and 234 airplanes were detected in the sky. 

Significant numbers of pixels labeled as sidewalks were detected, suggesting that 

regularly present objects are likely to be captured (e.g., 107,266 people, 5013 benches and 

1168 fire hydrants). Table 7 shows the absolute number of labeled pixels across nineteen 

segmented categories. 

From an IS point of view, the GSV dataset appears to be useful for estimating roads 

and sidewalks due to the relatively high number of pixels detected and consistent shapes. 

The same applies to streetlights. Despite only 303 million pixels being identified, the di-

mensions of this object suggest that a significant number of those should have been de-

tected. After individually analyzing one segmented image per LSOA for the complete da-

taset, it appears that both the area and shape of the streets and sidewalks can be accurately 

retrieved. 

As the introduction states, these last properties are relevant in a road safety context 

because they allow us to calculate road and sidewalk width. Moreover, the presence of 

streetlights, or poles, as they are called in Cityscapes, is a proxy to assess road visibility. 

Therefore, in Figure A4, these concepts are exemplified. 
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Table 7. Absolute and relative number of labeled pixels detected across the imagery dataset for 

identified classes involved in road safety. 

Label Number of Pixels Number of Pixels (%) 

Building 47,400,000,000 18.760 

Sky 38,400,000,000 15.198 

Road 38,200,000,000 15.119 

Vegetation 31,000,000,000 12.269 

Car 28,300,000,000 11.201 

Sidewalk 27,700,000,000 10.963 

Fence 21,800,000,000 8.628 

Terrain 17,900,000,000 7.085 

Wall 766,000,000 0.303 

Pole 303,000,000 0.120 

Motorcycle 299,000,000 0.118 

Person 232,000,000 0.092 

Bicycle 95,500,000 0.038 

Truck 91,300,000 0.036 

Bus 81,500,000 0.032 

Traffic Sign 58,100,000 0.023 

Rider 13,900,000 0.006 

Traffic Light 12,500,000 0.005 

Train 6,840,000 0.003 

Total 252,659,640,000 100 

6. Limitations and Future Works 

This study, focused on London, presents an investigation into deep learning tech-

niques and GSV images for improving cycling safety. However, it is important to note that 

our study does not aim to develop AI-assisted cycling. Instead, we strive to provide risk 

information for cyclists, decision-makers and other stakeholders. Despite these contribu-

tions, we must acknowledge several limitations in our research. 

One limitation is the generalizability of our results as they may not extend well to 

other cities or different urban environments with varying road safety regulations. Another 

limitation concerns the use of GSV. While this approach offers an efficient method for im-

age analysis, it comes with its own set of limitations, such as coverage issues and the ex-

istence of outdated images. 

Furthermore, the GSV images used in our study vary in time, day, week and year. 

Therefore, important variations in the objects present may not be accurately evaluated. As 

elements in images can overlap, this can also affect the accuracy of our metrics on those 

images. 

Similarly, the risk factors considered in this study were limited to those that could be 

extracted from the images in the London urban context. Important factors such as weather 

conditions, traffic volume and others were not considered. The employed object detection 

and image segmentation techniques also present limitations. These methods might not 

capture all relevant objects or accurately segment them from the images, leading to poten-

tial inaccuracies in the analysis. This will be discussed in more detail in the following sub-

chapters. 

6.1. Object Detection Using YOLOv5 

A precise metric was not found to estimate cyclists’ road safety based on the detected 

objects on the roads. However, based on the objects’ distributions in Table 6, one positive 

safety measure and another negative safety measure combined with it were formulated. 
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One feature that influences cyclists’ safety is the number of other cyclists in the sur-

rounding area. This happens because drivers become more aware of their presence when 

in larger numbers. Moreover, most serious injuries are caused by crashes between vehicles 

and cyclists. It was found that there is a statistically significant negative correlation be-

tween the presence of cars and people. Thereafter, the higher the presence of pedestrians, 

the lower the number of cars. Consequently, there is less of a risk for cyclists to be injured. 

Bicycle and Person LSOAs were combined into one, after calculating the average number 

of these objects per image. If cars are the main contributors to injury rates, heavy vehicles 

are particularly relevant when analyzing fatality rates. A second LSOA map was created 

joining the average number per image of the following objects: Bus, Car, and Truck. 

It is important to highlight that we cannot extract a holistic safety metric from these 

two generated LSOAs (Figure 10). A simple example is a road where cyclists are physically 

isolated from the traffic, which is not necessarily unsafe for cycling. 

A high level of confidence was found for all the detected road safety objects. YOLOv5 

can detect a wide range of object sizes, even when partially occluded (Figure A5). Moreo-

ver, low contrast between objects and background does not appear to have caused a high 

number of non-detections. An example of this was when the algorithm detected a car re-

flected in a window on the streets of London. Nevertheless, this is considered a misclassi-

fication. A set of ten random object detected images was compiled so that the readers can 

verify the accuracy of YOLOv5 (Figure A5) by themselves. The results are driven by GSV 

images, so characteristics like traffic and time of day will vary depending on that source. 

 

Figure 10. (Left) Bicycle and Person LSOA distributions were combined into a combinative metric 

reflecting a positive score for cyclists’ safety; (right) Bus, Car and Truck distributions combined into 

a final atlas showing the traffic in London. This is inversely correlated with cyclists’ safety. 

6.2. Image Segmentation Using PSPNet101 

Due to the dimensions of specific structures, PSPNet101 could not accurately capture 

their shape. One example is a thin pole. The resolution of the images in the dataset highly 

influences their detection. This is not particularly problematic since the most important 

thing about these structures is their detection and not their shape. In terms of the streets 

and sidewalks, occlusion is sometimes an issue. 

Nevertheless, accounting for the objects usually present in any of these areas, consid-

ering their overlapping areas simultaneously seems to be an effective workaround. This 

was particularly observed for cars on the roads and people on the sidewalks. In this way, 

it should still be possible to extract information on the shape and size of these structures. 

Extracting the absolute dimensions of these structures on the streets of London can be a 

challenging task. Criteria can widely vary according to the angle at which the images were 

taken. One way to overcome this would be to focus on the relative dimensions across the 

objects (Figure A6). 
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6.3. Future Works 

A possible future development for OD could involve training YOLOv5 with a larger 

dataset and with a higher number of object categories than MS Coco. This would involve 

annotating additional images. Documentation on how to train YOLOv5 is available in its 

GitHub repository. Static images cannot capture several features. Using video recordings, 

including pedestrian, cyclist and vehicle movement, would capture variables that are 

highly influenced by the time images obtained. 

In terms of IS, retraining PSPNet101 with more images and classes will increase its 

accuracy. Moreover, using the information on the dimensions and shape of the different 

structures will also help estimate road safety. 

Finding a metric that automatically accounts for the presence of different objects and 

structures will make cycling safety estimation a more analytical process. This can be 

achieved by crowdsourcing many road images and asking users to rate individually or 

choose the safest of two images. After identifying objects and structures in the same da-

taset, a neural network can be trained to approximate a function that automatically pre-

dicts a safety score for an image. 

In addition to refining the OD and IS models, another important future direction is 

the possibility of developing a routing system that avoids points where cyclist risk factors 

are detected. This would involve utilizing the outputs of the OD and IS systems to inform 

decisions on route planning for cyclists. Moreover, these outputs could alert authorities 

to locations requiring corrective maintenance, thereby potentially mitigating these risk 

factors. Alternatively, these risk factor notifications could be directly conveyed to users 

via a mobile application, road signs or awareness initiatives. 

Future directions of research on this topic include increasing the availability and res-

olution of GSV images; training YOLOv5 and PSPNet101 with datasets containing a 

higher number of categories relevant for road safety; defining a safety metric to weigh and 

combine, at road level, detected objects or segmented structures; and processing street 

view images or video in real time, which would mean we can be�er capture the dynamics 

of road safety. 

7. Conclusions 

This project aimed to extract cyclists’ road risk factors from Google Street View im-

ages of Greater London using object detection and image segmentation techniques. The 

study focused on image distribution across all Lower Layer Super Output Areas (LSOAs), 

identifying relevant road safety indicators and determining and ranking cyclists’ risk fac-

tors using YOLOv5 and PSPNet101 for object detection and image segmentation, respec-

tively. 

Approximately 2 million objects were identified, and 250 billion pixels were labeled 

in the 500,000 images available in the dataset, with an average of 108 images per LSOA. 

YOLOv5 detected the distribution of risk factors at the LSOA level. The number of cyclists 

and pedestrians was higher in Central London, while there was more traffic outside this 

area. Statistically significant negative correlations were observed between cars and buses, 

cars and cyclists, and cars and people, while positive correlations were noted between 

people and bicycles and people and buses. PSPNet101 identified building (19%), sky (15%) 

and road (15%) pixels as the most common, suggesting that objects in these areas can be 

detected equally. 

The work presented marks an initial step towards increasing cyclist safety. In this 

study, we developed a comprehensive methodology to identify risk factors for cyclists. 

The recognition of these risk factors is a foundation for developing strategies to improve 

cycling safety. As a future course of action, it is necessary to create frameworks to com-

municate this information to end users and decision-makers effectively. This can facilitate 

implementing measures to reduce cyclist risk, promoting safer cycling environments. 
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In conclusion, this research highlights the potential of deep learning techniques in 

identifying and addressing cyclists’ risk factors in urban environments. By incorporating 

these techniques into urban planning and transportation management, we can create cities 

that prioritize the safety and comfort of all residents while reducing carbon emissions and 

mitigating climate change impacts. As we continue to harness the power of artificial intel-

ligence, the research aims to develop safer, more sustainable cities that cater to the needs 

of cyclists, pedestrians and all road users. These initiatives align with broader sustainable 

development goals, promoting environmentally friendly and inclusive urban environ-

ments. 

As the study moves forward, it will explore other areas where AI-driven solutions 

can further enhance city safety and sustainability. By focusing on continuous innovation 

and improvement, our team envisions a future where cities are safer, more livable, resili-

ent and environmentally friendly. This study marks a promising beginning, and our team 

is commi�ed to advancing its mission of harnessing artificial intelligence to create a be�er 

urban experience for everyone. 
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Appendix A. YOLOv5 Detected Objects 

One of the main goals of this project was to show the potential of the GSV imagery 

dataset. Given a large dataset, there is plenty of information that can be extracted. 

While analyzing all the processed LSOAs in the Greater London atlas, two were 

found that illustrate the potential of this technique: the Airplane and Po�ed Plant catego-

ries (Figure A1). 

In the case of the first, a higher density of planes was detected per image in the areas 

next to the airports of Heathrow and the City of London. Moreover, all detected planes 

were located to the right of each of these structures. This phenomenon is explained by the 

wind direction being from west to east, which means that the planes land from east to 

west, and the fact that landing takes significantly longer than taking off. Thus, only images 

taken on the right contain planes. Finally, the difference in the number of detections next 
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to each of these airports is also clear. Due to the greater volume of air traffic at Heathrow, 

most of them are in its proximity. 

Po�ed plants were also frequently detected. These were mainly present in images 

closer to the biggest parks of London. This category includes all vegetation inserted in any 

type of pot. Given that vegetation was the second most labeled type of pixel across the 

GSV imagery dataset after executing PSPNet101, the high level of captured po�ed plants, 

the fourth most detected object, is not surprising. 

 

Figure A1. (Left) Density of planes present in images taken next to the closest London airports 

agrees with expectations. (Right) Identically, the biggest density of po�ed plants was observed 

closer to the biggest parks. 

Appendix B. YOLOv5 Limitations and Misclassifications 

For the objects we defined as relevant to cyclists’ road safety, the number of misclas-

sifications was minimal. This was achieved because a high threshold of 0.5 was defined to 

count as a detection, and in the MS Coco training dataset, the most common objects are 

the ones we are interested in. 

However, there were objects that were consistently misclassified. The most common 

were satellite dishes being detected as clocks. Depending on the angle, arm dishes can 

easily resemble a clock pointer. A total of 2750 clocks were detected in the complete GSV 

imagery dataset (Figure A2). Other less common objects were also wrongly identified: 

some due to their shape, others because of their texture. Examples include, for the former, 

the detection of boats instead of construction containers and, for the la�er, benches instead 

of fences. 
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Figure A2. Example of misclassification in YOLOv5. 

Appendix C. Object Detection Correlation Matrix 

Figure A3 presents the correlation matrix for the top 15 detected objects. Thus, each 

cell contains the Pearson correlation coefficient (top) and the associated p-value (bo�om). 

Highlighted are the objects car, person, truck, bus and bicycle. 
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Figure A3. Correlation matrix of the top 15 detected objects. 

Appendix D. PSPNet101 and Image Segmentation 

Figure A4 illustrates the measurement of road and cycle line widths, these values 

being important for cyclists’ safety, especially in the context of shared cycling lanes. With 

a legally enforced distance of over 1.5 m between vehicles and cyclists. A larger width for 

cycle lanes allows cyclists to maintain a safe distance from other vehicles and navigate 

around any potential road defects. 

 

Figure A4. Example illustrating the potential of IS to extract road (left) and sidewalk (right) width. 
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Appendix E. Object Detection and Image Segmentation Examples 

Figures A5 and A6 show some random outputs of the approach proposed in this ar-

ticle. 

 

Figure A5. Ten randomly chosen object detection images from different LSOAs that show high detection 

accuracy among MS Coco categories. 
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Figure A6. A small sample of randomly segmented images from different LSOAs that show the importance 

of accounting for structure occlusion while capturing sizes and shapes. 
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