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Abstract: In parametric statistical modeling, it is important to construct new extensions of existing
probability distributions (PDs) that can make modeling data more flexible and help stakeholders make
better decisions. In the present study, a new family of probability distributions (FPDs) called the odd
beta prime generalized (OBP-G) FPDs is proposed to improve the traditional PDs. A new PD called
the odd beta prime-logistic (OBP-logistic) distribution has been developed based on the developed
OBP-G FPDs. Some desirable mathematical properties of the proposed OBP-logistic distribution,
including the moments, moment-generating function, information-generating function, quantile
function, stress–strength, order statistics, and entropies, are studied and derived. The proposed OBP-
logistic distribution’s parameters are determined by adopting the maximum likelihood estimation
(MLE) method. The applicability of the new PD was demonstrated by employing three data sets and
these were compared by the known extended logistic distributions, such as the gamma generalized
logistic distribution, new modified exponential logistic distribution, gamma-logistic distribution,
exponential modified Weibull logistic distribution, exponentiated Weibull logistic distribution, and
transmuted Weibull logistic distribution. The findings reveal that the studied distribution provides
better results than the competing PDs. The empirical results showed that the new OBP-logistic
distribution performs better than the other PDs based on several statistical metrics. We hoped that the
newly constructed OBP-logistic distribution would be an alternative to other well-known extended
logistic distributions for the statistical modeling of symmetric and skewed data sets.

Keywords: beta distribution; odd beta prime generalized family; logistic distribution; information
generation function; entropies; order statistics; groundwater pollution; clean water and sanitation

1. Introduction

The probability distributions (PDs) are vital statistical tools for modeling the underly-
ing behavior of a given data set collected from surveys, observational studies, experiments,
and more. In many practical scenarios, most of these PDs are not suitable to fit every charac-
teristic of real phenomenon. However, statistical literature lacks a standard PD model that
can adequately suit every kind of phenomenon [1–3]. Therefore, it is imperative to establish
new PDs that can provide better flexibility, which can be achieved by adding one or more
parameters to the well-established PDs [4]. In recent times, there has been a gradual emer-
gence of new FPDs developed for data modelling in many practical domains, such as the
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environment, finance, engineering, and biological sciences. Some of the well-known meth-
ods for generating new PDs are included in [5–20]. Other methods to generate flexible PDs
are the odd generalized NH-G [21], Marshall–Olkin odd Lindley-G [22], Maxwell-G [23],
odd inverse power generalized Weibull-G [24], generalized Rayleigh-G [25], generalized
odd linear exponential-G [26], generalized exponential extended exponentiated-G [27] and
generalized alpha exponent power-G [28], among others.

In this paper, we introduced a novel FPD derived using the beta prime (BP) distribu-
tion, popularly known as the beta of the second kind, Feller–Pareto, the Pearson Type VI, or
generalized F distribution [29–31]. However, few studies have looked into the application
of BP distribution [29]. For instance, the distribution of taxed income in Finland was
fitted by [32] using a four-parameter BP distribution. The findings indicated that their
proposed distribution performed better than the two- and three-parameter log-normal
distributions. The study by [33] estimated the BP distribution for family incomes in the
United States, while [34] determined the parameters via the maximum likelihood estima-
tion (MLE) method and studied its properties. Moreover, the application of BP distribution
was utilized by [35,36] to study regression models for positive random variables (RVs). As
defined in [29,37,38], the BP has the following cumulative distribution function (cdf):

W(x; a, b) = I x
(1+x)

B(a, b), x > 0, a, b > 0, (1)

where Bx(a, b) =
x∫

0
ωa−1(1−ω)b−1dω is the incomplete beta function.

The associated probability density function (pdf) is defined as

w(x; a, b) =
1

B(a, b)
xa−1

(1 + x)a+b , x > 0. (2)

The logistic distribution (LD) is a univariate continuous PD for modeling data in
diverse contexts, including life sciences, physical sciences, sports, finance, insurance, neural
networks, logit models, logistic regression, and recently, machine learning. This distribution
is more flexible to the underlying data involving extreme events and has a fatter tail than
a normal distribution suitable for modeling returns in the stock market [39]. Due to its
convenience and significance, the LD is regarded by numerous researchers as a growth
curve. For example, studies by [40,41] used LD in human populations and some biological
organisms. Another study by [42] applied LD to data associated with the agricultural
population. Another important application of the LD is in the analysis of survival data [43].
More interesting practical applications of the LD can be found in [44] and the references
therein. The cdf of the LD is expressed as

P(x;µ, s) =
1

1 + exp−
( x−µ

s
) , x,µ ∈ R, s > 0. (3)

The pdf of the LD corresponding to (3) is defined as

P(x;µ, s) =
exp−

( x−µ
s
)

s
(
1 + exp−

( x−µ
s
))2 , x,µ ∈ R, s > 0, (4)

where µ is the location parameter and s is the scale parameter.
Several generalizations of the LD have been introduced in the literature to study its

properties and examine its adaptability and flexibility in modeling skewed data [45]. These
generalizations are essential to enhance the fit in the non-central probability regions and
to improve the use of LD regarding the asymmetric probability curves [46]. For example,
Ref. [47] introduced the LD of type IV and applied it to study binomial regression data.
In [48], the logistic regression model was proposed. Ref. [49] proposed three general-
izations of LD types. Comprehensive generalizations of the LD have been studied and
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summarized [44]. The skewed LD was proposed [50]. An extended version of the LD
was developed and studied [51] by adding a new parameter. Two extended versions of
skewed LD have been established [52] using the method proposed and defined by [53].
The two widely used approaches to derive different generalizations of PDs, including the
LD [54], are the T-X framework studied by [55] and modified by [56]. The exponentiated
exponential LD was recently established by [57], and several of its properties where defined
and derived.

Recently, Ref. [9] introduced a technique for generalizing FPDs with the cdf defined by

F(x) =

W(Q(x))∫
a

v(m)dm = M{W(Q(x))}, (5)

where M is an RV, v is the pdf of the RV M ∈ [a, b], such that −∞ ≤ a < b ≤ ∞ and
W(Q(x)) is a link function of any cdf of continuous PDs that takes different forms (see [55]).
If we consider the odd function form, W(Q(x)) = Q(x)

1−Q(x) , then the cdf will be

F(x) =

Q(x)
1−Q(x)∫

0

v(m)dm = M
{

Q(x)
1−Q(x)

}
. (6)

Overall, the quest for high-tailed models is motivated by their capacity to offer more
precise and realistic representations of extreme occurrences, enabling better risk manage-
ment, financial modeling, hedging strategies, insurance evaluations, systemic risk analysis,
and climate science. By developing models that can accurately represent extreme values,
decision-makers can better understand and manage risks, make informed choices, and
improve the overall robustness of their systems.

The justifications of this paper are as follows:

(i) To define novel FPDs using the BP distribution.
(ii) To develop new PD that can accommodate both monotonic and non-monotonic

hazard rates.
(iii) To establish heavy-tailed models for different data sets.
(iv) To generate a PD that can provide suitable shapes to fit symmetric and skewed real

data sets that are commonly found in practical disciplines, including environment,
engineering, and finance.

(v) To obtain a flexible PD that can consistently provide more realistic fits to given data
sets when tested against known competing PDs.

The present paper is an extended version of our previously published conference
paper [58]. However, this article expands upon the conference paper by providing more
detailed derivations, analyses, and presenting a more comprehensive discussion and
interpretation of the results. Moreover, the present article includes additional sections, such
as an expanded introduction, literature review, validity test for the proposed family, new
extension of LD and its properties, simulation studies and conclusion, which were not
present in the conference paper.

The remaining parts of the paper are sectioned as follows: Section 2 highlights the
related literature review. Section 3 introduces a novel odd beta prime FPD along with its
cdf, pdf, validity test, and mixture representations. In Section 4, a special odd beta prime
generalized LD is presented. Several statistical features of the new PD are studied and
derived in Section 5. Section 6 describes the parameter estimation of the proposed PD
by adopting the MLE approach. Section 7 contains Monte Carlo simulation to assess the
estimators’ accuracy. Section 8 proves the usefulness of the constructed PD using three data
sets. Discussion is presented in Section 9. Section 10 is reserved for conclusions.
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2. Literature Review

Many efforts have been made to generate new FPD that expand the established
classical PDs to increase the flexibility of modeling data in real-life applications. Several
developed families have been adopted and applied to modeling diverse data types with
varied characteristics. Many families of probability distributions were established using
various approaches in the statistical literature. In this section, we have reviewed some
recent families of distributions alongside their sub-models.

Bell generalized FPD was introduced by [59]. Bell Weibull (BellW), a unique model
of this family, was first introduced. Some properties of this model were derived. The
numerical demonstration was used to evaluate several actuarial measures for the BellW
distribution. The significance of the proposed model was verified based on finance and
medical data sets.

The unit exponentiated half logistic power series (UEHLPS) FPD was proposed by [60].
Several special models of this family were introduced, including the UEHL Poisson, UEHL
Geometric, UEHL Binomial, and UEHL Logarithmic models. The general properties
were derived. The parameter estimation for the UEHLP model was performed based on
various classical estimation methods. A numerical simulation was utilized to examine the
estimators’ accuracy. The usefulness of the UEHLP distribution was evaluated by analyzing
the COVID-19, milk production, and failure data sets.

A new extended cosine generalized FPD was constructed by [61]. Some statistical
features were obtained. Several sub-models of this family were introduced. The Bayesian
and non-Bayesian approaches were adopted for parameter estimation. A simulation
study was conducted to evaluate these approaches and demonstrate their practicality. The
significance of the proposed models was assessed based on the three data sets, such as the
lifetimes of devices, carbon fibers, and the single fibers.

The sine-exponentiated Weibull generalized FPD was pioneered by [62] based on
the sine generalized and exponentiated Weibull generalized FPDs. Several properties of
the developed distributions were obtained. Six different techniques of estimation were
employed to estimate the parameters. The adequacy of these techniques was verified
using Monte Carlo simulations. The significance of the family was analyzed based on
five real data sets. The developed distribution was quite flexible compared to several
well-established distributions.

The type II half-logistic odd Fréchet generalized FPD was constructed by [63] based on
the classical Fréchet family. This family was used to produce symmetrical and asymmetrical
special models. The new models are produced by this family. Some mathematical features
of this family were derived. The estimate of the parameters was performed based on
six distinct techniques. The Monte Carlo simulation study was employed to test these
estimation techniques. The model was explored to analyze the real-word data sets involving
biomedical, engineering, environment, and strength failure.

The odd Perks generalized FPD was studied by [64]. Four different special models
of this family were examined, including the odd Perks uniform, odd Perks exponential,
odd Perks Weibull, and odd Perks Lomax models. Some essential features of the proposed
family were derived. The Bayesian and non-Bayesian methods were applied to estimate the
model parameters. The odd Perks Weibull was explored to propose a new log-location-scale
regression model. Several data sets were employed to verify the relevance and significance
of the introduced distributions.

The truncated Cauchy power Weibull generalized FPD was generated by [65]. This
family was used to establish three special models, such as the truncated Cauchy power
Weibull Lomax, truncated Cauchy power Weibull exponential, and truncated Cauchy
power Weibull Rayleigh models. Various properties of this family were discussed. The
parameters were estimated based on the MLE and Bayesian techniques using censored
data. The adequacy of the estimators was assessed using Monte Carlo simulation. The
importance of the family was illustrated by fitting the three members of this family to
three real datasets. The result revealed that the members of the family performed better
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compared to comparator models, suggesting that the members of the family provided a
better fit.

The type I half logistic Burr X generalized FPD was introduced by [66]. Three sub-
models of this family were introduced. Some important features of this family were
obtained. The parameter estimators were produced using the MLE and Bayesian tech-
niques using the type II censored data. The estimators were evaluated using Monte Carlo
simulation. Three medical data sets from various countries were used to validate the
goodness of the new models.

3. Development of Odd Beta Prime Generalized Family of Distributions

Here, we highlight the development of the novel generalized family of BP distributions
using the method defined by [9] named the odd beta prime generalized (OBP-G) FPDs. The
cdf of OBP-G FPDs will be developed by substituting the pdf in (6) with the pdf given in
(2) as follows:

F(x; a, b,η) = 1
B(a,b)

Q(x;η)
1−Q(x;η)∫

0

ta−1

(1+t)a+b dt,

=

B Q(x;η)
1−Q(x;η)

(a,b)

B(a,b) ; t > 0, a > 0, b > 0, η ∈ R,

(7)

where Q(.;η) is a cdf of a baseline distribution with the vector parameter η. The associated
pdf of OBP-G FPDs is obtained by differentiating (7) as

f(x; a, b,η) = d
dx [F(x; a, b,η)] = 1

B(a,b)
d

dx

(
B Q(x;η)

1−Q(x;η)

(a, b)
)

,

= 1
B(a,b)

[ (
Q(x;η)

1−Q(x;η)

)a−1

[
1+
(

Q(x;η)
1−Q(x;η)

)]a+b
d

dx

(
Q(x;η)

1−Q(x;η)

)]
; x > 0, a > 0, b > 0, η ∈ R.

(8)

After simplifications, the pdf of (8) is

f(x; a, b,η) =
q(x;η)

B(a, b)(1−Q(x;η))2

(
Q(x;η)

1−Q(x;η)

)a−1

[
1 +

(
Q(x;η)

1−Q(x;η)

)]a+b , x > 0, a > 0, b > 0, η ∈ R, (9)

where q(.;η) is the pdf of the baseline model Q(.;η).
Henceforth, the RV X with the pdf given in (9) will be presented by X ∼ OBP−G. We

omit the dependence on parameters a, b and η from (7) and (9) by denoting F(x; a, b,η) = F(x)
and f(x; a, b,η) = f(x), respectively.

To verify whether the new OBP-G family is a valid FPD, the pdf given in (9) is used to

satisfy the
∞∫
−∞

f(x)dx = 1, where f is the pdf of OBP-G FPDs. For the sake of validation, we

provide clear proof as follows:

∞∫
−∞

f(x)dx =
1

B(a, b)

∞∫
0

q(x;η)

(1−Q(x;η))2

(
Q(x;η)

1−Q(x;η)

)a−1

[
1 +

(
Q(x;η)

1−Q(x;η)

)]a+b dx. (10)

With the following equations, where

y =
Q(x;η)

1−Q(x;η)
,

dy
dx

=
(1−Q(x;η))·q(x;η) −Q(x;η)(−q(x;η))

(1−Q(x;η))2 , (11)

we can obtain,
∞∫
−∞

f(x)dx =
1

B(a, b)

∞∫
0

ya−1

(1 + y)a+b dy, (12)
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where (12) is the beta of the second kind; hence,

∞∫
−∞

f(x)dx =
1

B(a, b)
B(a, b) = 1. (13)

This completes the proof and concludes that the OBP-G FPDs are indeed valid FPDs.

Mixture Representations of the pdf of OBP-G FPDs

This subsection presents an important expansion of the OBP-G family pdf defined
in (9).

Now, we can consider the Binomial expansion given by [58] as

(1 + z)−n =
∞

∑
j=0

(
−n

j

)
zj =

∞

∑
j=0

(−1)j
(

n + j− 1
j

)
zj. (14)

Applying (14) in (9) yields

f(x) =
q(x;η)
B(a, b)

∞

∑
j,k=0

(−1)j+k
(

a + b + j− 1
j

) (
a + j + k

k

)
(Q(x;η))a+j+k−1. (15)

After simplifying (15), we can obtain the mixture representation of OBP-G FPDs as

f(x) =
∞

∑
j,k=0

Λj,k q(x;η) (Q(x;η))a+j+k−1. (16)

where Λj,k =

(−1)j+k

(
a + b + j− 1

j

) (
a + j + k

k

)
B(a,b) .

4. Development of Odd Beta Prime-Logistic Distribution

This section introduces a new PD called the odd beta prime-logistic (OBP-logistic)
distribution, which is developed by adding two parameters of the LD defined in (4) to the
OBP-G FPDs presented in (9). The cdf of OBP-logistic can be derived by inserting (3) in
(7) as

F(x) =
B 1

exp−( x−µ
s )

(a, b)

B(a, b)
, x ∈ R. (17)

The associated pdf of (17) is derived by inputting (3) and (4) into (9) to obtain

f(x) =
1

sB(a, b)

[
1

exp−( x−µ
s )

]a

[
1 + 1

exp−( x−µ
s )

]a+b , x ∈ R, (18)

where a, b > 0 are shape parameters, µ ∈ R is the location parameter and s > 0 is the scale
parameter. Several potential shapes of the new OBP-logistic distribution are depicted in
Figure 1a–c. The different shapes of this PD include symmetric (a), positive-skewed (b),
and negative-skewed (c).
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The survival function of the OBP-logistic is expressed by

S(x) = 1−
B 1

exp−( x−µ
s )

(a, b)

B(a, b)
, x ∈ R, a, b > 0. (19)

The hazard rate of the OBP-logistic is defined as

h(x) =

[
1

exp−( x−µ
s )

]a

s
[

1 + 1
exp−( x−µ

s )

][
B(a, b)− B 1

exp−( x−µ
s )

(a, b)

] , x ∈ R, a, b > 0. (20)

Figure 2a,b display some possible shapes of the hazard rate for the OBP-logistic model.
As observed from the figure, the hazard rate of this PD can assume flexible shapes, for
some chosen parameter values. In addition, it is observed from Figure 2a,b that the hazard
rate of the OBP-logistic model indicates decreasing (a) and increasing (b) shapes.
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Figure 2. Plots of the hazard rate of the OBP-logistic distribution. (a,b) show that the hazard
rate of the OBP-logistic distribution can be monotonically decreasing or monotonically increasing
hazard function.

5. Statistical Features of OBP-Logistic Distribution

This section covers derivations for various statistical features of the OBP-logistic model.

5.1. Moments

This subsection provides the rth moment for the OBP-logistic distribution.
If we suppose that X follows the OBP-logistic distribution, the rth moment of X is

expressed by

E(Xr) =

∞∫
−∞

xrf(x)dx, (21)
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where f(x) is defined in (16), and using (16) and (21), we can obtain

E(Xr) =
∞

∑
j,k=0

Λj,k

∞∫
−∞

xrq(x) (Q(x))a+j+k−1dx. (22)

By substituting (3) and (4), the moments in (22), we have

E(Xr) =
∞

∑
j,k=0

Λj,k

S

∞∫
−∞

xr exp−
( x−µ

s
)(

1 + exp−
( x−µ

s
))a+j+k+1 dx. (23)

We can set

m =
1

1 + exp−
( x−µ

s
) , so that dx =

s
m(1−m)

dm. (24)

By inserting (24) in (23), we obtain

E(Xr) =
∞

∑
j,k=0

Λj,k

1∫
0

[
µ− s log

(
1−m

m

)]r

(1−m)(m)a+j+kdm.

By setting r = 1, we obtain

E(x) =
∞
∑

j,k=0
Λj,k

{
µ

[
1∫

0
(1−m)2−1(m)a+j+k+1−1dm

]}
−

∞
∑

j,k=0
Λj,k

{
s

[
1∫

0
log(1−m)(1−m)(m)a+j+kdm−

1∫
0

log(m)(1−m)(m)a+j+kdm

]}
,

(25)

where E(X) is the mean for the OBP-logistic distribution.

Therefore, log(m) =
∞
∑

c=1

(−1)c+1(w−1)c

c for 0 < m ≤ 2 and log(1−m) =

(
−

∞
∑

c=1

(−1)c(−m)c

c

)
for |m| < 1. This form of expansion expressed in (25) has been studied in [67] in Theorem 3.5.

Thus, Equation (25) gives

E(X) = µB(2 , a + j + k + 1)
∞
∑

j,k=0
Λj,k−

s
{

∞
∑

c=1

(−1)2c

c (B(c + 1 , a + j + k + 1) , B(2 , a + j + k + c + 1))
}

.
(26)

This is the mean of the OBP-logistic distribution.

5.2. Moment-Generating Function (mgf)

The derivation of the mgf of OBP-logistic distribution in terms of the mixture repre-
sentation defined in (16) is provided in this subsection.

If we assume that RV X follows the OBP-logistic distribution, the mgf of X is given by

Mx(t) = E(exp(tX)) =
∞∫
−∞

exp(tx)f(x)dx, (27)

provided that this expectation exists for t in some neighborhood of 0.
Using (16) and (27), we obtain

Mx(t) =
∞

∑
j,k=0

Λj,k

∞∫
−∞

exp(tx) q(x) (Q(x))a+j+k−1dx. (28)
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Substituting (3) and (4) in (28), we obtain

Mx(t) =
∞

∑
j,k=0

Λj,k

s

∞∫
−∞

exp(tx)
exp−

( x−µ
s
)(

1 + exp−
( x−µ

s
))a+j+k+1 dx. (29)

With the following equation,

m =
1

1 + exp−
( x−µ

s
) , we obtain dx =

s
(
1 + exp−

( x−µ
s
))2

exp−
( x−µ

s
) dm. (30)

Inserting (30) in (29), we have

Mx(t) = exp(mt)
∞

∑
j,k=0

Λj,k

1∫
0

ma+j+k+st−1(1−m)1−st−1dm. (31)

After simplifications, we obtained the mgf of the OBP-logistic distribution as

Mx(t) = exp(mt)
∞

∑
j,k=0

Λj,k B(a + j + k + st , 1− st). (32)

5.3. Information-Generating Function (IGF)

In information theory and statistics, the IGF has been utilized to generate some im-
portant information quantities, such as Kullback–Leibler divergence and Shannon entropy.
It has been widely applied in physics and chemistry to analyze the atomic structure of
a given phenomenon or system. This subsection provides the derivation of the IGF of
OBP-logistic distribution.

The IGF of the RV X is given as

Iγ(x) =
∞∫
−∞

fγ(x)dx, for γ > 0, (33)

when the integral is finite.
f is defined in (18). Hereafter, the integrand fγ(x) in (33) can be given by

fγ(x) =
1

{sB(a, b)}γ

[
1/exp−

( x−µ
s
)]a·γ[

1 + 1/exp−
( x−µ

s
)](a+b)·γ . (34)

Using (23), the integrand in (34) is

fγ(x) = {sB(a, b)}γ
(

1
w − 1

)aγ

(
1
w

)(a+b)γ
, (35)

where w = 1
1+ 1

exp−( x−µ
s )

.

By setting dx = −

(
1
w

)2

1
s·( w

1−w )

, we can obtain dw = − sdw
w(1−w)

. (36)
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By inputting (35) and (36) into (33), we have

Iγ(x) = 1
{sB(a,b)}γ

1∫
0

( 1
w−1)

aγ

( 1
w )

(a+b)γ
sdw

w(1−w)

= s
{sB(a,b)}γ B(γb , γa).

(37)

This gives the igf of the OBP-logistic distribution.

5.4. Quantile Function

One can suppose the RV X follows the OBP-logistic distribution with cdf (17). Then,
the quantile function (QF) of the OBP-logistic model is derived by inverting (17) as follows:

F(x) =
B Q(x)

1−Q(x)
(a, b)

B(a, b)
= I
(

Q(x)
1−Q(x)

; a, b
)

. (38)

The QF of the baseline cdf is computed by inverting (38) as

Q(x)
1−Q(x)

= I−1(u ; a, b).

Then, we can obtain

Q(x)
[
1 + I−1(u ; a, b)

]
= I−1(u ; a, b).

Therefore,

Q(x) =
I−1(u ; a, b)

1 + I−1(u ; a, b)
, (39)

which is the QF of the baseline model, where u is the uniform random variable in the
interval (0,1). The QF of the OBP-logistic model is obtained by inserting (3) in (39) as

1
1 + exp−

( x−µ
s
) = K,

where K = I−1(u ; a,b)
1+I−1(u ; a,b)

.

We can simplify (40) as

K
(

1 + exp−
(

x− µ
s

))
= 1,

where x− u = −s log
(

1−K
K

)
.

Hence, the QF of OBP-logistic model is

x = u− s log
(

1−K
K

)
. (40)

5.5. Stress–Strength

Here, we present the formulation of the stress–strength function of the OBP-logistic
distribution. The stress–strength function is used to assess the reliability of a product
exposed to variant stress [68].
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If we suppose that X1 and X2 are two independent RVs with the OBP-logistic model
with a, b,µ, s parameters, then the stress–strength function of the OBP-logistic model is
expressed by

R = P(X2 < X1) =

∞∫
−∞

x1∫
−∞

f(x1; a1, b,µ, s)f(x2; a2, b,µ, s)dx1dx2. (41)

where R = P(X2 < X1) is the failure that occurs when the applied stress exceeds the
system’s strength; f(x1; a1, b,µ, s) and F(x1; a2, b,µ, s) are the pdf and cdf of the OBP-logistic
distribution. The integrand in (41) can be expressed as

R =

∞∫
−∞

f(x1; a1, b,µ, s)F(x1; a2, b,µ, s)dx1. (42)

As given in [69], the cdf of the Beta function can be expanded as

Iz(a, b) =
za

B(a, b)

∞

∑
i=0

(1− b)i
(a + i)i!

zi. (43)

Inserting (43) in (42), we obtain

f(x1; a1, b,µ, s)F(x1; a2, b,µ, s) = f(x1; a1, b,µ, s)×[
1

exp−( x−µ
s )

]a2

B(a2,b)

∞
∑

i=0

(1−b)i
(a2+i)i!

[
1

exp−( x−µ
s )

]i
.

(44)

For simplicity, (44) can be expressed as

f(x1; a1, b,µ, s)F(x1; a2, b,µ, s) = Ψ× f(x1; a1, b,µ, s)
∞

∑
i=0

[
1

exp−
( x−µ

s
)]a2+i

, (45)

where Ψ =
(1−b)i

B(a2,b)(a2+i)i!
.

By inserting (45) in (41), we obtain

R = Ψ × Ω
∞∫
−∞

[
1

exp−( x−µ
s )

]a1+a2+i

[
1 +

[
1

exp−( x−µ
s )

]]a1+b dx1, (46)

where Ω = 1
sB(a1,b) .

When y = 1
exp−( x−µ

s )
, we can obtain the following equation:

dx1 = s× exp−
(

x− µ
s

)
. (47)

Inserting (47) into (46), we have

R = Ψ × Ω× s
∞∫
−∞

ya1+a2+i−1

(1 + y)a1+b dy. (48)
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After simplifications, the stress–strength function of the OBP-logistic model is

R =
1

B(a1, b)B(a2, b)

∞

∑
i=0

(1− b)i
(a2 + i)i!

× B(a1 + a2 + i , b− a2 − i). (49)

5.6. Order Statistics

Here, we derive the order statistics of the OBP-logistic. If we assume that the RV
X1:n, X2:n, . . . , Xn:n follows the OBP-logistic model and X1:n < X2:n < . . . < Xn:n is a set of
RVs of n order, then the distribution of the ith order statistics is

Fi:n(x) =
n!

(i− 1)!(n− i)!
[F(x)]i−1[1− F(x)]n−i. (50)

Fi:n(x) =
n!f(x)

(i− 1)!(n− i)!

(n−i)

∑
j=0

(−1)j
(

n− i
j

)
Fi+j−1
(x) , (51)

where f and F are the pdf and cdf of the OBP-logistic model. Now, (51) can be expressed as

Fi:n(x) =
n!f(x)

(i− 1)!(n− i)!

(n−i)

∑
j=0

(−1)j
(

n− i
j

)
×

∞

∑
k,m=0

(−1)k+m
(

i + j− 1
k

)(
k
m

)
Fm
(x), (52)

Ix(a, b) =
xa

B(a, b)

∞

∑
w=0

(1− b)w
(a + w)wi!

xw. (53)

Inserting (53) into (52), we have

Fi:n(x) = f(x)
(n−i)
∑
j=0

∞

∑
k,m=0

Ψj,k,m


(

1
exp−( x−µ

s )

)a

B(a, b)

∞

∑
w=0

(1− b)w
(a + w)wi!

×

 1

exp−
(

x−µ
s
)
w


m

. (54)

Fi:n(x) =
∞
∑
w1

. . .
∞
∑

m=0

 (1−b)w1
...(1−b)wm×

(
1

exp−( x−µ
s )

)a+am+w1+...+wm−1

[B(a,b)]m×(a+w1)...(a+wm)w1!...wm!

×
1

sB(a,b)

[
1 + 1

exp−( x−µ
s )

]−(a+b)(n−i)
∑

j=0

∞
∑

k,m=0
Ψj,k,m.

(55)

Applying the Kampé de Fériet series [70], (54) can be expressed as

Fi:n(x) =

(
1

exp−( x−µ
s )

)a(1+m)−1

sB(a,b)1+m
[

1+ 1
exp−( x−µ

s )

]a+b × a−m
(n−i)

∑
j=0

∞
∑

k,m=0
Ψj,k,m×

F1:2
1:1(a(1 + m) : (1− b, a), . . . , (1− b, a), (b + a(1 + m)) : (a + 1), . . . , (a + 1), 1, . . . , 1).

(56)

This is the order statistics of the OBP-logistic model.

5.7. Entropies

In this subsection, two measures of variation in uncertainty that include the Rényi and
q entropies are presented.

If we assume that X is a RV with pdf f, the Rényi entropy [71] is expressed by

Rγ(x) =
1

1− γ log

 ∞∫
−∞

fγ(x)dx

, γ > 0, γ 6= 1, x ∈ R, (57)

where f is the pdf of the OBP-logistic distribution.
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Using (37) and (57), we have

Rγ(x) =
1

1− γ log
[

s
{sB(a, b)}γ

B(γb , γa)
]

. (58)

The expression of the q-entropy is given by

Qγ(x) =
1

1− γ log

1−
∞∫
−∞

fγ(x)dx

, γ > 0, γ 6= 1, x ∈ R. (59)

The q-entropy is obtained by substituting (37) as

Qγ(x) =
1

1− γ log
[

1−
[

s
{sB(a, b)}γ

B(γb , γa)
]]

. (60)

6. Maximum Likelihood Estimation

Here, we use the MLE method to develop estimators for estimating the parameters
of the OBP-logistic model. If we assume that x1, x2, . . . xn are the possible outcomes of an
experimental sample of size (n) drawn from a OBP-logistic model with set of parameters
Φ = (a, b,µ, s), then the likelihood function for the parameter vector Φ = (a, b,µ, s)T is
given by

L(x; a, b,µ, s) =
{

Γ(a + b)
sΓ(a)Γ(b)

}n n

∏
i=1

(
1

exp−( x−µ
s )

)a

(
1 + 1

exp−( x−µ
s )

)a+b , (61)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) (see [72]).

Then, the log-likelihood function of (61) is

l = log L(x; a, b,µ, s) = n log(Γ(a + b))− n log(s)− n log(Γ(a))− n log(Γ(b))

+a
n
∑

i=1
log

(
1

exp−
( xi−µ

s

)
)
− (a + b)

n
∑

i=1
log

(
1 + 1

exp−
( xi−µ

s

)
)

.
(62)

The ML estimates (MLEs) Φ̂ of Φ are determined by maximizing (62). The components
of the score vector with respect to a, b,µ and s are

∂l

∂a
= nψ(a + b)− nψ(a) +

n
∑
i=1

log

 1

exp−
(

xi−µ
s

)
− n

∑
i=1

log

1 +
1

exp−
(

xi−µ
s

)
, (63)

∂l

∂b
= nψ(a + b)− nψ(b)−

n

∑
i=1

log

1 +
1

exp−
(

xi−µ
s

)
, (64)

∂l

∂µ
= −na

s
+

(a + b)
s

n

∑
i=1

 1

1 + exp−
(

xi−µ
s

)
, (65)

∂l

∂s
= −n

s
− a

s2

n

∑
i=1

(xi − µ) +
(a + b)

s2

n

∑
i=1

 (xi − µ)
1 + exp−

(
xi−µ

s

)
, (66)

where ψ is the digamma function.
The estimators for the parameters can be obtained by setting (63)–(66) to zero. Al-

though it is laborious to find the system’s solutions analytically, the R programming
language [73] provides the numerical solutions of the system using iterative Newton–
Raphson methods.
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7. Monte Carlo Simulation Study

Here, we test the accuracy of the MLEs based on n random samples. Simulations are
performed to study the behavior of the MLE for the OBP-logistic distribution. It is employed
for maximizing (62). The number of simulation replicates is observed for R = 1000 times
on different random samples of various sizes of n = 50, 150, 300, . . . , 2050. The average
MLEs, biases, and mean square errors (MSEs) are obtained at each sample size based on
the quantile function defined in (40). The average bias and MSE can be expressed as

Bias =
1
R

R

∑
i=1

(
Φ̂i −Φ

)
, (67)

MSE =
1
R

R

∑
i=1

(
Φ̂i −Φ

)2

, (68)

where Φ = (a, b,µ, s)T.
Table 1 displays the simulation results for different parameter values. Accuracy is

achieved as the estimates tend to be closer to their actual values when the n increases. At
first, we generate 1000 random samples from the OBP-logistic distribution (a, b,µ, s) from
different variations in the parameters (a = 0.5, b = 1.5, µ = 0.75, s = 0.5) for fixed sample
sizes n = 50, 150, 300, . . . , 2050 and secondly, for different variations in the parameters
(a = 0.35, b = 1.7, µ = 1.2, s = 0.2) for the fixed sample sizes n = 50, 150, 300, . . . , 2050.

In addition, the values of the error measures of the parameter estimates decrease
when the n increases. Therefore, it is evident that the MLE approach generates consistent
estimates in assessing the parameters of the OBP-logistic distribution for all possible
parameter value selections. Table 1 also demonstrated that as n increases, the MSE for the
estimators decreases.

Table 1. Simulation results (MLE, bias, and MSE) for OBP-logistic distribution for several values.

Set 1: a = 0.5, b = 1.5, µ = 0.75, s = 0.5 Set 2: a = 0.35, b = 1.7, µ = 1.2, s = 0.2

Parameter n Mean Bias MSE Mean Bias MSE

â

50 1.021639 0.421634 0.323464 0.376896 0.069939 0.051017

150 0.783206 0.283205 0.159113 0.415324 0.154217 0.051843

300 0.705664 0.205666 0.088489 0.387839 0.097845 0.026851

750 0.632203 0.132208 0.053510 0.377562 0.070852 0.018937

1050 0.579878 0.079871 0.024855 0.369832 0.059126 0.013711

1550 0.534531 0.064537 0.016711 0.360532 0.047211 0.008374

2050 0.511279 0.061279 0.015390 0.356891 0.036824 0.004921

b̂

50 3.071120 2.051126 6.501042 2.757921 1.057934 8.337832

150 2.335925 1.315927 4.281831 1.903067 0.203953 1.077834

300 1.916825 0.896823 2.927313 1.815383 0.115848 0.662473

750 1.853472 0.533476 1.630027 1.725902 0.025954 0.398832

1050 1.801139 0.265113 0.727289 1.724942 0.290710 0.024529

1550 1.795770 0.178776 0.410361 1.717291 0.004975 0.193952

2050 1.628714 0.156718 0.363602 1.704701 0.002562 0.009541
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Table 1. Cont.

Set 1: a = 0.5, b = 1.5, µ = 0.75, s = 0.5 Set 2: a = 0.35, b = 1.7, µ = 1.2, s = 0.2

Parameter n Mean Bias MSE Mean Bias MSE

µ̂

50 0.526858 −0.273106 0.104449 1.875402 0.780864 3.704327

150 0.620049 −0.179951 0.060271 1.460174 0.208016 0.877854

300 0.662551 −0.137446 0.039444 1.386421 0.072756 0.392853

750 0.709550 −0.090441 0.023709 1.283419 0.049643 0.270834

1050 0.715512 −0.074489 0.017091 1.247242 0.015953 0.174934

1550 0.739470 −0.057208 0.010584 1.227641 0.010261 0.118342

2050 0.757674 −0.042325 0.007179 1.207845 0.007834 0.111962

ŝ

50 0.657450 0.089643 0.010547 0.234628 0.012999 0.009617

150 0.579762 0.019884 0.005913 0.238917 0.038921 0.005998

300 0.546031 0.009546 0.001750 0.233610 0.023610 0.004892

750 0.536545 0.006575 0.001147 0.229828 0.019721 0.003671

1050 0.524567 0.004567 0.000756 0.222611 0.016963 0.002930

1550 0.534541 0.003454 0.000471 0.218936 0.012953 0.002538

2050 0.546522 0.002622 0.000242 0.204097 0.009618 0.001273

8. Applications

This section illustrates the performance of the new OBP-logistic model against several
competitive models using data from gas fiber (GF), carbon fiber (CF) and magnesium
concentrations (MC). The fitting flexibility of the OBP-logistic distribution is measured
by comparing it to the gamma generalized logistic (GGL) distribution [74], new modi-
fied exponential logistic (NMEL) distribution [75], gamma- logistic (GL) distribution [45],
exponential modified Weibull logistic (EMWL) distribution [76], exponentiated Weibull
logistic (EWL) distribution [77], and transmuted Weibull logistic (TWL) distribution [78]
using the statistical accuracy measures, such as the minimized (−l̂), the Akaike informa-
tion criterion (AIC), Bayesian information criterion (BIC), Cramer–von Mises (CM), and
Kolmogorov–Smirnov (KS) and Anderson– Darling (AD) statistics. Given the competitive
models, the suitable model is the one that provides the lowest values of the aforementioned
measures [79,80]. All computations in this study were performed using R studio software
(version 4.2.1).

8.1. Data Set 1: Glass Fiber Data

These data were collected from the UK National Physical Laboratory and were utilized
to illustrate the potential of the WAPIE PD as used previously by [11,23,81–84]. The
observations are reported below (Table 2).

Table 2. Glass fiber data.

0.55 0.74 0.77 0.81 0.84 1.24 0.93 1.04 1.11 1.13 1.30
1.25 1.27 1.28 1.29 1.48 1.36 1.39 1.42 1.48 1.51 1.49
1.49 1.50 1.50 1.55 1.52 1.53 1.54 1.55 1.61 1.58 1.59
1.60 1.61 1.63 1.61 1.61 1.62 1.62 1.67 1.64 1.66 1.66
1.66 1.70 1.68 1.69 1.70 1.78 1.73 1.76 1.76 1.77 1.89
1.81 1.82 1.84 1.84 2.00 2.01 2.24
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8.2. Data Set 2: Carbon Fiber Data

As used by [37], the 100 collected samples are reported below (Table 3).

Table 3. Carbon fiber data.

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11
2.41 3.19 3.22 1.69 3.28 3.09 1.87 3.15 4.90 3.75
2.95 2.97 3.39 2.96 2.53 2.67 2.93 3.22 3.39 2.81
3.33 2.55 3.31 3.31 2.85 2.56 3.56 3.15 2.35 2.55
2.38 2.81 2.77 2.17 2.83 1.92 1.41 3.68 2.97 1.36
2.76 4.91 3.68 1.84 1.59 3.19 1.57 0.81 5.56 1.73
2.00 1.22 1.12 1.71 2.17 1.17 5.08 2.48 1.18 3.51
1.69 1.25 4.38 1.84 0.39 3.68 2.48 0.85 1.61 2.79
2.03 1.80 1.57 1.08 2.03 1.61 2.12 1.89 2.88 2.82
2.05 2.43 4.20 2.59 0.98 1.59 2.17 4.70 4.42 3.65

8.3. Data Set 3: Magnesium Concentration Data

Ensuring clean water and sanitation is crucial for promoting the good health and well-
being of an increasing population. These data were studied by [85] to assess the magnesium
concentrations for the groundwater quality. The data set is given below (Table 4).

Table 4. Magnesium concentration data.

0.74 0.15 0.37 0.07 0.12 0.03 0.29 0.11 0.11 0.37
0.12 0.09 0.61 0.13 0.15 0.19 0.11 0.15 0.10 0.60
0.09 0.71 0.12 0.40 0.55 0.11 0.14 0.13 0.46 0.22

Table 5 depicts the statistical summary for the GF, CF and MC data sets alongside
their empirical density and box plots, as shown in Figures 3a,b, 4a,b and 5a,b. The figures
indicate that the distribution of the GF data set was skewed to the left, while the CF and MC
data sets were skewed to the right, respectively. Therefore, the OBP-logistic distribution
could provide a suitable fit for these types of data sets.

Table 5. Statistical summary for the GF, CF, and MC data sets.

Data Min. Q1 Median Mean Q3 Max. Variance Skewness Kurtosis

1 0.550 1.375 1.590 1.507 1.685 2.240 0.105 −0.879 0.800
2 0.390 1.840 2.700 2.621 3.220 5.560 1.028 0.363 0.043
3 0.030 0.110 0.145 0.251 0.370 0.740 0.043 1.077 −0.269
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The MLEs with corresponding standard errors (SEs) for the OBP-logistic and com-
peting models (GGL, NMEL, GL, EMWL, EWL, and TWL) fitted to the GF, CF and MC
data are presented in Tables 6–8, respectively. The statistical metrics, −l̂, AIC, BIC, CM,
and AD, are shown in Tables 9–11, respectively. From these tables, the OBP-logistic model
revealed the lowest values of −l̂, AIC, BIC, CM, and AD statistics in comparison to other
competitive models. Thus, the OBP-logistic model can be selected as the best-fitting model
for the GF and CF data sets. Moreover, plots in Figures 6–8 also confirm these findings.

Table 6. MLEs with corresponding standard errors (in parentheses) of competitive models for
GF data.

Model â b̂ µ̂ ŝ λ̂ t̂

OBP-logistic 0.6345
(0.1279)

0.7346
(0.1671)

1.5415
(0.0368)

0.1708
(0.0184) _ _

GGL 0.3811
(0.0325)

0.2578
(0.0229) _ 0.2854

(0.0425)
0.1764

(0.0124) _

NMEL _ 7.9262
(0.8735)

1.5262
(0.0408)

0.5286
(0.0437)

0.8543
(0.0267) _

GL 13.1164
(2.3079)

18.4734
(3.3134) _ 4.8783

(0.8954)
2.6508

(0.7354) _

EMWL 5.7806
(0.5761)

1.62813
(0.0371) _ 1.2532

(0.0192)
0.3518

(0.0113) _

EWL 0.2791
(0.0274)

0.3215
(0.0286) _ 0.4176

(0.0210)
1.5068

(0.0405) _

TWL 17.4410
(3.0783) _ _ 8.3092

(1.7391)
11.5746
(2.0725)

2.6301
(0.6390)
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Table 7. MLEs with corresponding standard errors (in parentheses) of competitive models for CF data.

Model â b̂ µ̂ ŝ λ̂ t̂

OBP-logistic 0.5876
(0.1134)

0.6753
(0.3452)

2.5975
(0.1001)

0.5732
(0.0475) _ _

GGL 0.8774
(0.0444)

0.4439
(0.0314) _ 0.7354

(0.0649)
0.2763

(0.0873) _

NMEL _ 4.1184
(0.3441)

2.4985
(0.1053)

1.8534
(0.0342)

0.5285
(0.0263) _

GL 4.4477
(0.6068)

9.5189
(1.3750) _ 1.4567

(0.0326)
3.0653

(0.4375) _

EMWL 2.7929
(0.2141)

2.9438
(0.1110) _ 0.7393

(0.0741)
0.2481

(0.0173) _

EWL 1.4502
(0.0807)

2.6214
(0.1008) _ 1.3092

(0.0981)
1.0088

(0.0713) _

TWL 5.9529
(0.8194) _ _ 3.7407

(0.3681)
2.2711

(0.3264)
0.7622

(0.0137)

Table 8. MLEs with corresponding standard errors (in parentheses) of competitive models for
MC data.

Model â b̂ µ̂ ŝ λ̂ t̂

OBP-logistic 1.3290
(0.1827)

0.2756
(0.0401)

1.7834
(0.0854)

0.1964
(0.0543) _ _

GGL 0.2162
(0.0360)

0.1129
(0.017) _ 1.9743

(0.6342)
0.3714

(0.0302) _

NMEL 3.5783
(1.0428)

1.7937
(0.4270)

7.1363
(1.957)

1.6453
(0.4943) _ _

GL 0.2513
(0.037)

0.2040
(0.0263) _ 1.5462

(0.3648)
0.6328

(0.0843) _

EMWL 2.2019
(0.3317)

0.1765
(0.0258) _ 1.7845

(0.1534)
0.5281

(0.0848) _

EWL 1.6847
(0.1418)

0.7768
(0.1002) _ 2.4271

(0.5832)
1.3977

(0.1143) _

TWL 1.3290
(0.1827) _ _ 0.2756

(0.0402)
3.8262

(1.9436)
1.6749

(0.5483)

Table 9. Statistical metrics for GF data.

Model −l̂ AIC BIC KS CM AD p-Value (KS)

OBP-logistic 15.0212 34.0419 38.3281 0.12529 0.17247 1.21460 0.83122
GGL 28.0055 60.0098 64.2961 0.23127 0.69182 3.77362 0.29976

NMEL 23.7893 51.5799 56.8662 0.22365 0.50593 2.37584 0.36177
GL 33.1273 70.2546 74.5409 0.24835 0.86135 4.63834 0.20137

EMWL 17.2067 39.4136 44.6999 0.20221 0.27504 1.28061 0.71306
EWL 16.9118 36.8236 40.1099 0.13127 0.24538 1.24988 0.76951
TWL 22.9515 49.9030 53.1893 0.21636 0.36580 3.08700 0.53102

Table 10. Statistical metrics for CF data.

Model −l̂ AIC BIC KS CM AD p-Value (KS)

OBP-logistic 141.310 287.621 291.831 0.05753 0.06165 0.42792 0.90347
GGL 148.419 300.839 306.050 0.11773 0.27528 1.46502 0.60725

NMEL 143.779 293.559 301.769 0.09025 0.15750 0.73771 0.68425
GL 158.737 321.474 326.684 0.14673 0.51933 2.84714 0.54792

EMWL 141.529 288.058 292.268 0.06049 0.06331 0.43769 0.73061
EWL 143.270 290.540 294.751 0.06306 0.06806 0.46805 0.72370
TWL 146.233 296.467 302.677 0.09339 0.16002 1.07584 0.62563
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Table 11. Statistical metrics for MC data.

Model l̂ AIC BIC KS CM AD p-Value (KS)

OBP-logistic 14.1082 −26.2164 −23.4140 0.15834 0.13164 0.83862 0.88436
GGL 18.7392 −6.38254 −3.5801 0.24248 0.38390 2.39556 0.25342

NMEL 14.8236 −24.1073 −21.2049 0.24678 0.29601 1.52516 0.46418
GL 22.7643 −6.21814 −3.4157 0.29029 0.49237 2.65561 0.20345

EMWL 14.8047 −25.6695 −22.8671 0.18878 0.18968 1.10471 0.75396
EWL 15.5494 −24.0988 −22.9964 0.20769 0.20388 1.09361 0.69807
TWL 16.2846 −22.5692 −19.7668 0.24051 0.28781 1.50597 0.37649
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9. Discussion

This work introduces the family of probability distributions using the approach pro-
posed by [55] to generate a compound distribution with more flexibility. The proposed
family was used to develop the extended version of the logistic distribution as a sub-model.
The pdf of the extended odd beta prime-logistic distribution and hazard function provided
decreasing and increasing shapes, which is suitable for modeling many practical data
sets from biological, environmental, finance, and engineering fields. The performance of
the parameter estimates of the developed model were validated using the Monte Carlo
simulation. The results from the simulation study revealed that the estimates tend to be
closer to their actual values when n increases. In addition, the values of the error measures
of the parameter estimates decrease when n increases. These findings provide evidence that
the MLE approach generates consistent and reliable estimates for the proposed distribution
across a wide range of parameter value selections. The numerical results obtained by using
the statistical measure of accuracy, such as the −l̂, AIC, BIC, CM, AD, and KS statistics,
in comparison to other competitive models and the results are presented in Tables 9–11.
According to these tables, the OBP-logistic model revealed the smallest values of −l̂, AIC,
BIC, CM, AD, and KS statistics in comparison to other competitive models. The numerical
results presented in Tables 9–11 demonstrate that the OBP-logistic model consistently
outperforms the other competitive models, as indicated by the smallest values of the afore-
mentioned statistical measures. This suggests that the developed model exhibits superior
flexibility and accuracy in fitting the data compared to the existing distributions. It is worth
noting that all mathematical formulations and computations were implemented using the
R Studio software. This ensures that the results are reproducible and reliable, contributing
to the robustness of the study.

Overall, this paper introduces the OBP-G family of distributions and focuses on the
OBP-logistic distribution as a notable member of this family. We provide a comprehen-
sive analysis of its statistical properties, applicability to real data sets, and performance
compared to other established distributions. The findings suggest that the OBP-logistic
distribution offers significant advantages and is a promising choice for modeling a wide
range of data sets.

10. Conclusions

In this paper, we present a novel family of probability distributions called the odd
beta prime generalized (OBP-G) family of distributions. We discuss the cumulative distri-
bution function (CDF), probability density function (PDF), and mixture representations of
this new family. Additionally, we propose a new distribution within this family, namely
the OBP-logistic distribution. The OBP-logistic distribution is developed based on the
OBP-G family and offers a flexible modeling approach for various types of data sets. The
probability density and hazard rate functions of the OBP-logistic distribution demonstrate
its capability to handle skewed, symmetric, monotonically decreasing, and decreasing
lifetime data. To assess the statistical properties of the OBP-logistic distribution, we define
and derive several desirable features. Furthermore, we apply the maximum likelihood
estimation (MLE) method to obtain estimators for the distribution’s parameters. To demon-
strate the practicality of the OBP-logistic distribution, we compare it with well-established
extended logistic distributions using three real data sets. We employ various statistical
accuracy measures to assess the performance of the proposed distribution. The results
reveal that the OBP-logistic distribution outperforms the competing distributions in terms
of statistical accuracy.

For future research, this study can be extended by employing alternative methods
for parameter estimation, such as the Bayesian approach, which can be preferred to make
inferences regarding the unknown parameters of the model. It is also possible to assess the
applicability of the new model using other data sets from various fields, such as medical
sciences and finance. The study can also be improved by obtaining the properties of the
OBP-G FPDs that are not covered in this paper.
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Nomenclature

W(x; a, b) Cumulative distribution function of beta of the second kind
Ix(a, b) Incomplete beta function ratio
a, b Shape parameters of beta of the second kind
B(a, b) Beta function
Bx(a, b) Incomplete beta function
w(x; a, b) Probability density function of beta of the second kind
P(x;µ, s) Cumulative distribution function of logistic distribution
µ Location parameter of logistic distribution
s Scale parameter of logistic distribution
F(x; a, b,η) Cumulative distribution function of family of distributions

Q(x;η)
1−Q(x;η) Odds ration

η Vector parameter
f(x; a, b,η) Probability density function of the baseline distribution
S(x) Survival function
h(x) Hazard function
E(Xr) rth moment
Mx(t) Moment-generating function
Iγ(x) Information-generating function
R Stress–Strength function
Fi:n(x) Order statistics
f Probability density function of OBP-logistic distribution
F Cumulative density function of OBP-logistic distribution
Rγ(x) Rényi entropy
Qγ(x) q-entropy
n Sample size
Φ, (a, b,µ, s)T Vector of parameters
L(x; a, b,µ, s) Likelihood function
l Log-likelihood function
ψ Digamma function
Iγ(x) Information-generating function
I−1(u ; a, b) Inverted cumulative distribution function
u Uniform random variable on the interval (0,1)
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