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Abstract: With the development of logistics, sustainable warehousing has become increasingly impor-
tant. To promote the warehousing efficiency, non-traditional layout warehouses and storage location
assignments have been proposed separately. However, they are rarely combined. Taking inspiration
from the advantages of non-traditional layout warehouses and storage location assignments, a storage
location assignment optimization algorithm for non-traditional layout warehouses is proposed to
further improve the efficiency and sustainability of warehousing. By reducing the picking distance
and picking time, this algorithm further boosts the warehouse efficiency and sustainability, saving
energy in the process and resulting in positive effects on the environment and the economy. In the
process of establishing the model, taking the order-picking efficiency and shelf stability as optimizing
objectives, a multi-objective optimization model is derived. Then, a storage location assignment
optimization algorithm based on the firework algorithm is developed using adaptive strategies
for explosion and selection to enhance the convergence rate and optimization performance of the
algorithm. With this approach, the storage location assignment optimization for non-traditional
layout warehouses can be handled well. Finally, a set of comparative simulations is carried out with
MATLAB, and the results show various positive effects for sustainable warehouse management, such
as a higher order-picking efficiency, better shelf stability, time and resource savings, and so on.

Keywords: sustainable warehousing management; storage location assignment; non-traditional
layout warehouse; firework algorithm

1. Introduction

The warehouse plays a critical role in logistics and is considered one of its most signifi-
cant components [1–3]. Ensuring its sustainability is important, as it impacts both economic
and social factors and thus the overall sustainability of logistics [4,5]. The sustainability of
a warehouse is crucial for its long-term viability. The resources that are utilized within the
warehouse, such as space, equipment, and the workforce, are usually limited [6,7]. Without
efficient resource utilization, order picking becomes unsustainable, resulting in increased
energy consumption, capital expenditure, and human resources depletion.

The core activities of warehousing include receiving, storage location assignment,
order picking, and shipping [8,9]. Several optimization strategies for making warehouses
sustainable have been developed, such as warehouse layouts, storage location assignment,
etc. [10,11]. Based on traditional layout warehouses, non-traditional layout warehouses
were developed to decrease the pathways traveled to store and retrieve cargoes and reduce
the energy cost [12,13]. The Flying-V warehouse layout [14,15], the Fishbone warehouse
layout [16], the chevron, leaf, and butterfly warehouse layouts [17,18], and the straight
diagonal cross-aisle non-traditional warehouse [19] are typical non-traditional warehouse
layouts. The expected traveling distances for the Flying-V warehouse layout and the
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Fishbone warehouse layout are up to 20% shorter than those of traditional warehouses,
which contributes to energy saving [12]. Therefore, non-traditional layout warehouses are
useful for improving the efficiency [13]. Moreover, storage location assignment is another
practical strategy to improve the warehousing efficiency. Storage location assignment refers
to the sustainable management of warehousing by reasonably optimizing the placement
of cargoes, improving the order-picking efficiency, and reducing energy loss and resource
waste [20]. Suitable storage location assignment can reduce the travel time and distance
of picking robots, a practical strategy for improving the efficiency [21,22]. Therefore, this
paper aims to answer the following research question:

How can a storage location assignment optimization algorithm be established for
non-traditional layout warehouses to improve their efficiency and sustainability?

Although the advantages of non-traditional warehouse layouts and storage location as-
signments have been elaborated separately, they have rarely been combined. Additionally,
storage location assignment for non-traditional layout warehouses has not been extensively
considered. To address this gap, inspired by the superiority of non-traditional warehouse
layouts and storage location assignments, these factors are integrated to provide a storage
location allocation optimization algorithm for warehouses with non-traditional layouts to
improve the storage efficiency. When assigning storage locations for non-traditional layout
warehouses, the establishment of an optimization model and the design of an optimization
algorithm are the main challenges. Firstly, to overcome these challenges, a multi-objective
optimization model that considers both the order-picking efficiency and shelf stability as op-
timizing objectives is established. Subsequently, a storage location assignment optimization
algorithm based on the Firework algorithm is proposed. Specifically, adaptive strategies
are adopted in the explosion and selection stages, which enhance the convergence rate
and optimization performance of the algorithm. Therefore, storage location assignment
optimization for non-traditional layout warehouses can be effectively handled.

1.1. Literature Review

To make warehouses more sustainable, numerous studies have been conducted to op-
timize resource utilization, including routing, scheduling, storage location assignment, and
other methods. Prior research developed Key Performance Indicators (KPIs) for assessing
the sustainability of the warehousing performance, including economic, environmental,
and social variables [5,7]. Specifically, economic variables include the warehouse opera-
tion performance and economic performance, while environmental variables include the
resource allocation, emissions waste, and environmental commitments. Social variables
include labor practices, decent work, and product responsibility. Chiang et al. [23] devel-
oped a picking-list assignment strategy that groups similar items together to reduce the
traveling distance and time for picking robots. This leads to an increased efficiency and a
reduction in carbon emissions, contributing to a more sustainable supply chain. On the
other hand, Popovic et al. [7] focused on workforce scheduling problems to decrease the
labor costs. In addition, Burinskiene et al. [24] increased the efficiency of warehouse proce-
dures by identifying wasteful warehouse processes and reducing the replenishment and
order-picking costs. This paper improves warehousing sustainability by using a novel strat-
egy. Non-traditional storage layouts and storage location assignments are comprehensively
considered to achieve sustainable warehousing management. Specifically, a storage location
assignment optimization algorithm for non-traditional layout warehouses is proposed,
which improves the picking efficiency and increases the shelf stability. This enhances energy
conservation in warehousing, promoting both environmental and economic benefits.

The design of a storage location assignment optimization algorithm must consider
both the shelf stability and the picking efficiency, making it a multi-objective model [25]. To
address multi-objective optimization, several algorithms have been developed, such as the
firework algorithm (FWA), the genetic algorithm (GA), the particle swarm optimization al-
gorithm (PSO), and the polynomial algorithm [26–29]. Zhang et al. [30] proposed a GA with
a two-stage iterative approach to develop a layout that considers the adjacency and other
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constraints with the lowest transportation cost. For storage location formation, Li et al. [31]
proposed a multi-objective model and an improved GA considering the order-picking
frequency and shelf stability based on the class storage policy. Chen et al. [32] presented an
established neighborhood structure for storage location assignment problems and created
a tabu search algorithm. Zhang et al. [33] expressed this as an integer programming model
and created the simulated annealing algorithm. In view of the storage location assignment
problem with a Flying-V layout, an approach to the storage location assignment problem
based on the Flying-V layout was proposed by Liu et al. [34]. Hu et al. [35] formulated
an optimization model for the storage location assignment, considering the inventory
efficiency and shelf stability as optimizing objectives based on Fishbone layout characteris-
tics. Soheyl et al. [36] proposed the Multi-Objective Stochastic Fractal Search (MOSFS) to
solve complex multi-objective optimization problems. With the consideration of uncertain
parameters, objective functions, and constraints, a mathematical model was designed by
Soheyl et al. [25]. Additionally, several artificial-intelligence-based solution techniques
have been formulated to solve the complex nonlinear problem. In this paper, a practical
multi-objective optimization model for quantifying the warehousing sustainability is pro-
posed by considering the characteristics of the storage location assignment, order-picking
efficiency, and shelf stability as optimizing objectives.

1.2. Main Contributions

Although several algorithms have been employed to solve the storage location as-
signment problem, few of them consider the modeling of non-traditional layouts and
multi-objective optimization as an integrated challenge. Therefore, storage location assign-
ment for non-traditional layout warehouses remains a challenging task. In this paper, a
storage location assignment for non-traditional warehouse layouts based on the FWA is
proposed. The contributions are listed below:

(a) Establishing a model for non-traditional layout warehouses can be challenging. In this
paper, a model of non-traditional layout warehouses is established in detail, which
consists of a Flying-V layout and a Fishbone layout.

(b) A practical multi-objective optimization model is proposed to quantify the sustainabil-
ity of warehousing. Specifically, the characteristics of the storage location assignment,
order-picking efficiency, and shelf stability are taken as optimizing objectives, and a
multi-objective optimization model is proposed.

(c) To address the multi-objective optimization model described above, a storage loca-
tion assignment optimization algorithm based on the FWA is developed. Adaptive
strategies are adopted for explosion and selection to improve the convergence rate
and optimization performance of the algorithm.

Therefore, the storage location assignment optimization of non-traditional layout
warehouses can be handled well. Furthermore, to verify the effectiveness and priority of
the proposed algorithm, comparative simulations are implemented, which indicate a faster
convergence rate and better optimization performance.

The structure of this paper is as follows: Section 2 describes the modeling of non-
traditional warehouse layouts, including the Flying-V layout and Fishbone layout. Section 3
describes the modeling of storage location assignment optimization with integrated consid-
eration of multiple optimizing objectives. Next, Section 4 describes the design of the storage
location assignment algorithm based on the FWA. To prove the priority of the proposed
algorithm, the comparative GA is described in Section 5. Moreover, Section 6 presents
comparative simulations of different storage location assignment algorithms for different
non-traditional warehouse layouts, which verifies the significant priority of the proposed
algorithm. Finally, the contributions and future research directions are summarized in
Section 7.
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2. The Modeling of Non-Traditional Warehouse Layouts

The object of this research was to optimize storage location assignment for non-traditional
warehouse layouts. In this section, the modeling of non-traditional warehouse layouts is
derived, including the Flying-V layout and Fishbone layout, as shown in Figures 1 and 2.
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Figure 1. Flying-V layout.
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Figure 2. Fishbone layout.

Before carrying out the modeling of non-traditional warehouse layouts, we assume
that [34,35]:

(a) The numbering, weight, and access frequency of cargoes are known;
(b) The same kind of cargo can be stored in different storage locations.
(c) The horizontal speed and vertical speed of the picking robot are known, and its

starting and braking processes can be ignored;
(d) During the picking process, the picking robot can only access one storage location

every time;
(e) The width of the picking roadway is equal to the width of a shelf.

Moreover, some related parameters can be described as follows: The notations in this
paper are defined in Table 1. The length of the storage space is l, the height of each shelf
layer is h, and the storage area is k (k = 1, 2, 3, 4). Starting from the lower left corner, the
area is divided into area 1, area 2, area 3, and area 4 in a counterclockwise direction. Area 3
and area 4 are the middle parts of Figures 1 and 2. x (x = 1, 2, . . . , xmax) is the row number
of the storage location, y (y = 1, 2, . . . , ymax) is the column number of the storage location,
z (z = 1, 2, . . . , zmax) is the number of layers in the storage location, and i is the number of
cargoes. The cargo located in row x, column y, and floor z in zone k is marked as (kxyz),
and ri is the access frequency of the cargoes. v1 is the horizontal speed of the picking robot,
and v2 is its vertical speed.
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Table 1. The definitions of the notations.

Notations Definitions

l The length of the storage space
h The height of each shelf layer
k The storage area
x The row number of the storage location
y The column number of the storage location
z The number of layers in the storage location
i The number of cargoes
ri The access frequency of the cargoes
v1 The horizontal speed of the picking robot
v2 The vertical speed of the picking robot
Lx The distance from the P&D point to the storage location
f1 Objective function 1
f2 Objective function 2
f The overall objective function
g The fitness function
F1,F2 The sub-objective function
w1 The weight of sub-objective function F1
w2 The weight of sub-objective function F2
f̂1 The optimal value of the efficiency of warehouses for storage and retrieval (7)
f̂2 The optimal value of the center of gravity of all cargoes (8)
mi The weight of cargoes numbered i
j The number of fireworks
sj The number of sparks numbered j
n The maximum amount of fireworks
fmax The maximum value of the objective function among n fireworks
N0 A parameter controlling the total number of sparks generated by n fireworks
ξ The smallest constant in the computer
ŝj The bounds for sj
a,b The constant parameters
Aj The amplitude of explosion for each firework
Â The maximum explosion amplitude
fmin The minimum value of the objective function among n fireworks
qu

e The location of each spark
w The random dimensions of sparks
d The dimensionality of firework qj
qj The location of the firework
x∗ The current best location
p
(

xj

)
The selection probability of each firework location

K The set of all current locations of both fireworks and sparks
R
(

qj

)
The distance between a location qj and other locations qe

imax The number of cargoes
T The maximum evolutionary generation
N The population of the GA

2.1. Model of the Flying-V Warehouse Layout

As shown in Figure 1, the entire warehouse has four equal distribution areas, one P&D
point, and two diagonal cross-aisles, and the shelves are arranged in the Flying-V layout.

The maximum columns ymax of the shelf change continuously with x, and can be
derived as

(a) When k = 1 or k = 2:

ymax =

{
1.5x− 0.5, x is odd
1.5x, x is even

(1)
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(b) When k = 3 or k = 4

ymax =

{
Y− 1.5x− 0.5, x is odd
Y− 1.5x, x is even

(2)

where Y represents the maximum number of rows of shelves in the warehouse.

Lx is the travel distance of the picking robot from the P&D point to the shelf where
the cargoes are located, and its expression is

(a) When k = 1 or k = 2:

Lx =

{ √
2 ∗ (1 + 1.5(x− 1)) ∗ l, x is odd(√

2 ∗ 1.5x + 1
)
∗ l, x is even

(3)

(b) When k = 3 or k = 4

Lx =


(√

2 ∗ 1.5(x− 1) + 2
)
∗ l, x is odd(√

2 ∗ 1.5(x− 1) + 1
)
∗ l, x is even

(4)

2.2. Model of the Fishbone Warehouse Layout

As shown in Figure 2, similar to the Flying-V warehouse layout, the model of the
Fishbone warehouse layout can be derived as follows:

The maximum number of columns ymax for the shelf changes continuously with x,
and can be derived as

ymax =

{
Y− 1.5(x− 1), x is odd
Y− 1.5x + 1, x is even

(5)

Lx is the travel distance of the picking robot from the P&D point to the shelf where
the cargoes are located, and it can be derived as

Lx =

{ √
2 ∗ (1 + 1.5(x− 1)) ∗ l+l, x is odd√
2 ∗ (2 + 1.5(x− 2)) ∗ l + 2l, x is even

(6)

3. Model of the Storage Location Assignment Optimization

The optimization of storage locations is conducted to assign suitable storage locations
for cargoes based on their characteristics, i.e., weight and picking frequency [19], which
is helpful to sustainable warehousing management. The picking frequency varies among
different types of cargo. To improve the picking efficiency, the picking time for all cargoes
should be minimized, which can be achieved by calculating the sum of the product of
the picking efficiency and the picking time of each cargo. Although existing research has
considered the warehouse efficiency for storage and retrieval [37,38], the shelf stability,
which is influenced by the weight of each cargo, has not been sufficiently considered. To
promote shelf stability, the overall center of gravity of the cargo should be maintained as
low as possible. Therefore, multiple optimizing objectives for non-traditional warehouse
layouts are fully considered in this paper, such as the stability of the shelf and the efficiency
of storing and retrieving cargoes. The multi-optimization model for storage location
assignment optimization can be derived as follows:

Objective function:

f1 = min ∑imax
i=1 ri ∗ (

Lx

v1
+

(y− 1) ∗ l
v1

+
(z− 1) ∗ h

v2
) (7)

f2 = min
∑imax

i=1 mi ∗ z ∗ h

∑imax
i=1 mi

(8)
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where 
x ≤ xmax
y ≤ ymax
z ≤ zmax

(9)

Equation (7) represents the objective function established through the efficiency of
warehouses for storage and retrieval, and Equation (8) represents the objective function
established using the center of gravity of all cargoes. Equation (9) represents the constraints
of storage location assignment in non-traditional warehouse layouts, and mi is the weight
of cargoes numbered i.

For multi-objective optimization problems, many solutions have been proposed, in
which the weight method is a widely utilized one [39]. For storage location assignment, the
dimensions and ranges of the objective function (7) and (8) are quite different. Therefore,
the weight method cannot be directly used, which results in certain objective values being
weakened. To solve this issue, the dimension of each single objective function is normalized
in this paper, using the optimal value of each single objective function. Thus, the multi-
objective problem is transformed into a single-objective problem. The overall objective
function f and the fitness function g are derived as follows:

f = w1F1 + w2F2 (10)

g =
1
f

(11)

where w1 and w2 represent the weights of two sub-objective functions. Sub-objective
functions F1 and F2 can be obtained by dimensional normalization:

F1 =
f̂2

f̂1 + f̂2
f1 (12)

F2 =
f̂1

f̂1 + f̂2
f2 (13)

where f̂1 represents the optimal value for the efficiency of warehouses for storage and
retrieval (7), and f̂2 represents the optimal value for the center of gravity of all cargoes (8).

4. Algorithm Design with the Firework Algorithm

Proposed by Tan and Zhu [40], the FWA has been widely applied for optimization
due to its advantages. For example, it has been used successfully to optimize the local-
concentration model’s parameters for spam detection [41], and for a Gaussian process
regression model for determining the WiFi indoor location [42]. As shown in Figure 3, a
storage location assignment algorithm for non-traditional warehouse layouts based on the
FWA is proposed in this paper. The algorithm mainly consists of four steps: explosion,
mutation, evaluation, and selection. In particular, the location of a firework represents
a candidate solution to the storage location assignment for non-traditional warehouse
layouts, and an explosion represents a random search operation in the solution space
around the firework. The main steps of the proposed algorithm are described as follows:

(a) Firstly, inspired by the phenomenon of firework explosion, a certain number of
firework locations are generated in the search space, which will generate a set of
sparks by exploding.

(b) Secondly, the location of sparks is obtained by explosion and mutation. A firework
with higher fitness can explode with a greater number of sparks with a smaller
amplitude, while a firework with lower fitness can explode with fewer sparks with a
larger amplitude.

(c) Thirdly, the quality of each firework location is derived with the fitness function (11).
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(d) Then, the fireworks and sparks with high fitness are selected as the locations (candi-
date solutions) for the next generation’s fireworks.

(e) Finally, optimization ends when the maximum number of evaluations is reached.

Moreover, to better illustrate the design process of the proposed algorithm, some key
parts are described in detail below.

Generate locations for fireworks

Obtain sparks by explosion

Evaluate the quality of the 
locations 

Select locations for the next 
generation End

YES

NO

Start

Maximum 
evaluations 
reached?

Figure 3. The framework of the proposed algorithm based on the FWA.

4.1. Number of Sparks

The number of sparks depends on the quality of each firework and can be derived as
follows.

sj = N0 ·
fmax − f + ξ

∑n
j=1 ( fmax − f ) + ξ

(14)

where j is the number of fireworks. f is the overall objective function (10). fmax is the
maximum value of the objective function among n fireworks. N0 is a parameter controlling
the total number of sparks generated by n fireworks. ξ denotes the smallest constant in
the computer, which is utilized to avoid a zero-division error. To avoid the overwhelming
effects of splendid fireworks, bounds for sj are designed as shown in (15).

ŝj =


round(a · N0) sj < aN0
round(b · N0) sj > bN0, a < b < 1

round(sj) otherwise
(15)

where a and b are constant parameters.

4.2. Amplitude of Explosion

The amplitude of explosion for each firework can be derived as follows: In contrast to
the design of the spark number, the amplitude of a good firework explosion is smaller than
that of a bad one.

Aj = Â · f − fmin + ξ

∑n
j=1 ( f − fmin) + ξ

(16)

where Â denotes the maximum explosion amplitude, and fmin is the minimum value of
the objective function among n fireworks.
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4.3. Obtaining Sparks by Explosion

The location of each spark qu
e generated by qu

j can be obtained by randomly setting w
dimensions ( 1 ≤ e ≤ sj, 1 ≤ u ≤ w), which is calculated by

qu
e = qu

j + Aj · rand(−1, 1) (17)

where w represents the random dimensions of sparks, w = round(d · rand(0, 1)), and d is
the dimensionality of firework qj.

Moreover, to maintain the diversity of the sparks, a Gaussian distribution with a mean
of 1 and standard deviation of 1 is utilized to define the coefficient of the explosion. A
certain number of sparks are generated in each explosion generation.

4.4. Selection of Locations

At the beginning of each explosion generation, the current best location x∗ is always
kept for the next explosion generation. After that, n− 1 locations are selected based on their
distances to other locations to maintain the diversity of the sparks. The next generation of
fireworks is selected using the roulette method with the selection probability [43,44]. The
selection probability of each firework location qj can be derived as follows:

p
(
xj
)
=

R
(
qj
)

∑e∈K R(qe)
(18)

where K is the set of all current locations of both fireworks and sparks. R
(
qj
)

represents
the distance between a location qj and other locations qe, which can be derived as follows:

R
(
qj
)
= ∑

e∈K
d(qj, qe) = ∑

e∈K

∥∥qj − qe
∥∥ (19)

As the evaluations reach the desired evaluation point, the optimal storage location
assignment can be obtained.

5. Genetic Algorithm

To make the performance superiority of the proposed storage-location-assignment-
based algorithm on the FWA more convincing, the genetic algorithm (GA) was selected
as a comparative object. The GA is widely used to solve combinatorial optimization prob-
lems [28]. However, in the actual application process of the traditional GA, the phenomenon
of prematurity often occurs in the early stage of evolution, and the phenomenon of slow
convergence often occurs in the later stage of evolution [45–47]. The deficiencies can be
effectively solved and the optimization performance can be improved by the adaptive
mechanism. Therefore, an adaptive strategy is implemented among the selection, crossover,
and mutation operations of the genetic algorithm. The framework of GA is shown in
Figure 4.

Inputs: imax (number of cargoes), mi (weight of cargoes), ri (picking frequency of
cargoes), v1 (horizontal speed of the picking robot), v2 (vertical speed of the picking robot),
l (length of the storage location), h (height of each shelf layer), w1, w2 (weight of the two
sub-objective functions), and N (population of the GA).

Output: optimal assignment of storage locations for non-traditional warehouse layouts.

Step 1. Input the parameters of the storage location assignment imax, mi, ri, v1, v2, l, h, w1,
w2.

Step 2. Initialize the adaptive genetic algorithm parameters.
Step 3. Start the algorithm and initialize the population.
Step 4. Determine whether the number of iterations has been reached. If so, go to Step 5;

otherwise, continue.
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Step 4.1. Calculate the objective function value and the fitness of the individuals
in the population.

Step 4.2. Select: Adaptively transform the fitness value.
Step 4.3. Retain the optimal individual.
Step 4.4. Crossover: Carry out an adaptive transformation of the crossover rate.
Step 4.5. Mutation: Carry out an adaptive transformation of the mutation rate.

Step 5. End of the algorithm: The optimal assignment of storage locations for non-
traditional warehouse layouts can be obtained.

Start

Initial population

Fitness calculation

Satisfy the 
termination 
condition?

Selection

Crossover

Mutation

NO

YES

End

Figure 4. The framework of the GA.

6. Simulation
6.1. Simulation Setup

To describe and verify the optimized performance of the proposed algorithm, two typical
non-traditional warehouse layouts, i.e., the Flying-V layout and Fishbone layout, were selected
as the research objects for the comparative simulation. The information about the cargoes is
shown in Table 2. It was provided by an automobile parts manufacturer. All parameters in
the simulation are expressed according to the International System of Units (SI).

To make the performance comparison of the optimized algorithm more convincing,
GA and FWA were selected as comparative objects for this simulation. The parameters of
these algorithms were selected with the overall consideration of the operating frequency
range of the storage location assignment and the response time of the algorithms.

A1: GA. The framework of the GA is shown in Figure 4. The primary parameters were
specified as follows:

The maximum evolutionary generation was set to T = 1000, and the population was
set to N = 100.

A2: For the proposed algorithm based on the FWA, the primary parameters were
specified as follows:

The maximum evolutionary generation was set to T = 100, the initial firework number
was n = 200, a = 0.001, b = 0.999, N0 = 20, and Â = 20.

To verify the performance levels of these comparative algorithms with different non-
traditional warehouse layouts, two simulations were designed to reflect the storage location
assignment performance to a certain extent.

SET1: Flying-V warehouse layout.
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SET2: Fishbone warehouse layout.

Table 2. Information about the cargoes.

Number Weight Frequency Location Used

1 13 2 2
2 27 19 1
3 29 15 1
4 15 5 3
5 28 10 3
6 37 19 3
7 17 15 1
8 40 6 1
9 23 13 4
10 18 8 1
11 29 5 1
12 13 11 4
13 22 1 1
14 36 20 3
15 14 4 2
16 21 4 3
17 19 12 1
18 39 20 3
19 20 16 3
20 37 1 1
21 32 5 4
22 20 7 3
23 34 1 2
24 18 8 1
25 31 15 2
26 30 19 1
27 28 7 4
28 35 4 3
29 27 4 3
30 29 12 2
31 34 12 4
32 33 8 2
33 33 15 4
34 19 13 1
35 37 15 2
36 19 18 1
37 36 17 1
38 40 4 3
39 22 18 1
40 11 3 2

6.2. Simulation of SET1

To compare the optimization performances of these storage location assignment al-
gorithms for the Flying-V warehouse layout, simulation SET1 was designed as shown in
Figure 1. The maximum number of rows of storage locations in the 1st and 2nd areas is
xmax = 10, and that in the 3rd and 4th areas is xmax = 9. The length of the storage space l is
1 m, and the height of each shelf layer h is 0.8 m; the maximum number of shelf layers is
zmax = 4, the horizontal speed of the picking robot is v1 = 2 m/s, and the vertical speed is
v2 = 0.5 m/s. The weight of two sub-objective functions, w1 and w2, is 50.0%.

For the comparative simulation conducted in SET1, the simulation results are shown in
Figures 5 and 6. The average and optimal values of the optimizing objectives for each
generation in the iterative process of the FWA are shown in Figure 5. The average and
optimal values of the optimizing objectives for each generation in the iterative process of
the GA are shown in Figure 6. Moreover, a performance comparison of the two algorithms
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is shown in Table 3. Optimal solutions for the proposed algorithm and GA are shown in
Tables 4 and 5.

Table 3. Performance comparison of these algorithms for SET1.

Algorithm Init Converge Promote Generation Time

GA 382.7 253.7 33.7% 558 76.89
FWA 336.4 189.6 43.6% 178 4.55

Table 4. The optimal solution of the proposed algorithm for SET1.

Number Location Number Location

1 3152, 1441 21 4641, 2212, 2411, 2312
2 1821 22 1211, 1444, 1322
3 1511 23 2511, 1641
4 3131, 2211, 1512 24 1651
5 1451, 2631, 1611 25 1231, 3212
6 1111, 4731, 2611 26 2221
7 1622 27 1731, 3222, 1221, 3411
8 1621 28 3221, 1811, 1411
9 1921, 1112, 1911, 2111 29 1214, 1881, 1213

10 2711 30 3311, 1561
11 2721 31 2051, 3111, 2431, 1851
12 2421, 3191, 1541, 2412 32 3211, 2112
13 3271, 33 2112, 1531, 3321, 1412
14 3122, 4151, 1612 34 2311
15 1721, 3642 35 1711, 3611
16 3321, 1513, 1912 36 1521
17 1631 37 1341
18 1313, 3511, 1321 38 1883, 1801, 1311
19 1671, 1113, 1431 39 1312
20 1212 40 2521, 2113

Table 5. The optimal solution of the GA for SET1.

Number Location Number Location

1 2831, 2213 21 2922, 3531, 3232, 3491
2 3071 22 2341, 3411, 4423
3 1322 23 1931, 3571
4 3624, 2963, 1213 24 4741
5 1791, 2682, 2732 25 3171, 1734
6 2111, 1731, 3111 26 2211
7 4651 27 1962, 3331, 4211, 1332
8 3651 28 4481, 2661, 4281
9 4211, 3433, 3231, 4633 29 3322, 2054, 1523

10 3032 30 1573,2121
11 3612 31 3212, 3371,1331, 4392
12 1221, 4722, 3493,3531 32 1912, 1771
13 2231 33 2611, 1512, 3274, 4531
14 4231, 2331, 4431 34 3452
15 1513, 3831 35 4173, 3202
16 3311, 2741,4712 36 1422
17 1431 37 1671
18 4631, 2312, 3121 38 4351, 2903, 3411
19 1892, 4163, 2112 39 3281
20 1422 40 4161, 3451

As can be seen from Figures 5 and 6 and Table 3, the optimal and the average values of
the objective function show a gradual downward trend in the iterative process. According
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to the simulation results of the GA algorithm presented in Figure 6, when the iteration
exceeds 558 generations, the optimal value of the objective function tends to converge, the
average objective function value of the initial population is 382.7, and the average objective
function value after algorithm optimization and convergence is 253.7. The optimization
effect increases by 33.7%. According to the simulation results of the FWA shown in Figure 5,
when the number of iterations exceeds 178, the optimal value of the objective function tends
to converge, the average objective function value of the initial population is 336.4, and the
average objective function value after algorithm optimization and convergence is 189.6.
The optimization effect increases by 43.6%. To make a comparison of the computational
complexity, the convergence times of these algorithms were calculated. The convergence
time of the proposed algorithm was 4.55 s, and the convergence time of the GA was 76.89 s.
Moreover, the optimization performance of the proposed algorithm for at least 30 different
size (small, medium, and large) instances is provided in Tables 6–8, which verifies the
applicability of the proposed model and its solution procedure.

Table 6. The optimization performance of the proposed algorithm for SET1 at a small scale.

Number Init Converge Promote Generation

1 169.5 74.6 56.0% 161
2 195.6 84.4 56.8% 262
3 176.0 78.2 55.6% 229
4 165.6 75.9 54.2% 112
5 170.1 77.1 54.6% 139
6 177.8 78.1 56.1% 177
7 169.7 79.8 53.0% 152
8 171.5 79.5 53.7% 137
9 171.6 74.9 56.3% 249
10 176.6 80.6 54.3% 144

Table 7. The optimization performance of the proposed algorithm for SET1 at a medium scale.

Number Init Converge Promote Generation

1 317.7 185.6 41.6% 138
2 359.5 202.1 43.8% 184
3 347.1 191.7 44.8% 217
4 351.1 201.6 42.3% 166
5 349.3 194.1 44.4% 185
6 339.8 202.1 40.5% 157
7 346.2 198.5 42.7% 194
8 353.2 197.2 44.2% 205
9 318.1 181.3 43.0% 132
10 358.2 212.7 40.6% 118

Table 8. The optimization performance of the proposed algorithm for SET1 at a large scale.

Number Init Converge Promote Generation

1 719.2 484.6 32.6% 174
2 723.3 460.5 36.3% 403
3 682.3 454.0 33.5% 176
4 723.3 477.4 34.0% 236
5 697.3 468.3 32.8% 148
6 746.7 469.2 37.2% 421
7 722.2 476.6 34.0% 214
8 702.3 448.0 36.2% 334
9 725.1 464.1 36.0% 323
10 763.2 514.6 32.6% 133
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To verify the performance of the proposed algorithm, the well-known commercial
software CPLEX 12.10 was used to solve this model for different instances of varying scales,
as presented in Table 9. The results show that, for small- and medium-scale instances,
the FWA can obtain reasonable solutions compared to those generated by CPLEX, with
an average gap of less than 8.51%. In terms of the calculating time, the FWA requires
significantly less time to calculate instances compared to CPLEX. For large-scale instances,
the FWA can rapidly find a solution, whereas CPLEX cannot find a feasible solution within
a reasonable time window. As such, the proposed algorithm can effectively improve the
solving efficiency of complex models and ensure the solution quality.

Table 9. Comparison between the proposed algorithm and CPLEX for SET1.

Scale FWA FWA Time CPLEX CPLEX Time Error

small 78.31 2.36 s 74.58 798.4 s 5.00%
medium 196.69 4.55 s 181.27 3485.3 s 8.51%

large 471.73 13.59 s NAN NAN NAN

Figure 5. The object value of the proposed FWA algorithm for SET1.

Figure 6. The object value of the proposed GA algorithm for SET1.

Through the performance comparison mentioned above, the response speed of the
proposed algorithm was shown to be quicker than that of GA, and the convergence perfor-
mance was better than that of the GA. Therefore, the proposed algorithm is more suitable
for storage location assignment for Flying-V layout warehouses. The results demonstrate
that the proposed optimizing algorithm effectively increased the sustainability of the ware-
houses. Specifically, the energy consumption needed for picking robots decreased by
lowering the center of gravity of the cargo storage location assignment and increasing the
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picking efficiency. For the Flying-V layout, it is a practical storage location assignment
optimizing algorithm.

6.3. Simulation of SET2

To compare the optimization performances of these storage location assignment algo-
rithms with the Fishbone warehouse layout, the SET2 simulation was designed as shown
in Figure 2. The maximum number of rows of storage space is xmax = 9. The length of
the storage space is l = 1 m. The height of each shelf layer is h = 0.8 m. The maximum
number of shelf layers is zmax = 4. The horizontal speed of the picking robot is v1 = 2 m/s,
the vertical speed is v2 = 0.5 m/s, and the weight of two sub-objective functions, w1 and
w2, is 50.0%.

For the comparative simulation performed with SET2, the simulation results are shown
in Figures 7 and 8. The average and optimal values of the optimizing objective of each gen-
eration in the iterative process of the FWA are shown in Figure 7. The average and optimal
values of the optimizing objectives for each generation in the iterative process of the GA are
shown in Figure 8. Moreover, a performance comparison of the two algorithms is shown
in Table 10. The optimal solutions for the proposed algorithm and the GA are shown in
Tables 11 and 12.

As can be seen from Figures 7 and 8 and Table 10, the optimal and the average values of
the objective function show a gradual downward trend in the iterative process. According
to the simulation results of the GA presented in Figure 8, when the number of iterations
exceeds 647 generations, the optimal value of the objective function tends to converge,
the average objective function value of the initial population is 308.2, and the average
objective function value after optimization and convergence is 217.1. The optimization
effect increases by 29.6%. According to the simulation results of the FWA shown in Figure 7,
when the number of iterations exceeds 176, the optimal value of the objective function
tends to converge, the average objective function value of the initial population is 278.8,
and the average objective function value after optimization and convergence is 143.3. The
optimization effect increases by 48.6%. The convergence time of the proposed algorithms
is 3.41 s, and the convergence time of the GA is 41.17 s. Moreover, the optimization
performance of the proposed algorithm for at least 30 different size (small, medium, and
large) instances is provided in Tables 13–15, which verifies the applicability of the proposed
model and its solution procedure.

Futhermore, CPLEX was utilized to solve this model, as shown in Table 16. The results
show that, for small- and medium-scale instances, the FWA can obtain reasonable solutions
compared to those generated by CPLEX, with an average gap of less than 8.19%. In terms
of the calculating time, the FWA requires less computing time compared to CPLEX. For
larger-scale instances, the FWA can rapidly find a solution, whereas CPLEX cannot find
a feasible solution. As such, the proposed algorithm can effectively improve the solving
efficiency of complex models while ensuring the solution quality.

Through the performance comparison mentioned above, the response speed of the
proposed algorithm was shown to be quicker than that of the GA, and the convergence
performance was better than that of the GA. Therefore, the proposed algorithm is more
suitable for storage location assignment for Fishbone layout warehouses. The results
show that the proposed optimizing algorithm improves the sustainability of warehouses.
Specifically, by lowering the center of gravity of the cargo distribution and improving
the picking efficiency, the energy consumption required for picking robots is effectively
reduced. It is a sustainable storage location assignment algorithm for the Fishbone layout.

According to the above analysis of the simulation results for SET1 and SET2, compared
with the GA, the priority and effectiveness of the proposed storage location assignment
algorithm for non-traditional warehouse layouts were verified. Theoretically, this paper
contributes to sustainable warehousing by combining the superiority of non-traditional
warehouse layouts and storage location assignments. In this way, a storage location
assignment optimization algorithm for non-traditional layout warehouses is provided.
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Table 10. Performance comparison of these algorithms for SET2.

Algorithm Init Converge Promote Generation Time

GA 308.2 217.1 29.6% 647 41.17 s
FWA 278.8 143.3 48.6% 176 3.41 s

Table 11. The optimal solution of the proposed algorithm for SET2.

Number Location Number Location

1 3151, 1131 21 2341, 1113, 1312, 1511
2 2122 22 1141, 4141, 1152
3 1151 23 4111, 2161
4 1213, 2212, 3112 24 3211
5 2131, 1411, 1241 25 1172, 2331
6 1281, 1181, 2171 26 2311
7 2241 27 1212, 3131, 1421, 1711
8 1271 28 2221, 1611, 2141
9 2151, 1231, 1612, 1171 29 1811, 2231, 1221

10 1381 30 1261, 1112
11 1162 31 1161, 1123, 1251, 1512
12 2113, 1114, 1322, 3311 32 2611, 2411
13 3631 33 4121, 1122, 3111, 1311
14 1132, 3231, 1121 34 2121
15 1153, 1431 35 1211, 2111
16 3121, 2201, 1412 36 2112
17 1222 37 1341
18 2211, 1211, 1142 38 1321, 2321, 2511
19 1191, 1331, 3411 39 1111
20 3152 40 1232, 2114

Table 12. The optimal solution of the GA for SET2.

Number Location Number Location

1 2234, 1142 21 3511, 1291, 4292, 1641
2 2241 22 1293, 3623, 4232
3 2112 23 4552, 3552
4 2192, 2173, 1621 24 3272
5 4451, 1321, 3724 25 3261, 2742
6 1221, 1342, 2471 26 4551
7 2311 27 2124, 3191, 2212, 3721
8 2511 28 2532, 2282, 2392
9 3531, 1121, 3822, 1201 29 4251, 2423, 3412

10 4181 30 3321, 3222
11 3353 31 1531, 4231, 3622, 2132
12 2412, 1411, 1292, 1373 32 4371, 1412
13 2213 33 4221, 4242, 2281, 4131
14 1551, 4261, 2351 34 1343
15 1344, 1441 35 4421, 4162
16 1151, 4172, 2131 36 1721
17 4212 37 1301
18 2222, 2651, 2442 38 1341, 2161, 3193
19 3401, 3532, 4381 39 3231
20 1712 40 3371, 3421
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Table 13. The optimization performance of the proposed algorithm for SET2 at a small scale.

Number Init Converge Promote Generation

1 173.9 60.2 65.4% 80
2 142.0 61.1 57.0% 148
3 139.9 65.9 52.8% 229
4 142.2 65.2 54.1% 219
5 141.2 65.2 53.8% 95
6 144.5 65.2 54.9% 141
7 148.6 72.0 51.6% 164
8 148.2 68.4 53.8% 143
9 141.0 65.3 53.7% 229
10 137.8 63.1 54.2% 134

Table 14. The optimization performance of the proposed algorithm for SET2 at a medium scale.

Number Init Converge Promote Generation

1 275.1 152.4 44.6% 164
2 277.5 154.9 44.2% 144
3 269.1 147.9 45.0% 175
4 280.1 156.8 44.0% 251
5 281.3 155.0 44.9% 196
6 290.3 151.3 47.9% 299
7 292.0 154.9 47.0% 286
8 282.2 152.5 45.9% 175
9 275.1 152.4 44.6% 164
10 277.5 154.9 44.2% 144

Table 15. The optimization performance of the proposed algorithm for SET2 at a large scale.

Number Init Converge Promote Generation

1 580.3 363.9 37.3% 273
2 558.2 341.6 38.8% 215
3 572.4 366.0 36.1% 191
4 566.9 357.1 37.0% 173
5 568.9 350.9 38.3% 178
6 569.0 364.5 37.7% 174
7 557.1 336.1 39.7% 273
8 566.4 360.0 36.4% 230
9 573.0 348.0 39.3% 204
10 561.8 344.5 38.7% 221

Table 16. The comparison between the proposed algorithm and CPLEX for SET2.

Scale FWA FWA Time CPLEX CPLEX Time Error

small 65.16 1.86 s 60.18 600.7 s 8.19%
medium 153.3 3.41 s 143.76 2504.8 s 6.64%

large 353.26 10.37 s NAN NAN NAN
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Figure 7. The object value of the proposed FWA algorithm for SET2.

Figure 8. The object value of the proposed GA algorithm for SET2.

7. Conclusions

As the resources utilized within warehouses, such as space, equipment, and the
workforce, are often limited, achieving warehousing sustainability within these constraints
is crucial [48]. The objective of this study was to improve the warehousing efficiency and
sustainability by establishing a storage location assignment optimization algorithm for
non-traditional layout warehouses. The contributions are threefold. First, establishing
a model for non-traditional layout warehouses can be challenging. This was addressed
by establishing Flying-V layout and Fishbone layout models for non-traditional layout
warehouses in detail. Second, to quantify warehousing sustainability, a practical multi-
objective optimization model that considers the storage location assignment, order-picking
efficiency, and shelf stability as optimizing objectives was proposed. Third, a storage
location assignment optimization algorithm based on the FWA was proposed. The proposed
algorithm leverages adaptive techniques in the explosion and selection stages, thereby
improving the convergence rate and optimization performance. The results show that the
proposed algorithm has a faster convergence rate and a better optimization performance.
After optimization, there is greater potential for promoting the warehousing efficiency and
increasing the warehouse sustainability.

This research presented a strategy to enable efficient and sustainable operations while
cutting costs within warehouses. By employing a storage location assignment optimization
algorithm for non-traditional layout warehouses, the limited space and workforce resources
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can handle more cargo. The proposed algorithm improves the shelf stability and reduces
the travel distance of picking robots by lowering the center of gravity of cargo storage and
optimizing cargo storage location assignment. All of this creates the potential to increase
the warehousing sustainability.

The application of the proposed optimizing algorithm is not limited to the sustainable
warehousing management mentioned in this paper. It can also be applied to the sustainable
management of equipment resources, supermarket management, library management, and
any type of management that uses a sustainable storage location assignment system. By
utilizing these systems, organizations can achieve optimal storage location assignment with
limited space and equipment resources. This results in increased efficiency and reduced
resource waste.

The limitations of this paper are as follows: First, although the two typical non-
traditional layout warehouses, Flying-V and Fishbone, were chosen as the research objec-
tives, more non-traditional warehouse layout designs can be explored, such as leaf and
butterfly and chevron ones. Second, the optimization of order-picking tracking and the
integration of different algorithms can be considered. Lastly, the proposed algorithm has
not been applied to practical warehouses. In the future, it will be applied to practical
warehouses, and the corresponding experimental performance will be analyzed.
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