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Abstract: Experimental measurements and numerical simulations are two primary methods for
studying turbulence. However, these methods often struggle to balance the accuracy and breadth of
results. In order to accurately predict the flow characteristics of subsonic jet exhaust and provide a
research foundation for the runway crossing operation after the takeoff point, this study utilizes the
ensemble Kalman filter algorithm to recalibrate the SA turbulence model constants by integrating
NASA’s experimental particle image velocimetry (PIV) data with a sample library generated using
Latin hypercube sampling to obtain corresponding flow field calculations. The modified model
constants effectively improve the prediction of jet flow characteristics, reducing the spatially averaged
relative error along the horizontal axis behind the nozzle from 13.04% to 4.6%. This study focuses
on enhancing the accuracy of numerical predictions for subsonic jet flows via the adjustment of
turbulence model constants. The recalibrated model constants are then validated to improve the
prediction of jet flows under various conditions. The findings have important implications for
acquiring high-fidelity data on rear engine jet flows after takeoff, enabling precise determination of
safety separation distances, and enhancing the operational efficiency of airports.

Keywords: turbulence; jet flow; numerical simulation; data assimilation; ensemble Kalman filter

1. Introduction

To enhance airport operational efficiency, alleviate operational pressure, and reduce
unsafe incidents such as runway incursions, Chen et al. [1] proposed a runway crossing
operation mode behind the takeoff point. The runway crossing operation behind the takeoff
point involves departing an aircraft utilizing a non-full runway takeoff, crossing the runway
from behind the takeoff point while maintaining a certain safety clearance, and entering a
designated taxiway or runway. In this crossing mode, the impact of subsonic jet exhaust
generated by preceding aircraft on subsequent aircraft becomes particularly significant,
posing a challenge in obtaining accurate data on the preceding jet exhaust. In the civil
aviation domain, subsonic jet nozzles are widely used in aircraft engines, providing high
thrust efficiency, reducing noise and emissions, and demonstrating excellent fuel efficiency
and environmental performance. The precise prediction of the flow characteristics and
evolution of subsonic jet exhaust plays a crucial role in determining the crossing intervals
for the runway crossing operation behind the takeoff point.

Uzun et al. have numerically simulated circular jet flow using Large Eddy Simulation
(LES) coupled with the Ffowcs Williams–Hawkings method [2]. Xie et al. have conducted
an experimental study and numerical simulation to investigate the flow field characteristics
and influencing factors of subsonic jets [3]. Manovski has used the multiple-pulse Shake-
The-Box technique for three-dimensional Lagrangian particle tracking of subsonic jet flow,
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demonstrating its application in high-precision flow field measurement and research [4].
Yang et al. investigated the turbulence characteristics of the cavitation cloud in submerged
cavitating jet flows under high Reynolds number conditions and conducted a detailed
analysis using experimental measurement methods [5]. Zhang et al. studied the flow field
characteristics of water jet nozzles and conducted a detailed measurement and analysis of
the flow behavior of the jet using experimental methods, revealing the flow field structure
and turbulence characteristics of the jet [6]. He et al. conducted research on the influence
distance of subsonic engine jets using an improved Delayed Detached Eddy Simulation
(DES) method and the Spalart–Allmaras (SA) turbulence model. They obtained the influ-
ence distance of the engine jets and performed analysis and evaluation of the obtained
results [7]. It can be observed that experimental measurements and numerical simulations
are currently the two main approaches for studying turbulent flow in jet flows. However,
these two methods often have certain limitations. In terms of experimental measurements,
the measurement range is often constrained via the measurement hardware, and there
are difficulties in conducting measurements in areas with complex boundaries or internal
measurement structure obstructions. In the field of numerical simulations, high-precision
methods such as DNS and LES provide complete spatiotemporal information, but they suf-
fer from significant computational costs, making their industrial applications challenging.
Reynolds-averaged Navier–Stokes (RANS) methods, with relatively lower computational
requirements, are the mainstream tools for industrial numerical simulations. However,
they are also subject to uncertainties associated with model constants [8,9]. Therefore, the
aforementioned approaches are subject to their respective limitations, and they cannot effec-
tively balance the accuracy and comprehensiveness of the results [10]. In recent years, the
data assimilation method (DA), widely used in disciplines such as atmospheric forecasting
and oceanic hydrology, has been introduced into the field of fluid mechanics, offering a
new approach to turbulent flow research. In the era of big data, data assimilation methods
can combine the advantages of both experimental measurements and numerical simula-
tions to obtain high-fidelity data for turbulence and broaden their application prospects in
engineering. Thus, DA has the potential to overcome the limitations of traditional methods
and achieve a better balance between accuracy and breadth of results [11].

To improve the accuracy and broaden the application prospects of turbulent flow
research, significant efforts have been made to combine experimental data with simula-
tions. Margheri studied the uncertainty of constants in different RANS models using data
assimilation methods, and their results showed that compared to the k-ω SST model, the
sensitivity of predicted parameters to constant values in the k-ε model was higher [12].
Kato proposed using ensemble transform Kalman filtering to assimilate experimental
pressure distribution data as observation values, reducing uncertainties in state variables
and improving the turbulent flow field [13]. Zhang et al. proposed the Regularized En-
semble Kalman Filter (REnKF) method, which integrated various heterogeneous data to
reconstruct turbulent information and significantly improved the accuracy of turbulent
reconstruction [14]. Li et al. proposed the D-DARK method, which used a data-driven
approach to set target cost functions for the k-ω model in RANS methods, and used a
gradient descent-like method to obtain optimal model constants [15]. Gallo conducted
turbulent numerical optimization of the blade profile for the Savonius-type rotor and
employed response surface methodology to enhance the performance and efficiency of the
rotor [16]. Mi et al. investigated the hydraulic characteristics of a continuous submerged
jet on a wall using numerical simulation and PIV experiments [17]. Deng used PIV flow
field measurement data to estimate optimal constants for various turbulent models using
the EnKF method and demonstrated that using improved turbulent models with optimal
constants significantly improved flow field reconstruction [18].

Although extensive research has been conducted by scholars in relevant fields, studies
on data assimilation for subsonic jet flow remain relatively limited, and there is a lack of
research on the generalization capability of assimilated turbulence models. In this study, the
model constants are recalibrated via EnKF data assimilation and applied to jet flow under
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different conditions to verify the effectiveness of assimilation. Due to the semi-empirical
nature of the turbulent models commonly used in Reynolds-averaged Navier–Stokes
(RANS) methods, which involve the incorporation of numerous engineering empirical
constants, their respective applications are characterized by the limited applicability and
poor capability to represent complex turbulence phenomena. Therefore, in order to enhance
the predictive accuracy of numerical simulations for the flow characteristics of subsonic jets
and to provide new research methods and approaches for the operating mode of crossing
the runway after the takeoff point, this study focuses on the NASA subsonic axisymmetric
jet model. The Spalart–Allmaras (SA) model is employed for numerical simulations,
and Ensemble Kalman Filtering (EnKF) data assimilation is performed using velocity
distribution data obtained from experimental measurements conducted with Particle Image
Velocimetry (PIV) techniques [19,20] employed by NASA. Finally, the relevant validations,
comparison of flow field parameters, and analysis are conducted to assess the degree
of improvement in the predictive performance of the SA model after calibration and its
applicability to jet flow under different conditions.

2. Mathematical Principles
2.1. Turbulence Model Equations

Reynolds-averaged Navier–Stokes (RANS) models have gained significant traction
in the field of numerical turbulence simulation owing to their computational efficiency
and low hardware requirements. The Spalart–Allmaras (SA) one-equation turbulence
model, in particular, has emerged as a widely preferred option in engineering thanks to
its reliability, high accuracy, and excellent convergence [21]. Nevertheless, owing to the
inherent uncertainties associated with the model, there may exist certain discrepancies
between the numerical predictions of jet flow and the outcomes obtained from high-
precision experimental measurements. However, due to the inherent uncertainty factors in
the model itself, the numerical predictions of jet flows using these models may introduce
certain errors compared to high-precision experimental measurements. The standard one-
equation S-A model solves for the working variable v̂ based on the assumption of turbulent
viscosity, which is governed by the following transport equation:

∂v̂
∂t

+ uj
∂v̂
∂xj

= cb1(1 − ft2)Ŝv̂ −
[
cω1 fω − cb1

κ2 ft2

]( v̂
d

)2
+

1
σ

[
∂

∂xj

(
(v + v̂)

∂v̂
∂xj

)
+ cb2

∂v̂
∂xi

∂v̂
∂xi

]
(1)

The vortex viscosity coefficient µt can be calculated as follows:

µt = ρv̂ fv1 (2)

where

fv1 =
χ3

χ3 + c3
v1

χ =
ṽ
v

ρ represents fluid density; v = µ
ρ represents the dynamic viscosity coefficient; µ

represents the molecular kinetic viscosity coefficient; f is a function of turbulent viscosity
ratio χ.

The definitions of other various constants and variable functions in the equation are
as follows:

Ŝ = Ω +
v̂

κ2d2 fv2
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where Ŝ represents the corrected vorticity intensity; Ω =
√

2WijWij represents the vorticity

intensity; κ represents the Karman constant; d represents the distance between the point in
the field and the surface of the object, where

fv2 = 1 − χ

1 + χ fv1
, fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

g = r + cw2

(
r6 − r

)
r = min

{
v̂

Ŝκ2d2
, 10
}

ft2 = ct3 · e−Ct4χ2

Wij =
1
2

(
∂ui
∂xj

−
∂uj

∂xi

)
In the Fluent 2020 R2 software, the six model constants included in the SA turbulence

model are provided as the subject of investigation, and their default values are presented
in Table 1.

Table 1. Default values of SA model constants.

Constants cv1 cb1 cb2 cw2 cw3 σ

Default Value 7.1 0.1355 0.622 0.3 2.0 2/3

2.2. Data Assimilation

The data assimilation process is essentially an inversion process, where the form
of the prediction model establishes the mapping relationship between the prediction
parameters and the model constants (prediction). Data assimilation utilizes a certain
algorithm (assimilation algorithm) to analyze the mapping relationship (analysis) and
comprehensively synthesize relevant measurement data (observation) to infer and calibrate
model constants (update). The three main elements of the process are the prediction model,
observation data, and the assimilation algorithm. There are many algorithms used in data
assimilation, including three-dimensional variational, four-dimensional variational, particle
filtering, extended Kalman filtering, ensemble Kalman filtering, and ensemble transform
Kalman filtering. For variational methods, it usually relies heavily on highly complex
system model adjoint equations to minimize the cost function, which is not suitable for
optimizing complex models [22]. Particle filtering uses a large number of random samples
for the search in the state space, which can lead to excessive computational costs and
a waste of resources on useless particles. Compared to these methods, Kalman filter-
based assimilation methods are easier to implement, as they can flexibly adapt to different
models by obtaining prior statistical information about the numerical models. Among
them, the ensemble Kalman filter algorithm is one of the most commonly used algorithms
in this type of assimilation method, which was proposed by Evensen in 1994 [23]. The
algorithm has been developed based on the classical Kalman filter and the extended Kalman
filter algorithms, and it can modify the prediction model by combining observational data.
Furthermore, related studies have indicated that for optimizing turbulent numerical models,
the optimization performance of the ensemble Kalman filtering is superior to that of the
ensemble transform Kalman filtering [24]. Therefore, this study employs the Ensemble
Kalman Filter algorithm as the assimilation method.
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2.2.1. Ensemble Kalman Filter

The Kalman filter is a statistical filter [25] commonly used to filter noise in signals with
white noise and obtain useful information. Kalman introduced discrete Kalman filtering
for discrete systems in 1960 and, in the following year, collaborated with Bucy to extend
it to continuous-time systems. Kalman filtering is a recursive data processing method
widely applied to discrete linear system states with white Gaussian noise. The basic idea of
Kalman filtering is to first obtain a background field using a model, then incorporate new
observations and use the theory of minimum variance estimation to re-estimate the model
state, aiming to obtain analysis results with the minimum error variance [26].

The Ensemble Kalman Filter (EnKF) algorithm is a powerful data assimilation method
that combines Kalman filtering with ensemble forecasting. The method estimates the
covariance between the state and observation variables by using the results of the ensemble
forecast. The analysis is then updated by incorporating observation data and covariance,
and the ensemble is re-analyzed and forecasted accordingly [27]. EnKF is a widely used
data assimilation method that effectively addresses the assimilation problem in nonlinear
models [28]. Specifically, in optimizing numerical models for turbulence with high-order
nonlinearity, EnKF targets the following nonlinear system:

x f = F(x0, v) (3)

y = Hx f + w (4)

where Equation (3) is the predictive equation of a high-order nonlinear system, and
Equation (4) is the observation equation. In these equations, x f is the prediction of the
system state parameters, y is the observation, x0 is the initial state of the system, v and
w are the noise of the system and observation, F is the prediction model, and H is the
observation function.

The main processes of the algorithm include the prediction process and analysis process.
In the first step of the ensemble Kalman filter algorithm, referred to as the prediction

process, the state parameter vectors of each member in the ensemble set are calculated
using the SA turbulence model. Starting from the initial state, the numerical simulation for
turbulence is performed until convergence is achieved. The state parameters are obtained
by applying Formula (5), which is expressed as follows:

xi
f = F

(
xi

0, vi
)

(5)

In this study, the prediction model F is represented by the SA model
equation, where the state parameters of the ensemble members are denoted by

xi
f =

(
qi

θi

)
= (qi

1, qi
2, . . . , qi

n, θi)
T , qi represents the flow velocity of the uniformly dis-

tributed jet in the horizontal axis direction behind the nozzle for the i-th prediction in
the ensemble, and θ = (cv1, cb1, cb2, cw2, cw3) is the constant vector for the turbulent model.
In the SA model, σ is considered to have a certain degree of universality owing to its
correlation with the Prandtl number [29]; hence, the value of σ is not taken into account.

The average value of the set members is determined by Equation (6), which is ex-
pressed as follows:

x f =
1
l

l

∑
i=1

xi
f (6)

where the superscript i represents the index of set elements, l represents the total number
of set members, and x f represents the mean value of set members, respectively.

The second step is the analytical process, which constitutes the core of the Ensemble
Kalman filtering algorithm. This step determines the Kalman gain and updates ensem-
ble members by integrating the uncertainty of observation information and statistical
information of ensemble members [25]. The process of this step is as follows:
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(1) Analysis of prediction errors

P =
1

t − 1∑l
i=1

(
xi

f − x f

)(
xi

f − x f

)T
(7)

R =
1

l − 1
WWT (8)

where
W =

(
w1, w2, · · · wl) (9)

(2) Kalman gain calculation

K = PHT
(

HPHT + R
)−1

(10)

(3) Updating ensemble members

xi
a = xi

f + K
(

yexp + wi − Hxi
f

)
(11)

The mean value of the corresponding new set members is calculated as follows:

xa =
1
l ∑l

i=1 xi
a (12)

For highly nonlinear models, a single iteration of the analytical process after the
prediction step is often insufficient to achieve relatively accurate predictions. Therefore,
this study performed multiple iterations of the Ensemble Kalman filtering algorithm for
the prediction and analytical processes, as shown in Figure 1. The algorithm determines
convergence when the standard deviation of ensemble members is less than 10−5 or when
the maximum number of iterations (10,000) is reached [30].

2.2.2. Model Constant Calibration

The calibration of model constants in this paper is based on the data assimilation method
of Ensemble Kalman filtering. The state matrix of the ensemble is defined as follows:

X =
(

x1
f , x2

f , · · · xl
f

)
=


q1

1 q2
1 q3

1 . . . ql
1

q1
2 q2

2 q3
2 . . . ql

2
. . . . . . . . . · · · . . .
q1

n q2
n q3

n · · · ql
n

θ1 θ2 θ3 . . . θl


k×l

=

(
Q
θ

)
(13)

Here, qi
j represents the predicted velocity at the j-th point corresponding to the i-th

ensemble member in the flow field computed using the RANS model. Θ denotes the
undetermined RANS model constants, k represents the number of state variables, and l
represents the total number of ensemble members.

The observed experimental velocity data is expressed as follows:

yexp = q̃i = (q̃1, q̃2, . . . , q̃n)
T (14)

where q̃i represents the experimentally measured velocities at different locations, and n
represents the number of measurement points.

The assimilation observation matrix Y is defined as follows:

Y =
(

y1, y2, . . . , yl
)

n×l
= yexp11×n + W =


ũ1

1 ũ2
1 . . . ũl

1
ũ1

2 ũ2
2 . . . ũl

2
. . . . . . . . . . . .
ũ1

n ũ2
n . . . ũl

n


n×l

(15)
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where ũi
j is the velocity at the j-th measurement point in the i-th experimental measurement

ensemble, which includes synthetic experimental noise.
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Based on the matrix forms of X and Y, the observation function matrix H is given by
the following:

Hn×k =
(

In 0n×(k−n)
)

(16)

where 1M×N is a matrix of all ones in its elements, In is an identity matrix of order, 0m×n
is a matrix of all zeros in its elements, matrix 1M×N is an M × N matrix with all elements
equal to 1, matrix IN is an N × N identity matrix, matrix 0M×N is an M × N matrix with
all elements equal to 0, and the predicted element values at the points corresponding to
the measurement locations are set to 1. Once the matrices X, Y, and H are determined,
assimilation can be performed using the analysis and confirmation steps in EnKF to obtain
the optimal constants for the RANS model.

The process for calibrating the turbulence model constants is illustrated in Figure 2.
The calibration process first generates 100 sets of turbulence model constant samples using
Latin Hypercubic Sampling (LHS) [31] and computes the velocity at the pipe centerline
under different constant sample conditions by inputting them into the SA turbulence
model, resulting in 100 sets of predicted velocities. The predicted velocities and the initial
state matrix of the algorithm are integrated according to Equation (13). Subsequently,
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by combining the velocity observation data obtained from the experiment under the
corresponding conditions and inputting them together into the Ensemble Kalman filtering
algorithm, the optimal model constants for the observed data calibration can be obtained
after multiple iterations of the analysis step. Finally, the calibrated constants are applied to
recalculate under the same conditions to evaluate the reliability and applicability of the
turbulence model constants.
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3. Computational Example
3.1. Research Object

To investigate the flow characteristics of subsonic jet flows, this study selected an
axisymmetric subsonic nozzle model with a Mach number of 0.51, namely the ARN2 nozzle
shown in Figure 3. The ARN2 nozzle belongs to the convergent–divergent nozzle series and
serves as an acoustic reference nozzle, which partially reflects the flow characteristics of
subsonic jet flows. The ARN2 nozzle has an inlet diameter of 152.4 mm, a throat thickness
of 1.27 mm, an outer surface angle of 30◦ with respect to the jet axis, and a parallel flow
section of 6.4 mm at the exit. The NASA official website provides experimental velocity data
downstream of the jet flow measured using Particle Image Velocimetry (PIV) for a Mach
number of 0.51 M axisymmetric subsonic jet flow case [32], which serves as the velocity
measurement data in this study. In order to verify the applicability of the assimilated
turbulence model for velocity prediction of such jets, a validated case of axisymmetric
heated subsonic jet with a NASA exit Mach number of approximately 0.376 [33] is selected
as a validation case to analyze the improvement in velocity prediction accuracy of the
assimilated SA turbulence model for the jet flow.
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3.2. Parameter Selection

In this study, the EnKF aims to estimate the constant values of the SA turbulence
model. Therefore, the ordinary state variables of RANS are no longer applicable, and
the model constants are added to the state variables to estimate the parameter values in
Equation (12).

To ensure that the assimilation ensemble captures sufficient flow field variation infor-
mation while maintaining the rationality of assimilation, the experimental observation data
should fall within the range of the upper and lower limits of the predicted flow sample set.
Therefore, the range of model parameter variations determined via perturbation analysis
should be set at 50–150% of their original values (as shown in Figure 4), where X denotes the
distance of the data extraction point along the horizontal axis from the nozzle, D denotes
the diameter of the nozzle outlet, U denotes the velocity in the axial direction behind the
nozzle, and Uj denotes the velocity at the nozzle outlet. Figure 4 shows that when the range
is set between 50% and 150% of the original value, both the original prediction results of
the SA model and the PIV experimental measurements fall within this range, satisfying
the aforementioned conditions. Therefore, 100 sets of constant samples were extracted
within this range using the Latin Hypercube Sampling (LHS) method [29]. The assimilation
constants used in this study, along with their corresponding ranges, are as follows:

3.55 ≤ cv1 ≤ 10.65

0.06775 ≤ cb1 ≤ 0.20325

0.311 ≤ cb2 ≤ 0.933

0.15 ≤ cw2 ≤ 0.45

1 ≤ cw3 ≤ 3

3.3. Computational Settings

In this study, the ICEM 2020 R2 software was utilized to construct a two-dimensional
model and generate a structured mesh. Since the nozzle under investigation is an axisym-
metric nozzle, a symmetric structure was employed during the modeling process. The
computational domain is illustrated in Figure 5, representing the fluid region for numerical
simulations. The total length and width of the domain are 2.209 m and 1.524 m, respec-
tively, with a total of 68,927 grid cells. To capture the turbulent characteristics of the jet core
more accurately, the mesh was refined in the core region. The numerical simulations were
conducted using the Finite Volume Method and the ANSYS Fluent 2020 R2 software [34,35],
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and the calculations were performed using a double-precision steady-state solver. Based
on the information provided by NASA [32], a steady-state solution was calculated using
the SA turbulence model. The working medium was an ideal gas, and the boundary
conditions were set as follows: the inlet boundary conditions were Pin/Pre f = 1.19671
and Tin/Tre f = 1, where Pin and Tin are the total pressure and temperature at the inlet
of the nozzle, respectively, and Pre f and Tre f are the ambient pressure and temperature,
respectively, which were set to 101,325 Pa and 303.5 K. The outlet boundary condition was
Pout/Pre f = 1, and the background environment condition was set to a Mach number of
0.01. To eliminate the influence of grid density and grid quantity on the computational
results, numerical simulations were conducted using grid quantities of 70,000, 140,000, and
210,000, as shown in Figure 6. As the grid quantity increased, its impact on the numerical
simulation was not significant. Therefore, in order to conserve computational resources,
this study employed a grid quantity of approximately 70,000 for the simulation calculations
until convergence was achieved. For the initial conditions, the default configuration of the
standard initialization method in Fluent was utilized.
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4. Results and Discussions

In this study, the velocity of the jet flow in the region of 1 < X/D < 20 on the centerline
of the flow, as measured using PIV experiments available on the NASA website, was
selected as the observation data. Data from 20 measurement points evenly distributed
along the axial direction were extracted, along with corresponding predicted data from the
model, for assimilation.

4.1. Assimilation Results

First, the generated sample parameter set was input into the SA turbulent model for
calculation, and the post-processing of the calculated results was performed using Tecplot
software to obtain the initial sample prediction set. Figure 7 shows the dimensionless
velocity contour distribution of the PIV and initial sample sets, where X represents the
distance of the data extraction point in the horizontal axis direction to the nozzle, D
represents the diameter of the nozzle outlet, U represents the velocity in the axial direction
behind the nozzle, and Uj represents the velocity at the nozzle outlet. From Figure 6, it
can be seen that the experimental measurement data is within the range of the predicted
sample set, indicating that the generated initial sample set has captured sufficient flow field
information and ensures the rationality of the assimilation.

Subsequently, the initial sample set and experimental measurement data were assimi-
lated using the ensemble Kalman filter (EnKF) algorithm to obtain the assimilated model
constants. Table 2 presents the original and assimilated constants of the SA turbulence
model. The results show that after EnKF assimilation, some of the constants have under-
gone significant changes relative to their original values, while others have undergone
relatively small changes. In particular, the constant cv1 increased by 50.7%, cb1 decreased
by 6.6%, cb2 decreased by 56.5%, cw2 increased by 61.3%, and cw3 decreased by 41.5%.

The velocity contour maps obtained from PIV measurements, the original SA model,
and the assimilated SA turbulence model are presented in Figure 8. Here, X represents
the distance from the nozzle to the data extraction point in the horizontal direction, Y
represents the distance from the nozzle to the data extraction point in the vertical direction,
and D represents the diameter of the nozzle. As shown in Figure 8, the original SA model
(Figure 8b) cannot accurately predict the jet flow measured via PIV (Figure 8a), especially in
the region of 10 < X/D < 20 in the transition zone. However, the assimilated SA turbulence
model, obtained by assimilating experimental data (Figure 8c), shows improved prediction
accuracy for the jet flow. In the transition zone, the assimilated SA model demonstrates
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better agreement with both the original model and PIV measurement results, accurately
predicting the velocity distribution in the core region of the jet, as well as the diffusion and
decay regions.
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Table 2. Comparison of original and optimized values of SA model constants.

Constants cv1 cb1 cb2 cw2 cw3

Original Value 7.1 0.1355 0.622 0.3 2.0
Optimized Value 10.7 0.126 0.269 0.484 1.16
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To comprehensively investigate the improvement effect of experimental data assimila-
tion on the SA model, we selected typical areas in the horizontal and vertical directions
behind the nozzle for analysis.
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4.2. Analysis of Horizontal Direction Assimilation Effect

The analysis of the horizontal direction assimilation effect was conducted by selecting
the data in the horizontal axis behind the nozzle in the range of Y/D = 0 and 0 < X/D < 20, as
shown in Figure 9. The comparison between the PIV measurement and the results indicates
that the original SA model fails to accurately predict the velocity distribution of the jet
flow (Figure 9a). However, by employing the data assimilation technique of Ensemble
Kalman Filter (EnKF) to enhance the SA model, significant improvements in the consistency
between the EnKF-enhanced SA model and the experimental measurements obtained from
PIV were observed compared to the original model. This enhanced SA model with EnKF
demonstrated a more accurate prediction of jet diffusion and decay (Figure 9b). Specifically,
a noticeable enhancement in the predictive accuracy of the turbulent model was observed in
the region of 10 < X/D < 20 after data assimilation. These findings highlight the capability
of data assimilation techniques in improving the predictive accuracy of turbulent models.
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Figure 9. (a) Horizontal axial velocity curve before assimilation of SA model; (b) horizontal axial
velocity curve after assimilation of SA model.

Figure 10 shows the relative errors between the predicted jet velocity via the SA model
before and after data assimilation and the PIV measurements. The relative error is defined
as follows:

Error =

∣∣U∗ − Upiv
∣∣

Upiv
(17)

where Upiv is the PIV experimental measurement velocity at the measurement point, and
U∗ is the model predicted velocity at the experimental data position. As shown in Figure 10,
in the original SA model, as the distance from the nozzle increases and the jet velocity
decays, the prediction error downstream of the nozzle gradually increases, with an overall
spatial relative error of 13.04%. However, the relative error produced via the SA model
with optimized constants after assimilation is smaller as the velocity decays, with an overall
spatial relative error of only 4.6%.

4.3. Analysis of Vertical Direction Assimilation Effect

After data assimilation, the SA turbulence model exhibits improved numerical pre-
dictions of the vertical flow field, as shown in Figure 11a–d. At distances X/D = 5, 10, 15,
and 20 downstream of the nozzle, 20 uniformly distributed velocity measurement points
were selected for analysis along the vertical direction 0 < Y/D< 1.4. It was found that both
the standard SA model and the assimilated SA model accurately predicted the velocity
distribution at X/D = 5. However, as the distance from the nozzle increased, the error of
the two models also gradually increased at X/D = 10, 15, and 20, in line with the tendency
for the prediction error of the model to increase with the attenuation of the velocity in the
horizontal direction of the nozzle axis. Nonetheless, overall, the assimilated SA model
exhibits better prediction accuracy than the original SA model at X/D = 10, 15, and 20.
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Therefore, the data assimilation-based turbulent model exhibits an improvement in
the accuracy of velocity numerical predictions across the entire flow field space.

Figure 12 shows the relative errors between the predicted jet velocities via the SA
model before and after data assimilation and the PIV experimental data at four vertical
positions. In the original SA model, the relative errors at X/D = 5, 10, 15, and 20 are 39.2%,
12.6%, 13.6%, and 21.9%, respectively. In contrast, in the EnKF assimilated SA model, the
corresponding relative errors are 18.2%, 4.5%, 4.9%, and 8.9%, respectively. Additionally,
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it can be seen from Figure 12 that as the distance from the nozzle increases, the errors at
Y/D = 0 also increase. Nevertheless, the assimilated SA model consistently exhibits higher
accuracy in predicting the jet velocity in the vertical direction than the original SA model.
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4.4. Analysis of Assimilation Effects on Jet Flow under Different Conditions

The NASA axisymmetric hypersonic jet flow case [33] was selected to validate the im-
proved accuracy of the assimilated SA turbulence model under various flow states. Based
on the information provided by NASA, the ARN2 nozzle was used in this case, and the
computational domain and settings remained consistent with the previous description. The
simulation was conducted in steady-state mode using the SA turbulence model as the base-
line model, with an ideal gas selected as the working medium. The boundary conditions
were defined as follows: the inlet boundary conditions were set as Pin/Pre f = 1.10203 and
Tin/Tre f = 1.81388, where Pin and Tin represent the total pressure and total temperature at
the nozzle inlet, and Pre f and Tre f represent the actual external environmental conditions,
with values of 101,325 Pa and 295 K, respectively. The outlet boundary condition was set
as Pout/Pre f = 1, and the background ambient condition was set to a Mach number of
M = 0.01. Other settings were the same as in the previous case. The analysis focused
on the uniformly distributed velocity data in the downstream horizontal axis direction at
Y/D = 0. As shown in Figures 13 and 14, it can be observed that the velocity prediction
performance of the SA turbulence model improved after data assimilation. The model
constants, modified via assimilation with experimental data, demonstrated better adapt-
ability to the flow characteristics of the hypersonic jet. The spatial relative error of velocity
prediction via the standard SA turbulence model prior to assimilation was 13.7%. However,
the SA turbulence model with optimized constants achieved a significantly reduced spatial
relative error of only 5.5%. These results clearly indicate that the turbulence model con-
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stants, modified via data assimilation, are more suitable for predicting jet flow compared to
their original values.
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5. Conclusions

In this paper, the data assimilation method is used, with NASA’s PIV experimental
measurement as the observation data and the ensemble Kalman filter algorithm as the
assimilation algorithm to recalibrate the constants of the SA model and optimize the
accuracy of the numerical prediction of subsonic jet flow. The main conclusions obtained
are listed as follows:

(1) The assimilation results demonstrate the suitability of this approach for the opti-
mization of turbulence model constants. In particular, the SA model with EnKF
assimilation can effectively conduct numerical simulations of jet flow via a nozzle by
optimizing the model constants while keeping the model structure unchanged.

(2) According to the numerical simulation results using the EnKF assimilated SA model,
the average relative error in the horizontal direction (Y/D = 0) significantly decreased
from 13.04% to 4.6% in the original case. In the vertical direction at X/D = 5, 10, 15, and
20, the average relative errors reduced from 39.2%, 12.6%, 13.6%, and 21.9% to 18.2%,
4.5%, 4.9%, and 8.9%, respectively. In the validation case, the standard SA turbulence
model exhibited a spatial relative error of 13.7% in predicting the velocity of the
thermal subsonic jet flow, while the SA model with optimized constants achieved a
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significantly reduced spatial relative error of 5.5%. These findings demonstrate that
the turbulence model constants, calibrated via data assimilation, are better suited for
predicting jet flow compared to their original values.

(3) From this paper, it can be seen that the turbulence model correction method in this
paper has two major advantages. First, this method uses data assimilation methods,
which are data-driven model constant optimization methods that can fully utilize
observation data; at the same time, the Ensemble Kalman filter algorithm used in
this paper can comprehensively consider the errors existing in model prediction
and experimental observation, thereby giving more accurate estimates and more
practical results.

(4) The assimilated turbulent model has significantly improved the accuracy of numerical
simulations for subsonic jet flows, providing valuable insights for the optimization
of numerical simulations for subsonic nozzle flows. The findings of this study are of
great importance in determining the safety clearance behind the takeoff point under
the influence of jet flows from aircraft engines. By defining the extent of the jet flow
influence from the preceding aircraft and determining the crossing interval for the
subsequent aircraft, airport operational efficiency can be enhanced, leading to reduced
takeoff spacing, optimized flight scheduling and management, and improved overall
efficiency and sustainability of airport operations.

This study only considers the assimilation impact of the SA turbulence model on jet
flows and specifically investigates the jet characteristics under different conditions with
the same nozzle geometry. In the future, the influence of data assimilation on numerical
simulations can be explored from multiple dimensions, such as other turbulence models,
different assimilation algorithms, and additional variables in experiments.
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