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Abstract: A linear hazard-causing factor is the environmental element of landslide susceptibility
prediction, and the setting of buffer distance of a linear hazard-causing factor has an important
influence on the accuracy of landslide susceptibility prediction based on machine learning algorithms.
A geographic information system (GIS) has generally been accepted in the correlation analysis
between linear hazard-causing factors and landslides; the most common are statistical models based
on buffer zone analysis and superposition analysis for linear causative factor distances and landslide
counts. However, there is a problem in the process of model building: the buffer distance that is
used to build the statistical model and its statistical results can appropriately reflect the correlation
between the linear disaster-causing factors and landslides. To solve this problem, a statistical model
of landslide density and distance of linear disaster-causing factors under different single-loop buffer
distances was established based on Pearson’s method with 12 environmental factors, such as elevation,
topographic relief, and distance from the water system and road, in Ruijin City, Jiangxi Province
to obtain the most relevant single-loop buffer distance linear disaster-causing factor combinations;
random forest (RF) machine learning models were then used to predict landslide susceptibility.
Finally, the Kappa coefficient and the distribution characteristics of the susceptibility index were used
to investigate the modeling laws. The analysis results indicate that the prediction accuracy of the most
correlated single-loop buffer distance combination reaches 96.65%, the error rate of non-landslide
points is 4.2%, and the error of landslide points is 11.3%, which is higher than the same single-loop
buffer distance combination, confirming the reasonableness of the method of using correlation to
obtain the linear disaster-causing factor buffer distance.

Keywords: landslide; linear hazard factors; buffer; correlation; optimal distance

1. Introduction

Landslide is one of the main geological disasters in China, which poses a serious
threat to the socio-economic development of mountainous areas [1,2]. In areas with high
incidences of geological disasters, predicting landslide susceptibility and analyzing the
probability and spatial distribution of landslide disasters have important guiding signifi-
cance for landslide prediction and early warning, land use planning, urban construction,
and rural development [3–5]. The complexity regarding landslides and the diversity per-
taining to disaster-causing factors have resulted in the prediction of landslide disaster
susceptibility becoming a hot and difficult research topic at home and abroad [6]. In
addition to the traditional geodetic methods and GNSS technology [7,8], there are also
monitoring methods based on remote sensing technology for landslide monitoring [9,10].
With the rapid development of artificial intelligence, progressively more researchers are in-
tegrating traditional engineering geological analogy methods with computer technologies,
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such as a GIS and machine learning models, to explore the possibility of landslides under
the influence of environmental factors so as to comprehensively assess the susceptibility of
landslides [11,12]. The evaluation of landslide susceptibility based on machine learning
algorithms uses historical landslide data and environmental factors related to landslide
occurrence to conduct training and fitting, and then predicts the landslide susceptibility in
other regions [13]. Although the research on susceptibility modeling has achieved rapid
progress, there remain problems to be explored and improved upon in the research on
landslide-related environmental factors. The suitability analysis of landslide environmental
factors plays a significant role in improving the overall performance of modeling [14].

Research on landslides as a form of complexes is currently primarily focused on a
GIS, where various environmental elements are normalized and processed into quanti-
tative data and then statistical, inferential, deterministic, and other models are used to
perform data operations and zone out areas within a region that are relatively susceptible to
landslides [15]. An example includes Yin Kunlong based on the past and present occur-
rence of landslides and based on a certain landslide risk evaluation model to zone the
landslide susceptibility of a certain area [16]. Using a GIS, Cao Hongyang and Ma Jinhui
determined the strength of the influence of faults on landslide development in a certain
area by statistically analyzing the relationship between the number of landslides and the
vertical distance of landslides from faults [17,18]. A common statistical model is involved
in all the above studies, using buffer analysis and superposition analysis in the GIS spatial
analysis function to superimpose the buffer zone (part of the buffer zone) generated by
extending outward from the fault margin with the geographic coordinates of the land-
slide in question, and the width of the buffer zone is equal to the buffer distance used in
generating the buffer zone, but there is no definite standard for determining the buffer
distance in this statistical model based on a buffer zone of a specific size. Among many
environmental factors, linear hazard factors, such as lithologic and geological boundaries,
rivers, and roads, have varying degrees of impact on the occurrence of landslides. For
example, in the process of road construction, engineering slope cutting will produce a
floating surface, leading to slope toe instability [19]. The existing research has shown that,
when exploring linear environmental factors, such as water systems, highways, and faults,
predecessors often use the distance from water systems and highways obtained based on
buffer analysis to express them [20]. In the machine learning model that has emerged in
recent years, linear disaster factors are processed using GIS technology for buffer analysis,
and individual factors are superimposed with other factors as input variables [21]. Dif-
ferent scholars’ single-loop buffer distances for processing linear disaster factors range
from tens to hundreds of meters, mainly relying on experience and expert knowledge,
and there is some subjective uncertainty [22]. For example, the buffer distance setting of
linear factors does not fully consider the differences in the impact degree and scope of
different linear disaster factors, which is the main factor affecting the accuracy of landslide
susceptibility prediction models [23,24]. Integration learning, a widely used intelligent
algorithm in recent years, can improve the correctness and generalization by integrating
multiple weak classifiers into a single strong classifier. Random forest (RF) is the most
representative algorithm in bagging-based integrated learning. Random forests integrate
multiple decision trees using random sampling and finally make predictions through a
majority voting mechanism. Compared with traditional machine learning methods, such
as support vector machines and artificial neural networks, random forests have a very
high accuracy rate, and the introduction of their randomness ensures that the algorithms
are less prone to overfitting and able to handle very high-dimensional data. Therefore, in
order to improve the accuracy of the regional landslide susceptibility prediction model,
this paper combines the landslide environmental factors with the random forest model,
carries out the linear environmental factor suitability analysis, and integrates the coupling
between the statistical analysis model and integrated learning to establish the landslide
prediction model.
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Ruijin is the “Red Capital” of China. Landslides in the region are mainly small, and,
after artificial slope cutting, such as residential bases, highways, and water conservancy
facilities construction, the natural slope loose accumulation (soil) or broken rock (mainly
thousand-slab slate and rocks with down-slope level or fracture surface) lose their support-
ing force and balance, forming a brand new slope prostrate, regarding which it is easy to
induce slope instability under the effect of strong rainfall. Therefore, in this study, Ruijin
City is selected as the study area, and the environmental factors in the region are extracted
using a combination of statistical analysis models and machine learning methods using
remote sensing and geographic information technology. Based on Pearson correlation
statistical analysis, the correlation between the distance of linear hazard-causing factors
and the density of landslides in the corresponding buffer zone under different single-loop
buffer distances is explored to determine the optimal buffer distance of linear hazard-
causing factors, set up differential buffers, and establish a prediction model of RF landslide
susceptibility so as to achieve accurate quantitative evaluation of landslide susceptibility
and thus provide a basis and guidance for future disaster prevention and control and town
planning in the area.

2. Susceptibility Modeling Methods
2.1. Subsection

The key research in this paper is to select lithologic geological boundaries, roads,
and river factors as analysis objects, and evaluate the impact of each factor on landslides
in different grading ranges using the relationship between landslide density and linear
factor distance. The overall modeling process is as follows: (1) firstly, obtain the basic
landslide data in the study area, and analyze and select 12 basic environmental factors
that have strong correlations with landslide occurrence as the original factor combination.
(2) Using the frequency ratio method to process the factors to obtain the frequency ratio
(FR) value, assign a value of 1 to the landslide grid unit in all sample points, randomly
select a grid equal to the landslide grid from the non-landslide area as the non-landslide
sample and assign it a value of 0, and then randomly divide the data source into training
sets and test sets at a ratio of 7:3. (3) Select the currently widely used RF model at home and
abroad to construct a machine learning model. (4) Comparative analysis of the machine
learning model susceptibility index distribution and the landslide master control factor
were conducted separately to derive the prediction effect of the RF machine learning model.

2.2. Frequency Ratio

The correlation between landslides and basic environmental factors is often a non-
linear response relationship, and the frequency ratio method can better quantitatively
reflect the mapping relationship between various environmental factors and landslide
susceptibility [25]. The natural breakpoint method is used to divide the basic environmental
factors into six attribute intervals, construct a grid layer of factors based on the classification
interval, and automatically calculate the total number [26]. The principal formula of the
frequency ratio method is shown in Equation (1). The impact of environmental factors on
landslide susceptibility can be reflected by the magnitude of FR values: FR > 1 indicates that
this factor range is conducive to landslide occurrence, and its value is positively correlated
with the contribution weight of landslide occurrence; FR < 1 indicates that the landslide
environment factor range is not conducive to landslide occurrence.

FR =
Xi/X
Yi/Y

(1)

where Xi is the total grid number of landslides within the attribute interval for various
factors; X is the total grid number of landslides in the study area; Yi is the total grid
number of various factors within the attribute interval; Y is the total number of grids in the
study area.
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2.3. Random Forest (RF)

RF is an integrated learning method that combines the bagging method to generate
multiple mutually independent training sets and multiple classification and regression
trees (CARTs) for prediction. The results are determined by the highest or average voting
scores [27]. The main idea is that the combined judgment results of multiple classifiers are
superior to the judgment results of a single classifier. Using the bagging method, n samples
(accounting for 2/3 of the total samples) were randomly selected as independent spatial
training sets, and a CART tree was established for each training set. Among them, m factors
(m ≤ the total number of factors) are randomly selected for internal node branching without
branch reduction, resulting in n independent random decision trees [28]. Synthesize the
results of n decision trees and take the class with the highest number of votes or its average
value as the result. The 1/3 data that are not sampled in each random sampling are called
out-of-bag (OOB) data. This portion of data is used to perform internal error estimation to
obtain the OOB error of each tree. The OOB error of all trees is averaged to obtain the OOB
error of RF.

The OOB error is an unbiased estimate that approximates the error obtained by cross-
validation and is bounded by the generalized error of RF [29]:

p∗ ≤ ρ(1 − s2)/s2 (2)

where p∗ is the generalization error of RF; ρ is the average value of correlation between
CART trees; s is the average strength of the decision tree.

2.4. Uncertainty Evaluation
2.4.1. Kappa Coefficient

The Kappa coefficient can be used to measure the classification accuracy of the eval-
uation model, and its calculation is based on the confusion matrix [30]. The calculation
formula for Kappa coefficient is:

k =
p0 − pe

1 − pe
(3)

where p0 is the number of samples correctly classified for each category divided by the
total number of samples, which is the overall classification accuracy. Assuming that the
actual number of samples for each category is a1, a2, . . . , an, while the predicted number
of samples for each category is b1, b2, . . . , bn, and the total number of samples is n, there is
pe =

(a1b1+a2b2 +...+ anbn)
n2 . The Kappa coefficient usually ranges from 0 to 1, and, the larger

the value, the higher the accuracy of the evaluation model.

2.4.2. Distribution Characteristics of Landslide Susceptibility Index

The two important characteristics of exponential distribution are centralized trend
and discrete trend. Centralized trend refers to the aggregation of data concentrated in a
certain value or range, commonly expressed as mean value; discrete trends represent the
degree of dispersion of data, often described by standard deviation. The smaller the mean
value of the landslide susceptibility index, the larger the standard deviation, indicating that
more landslides are predicted using less data and the uncertainty of the model is low.

3. Data Source
3.1. Overview of the Research Area

Ruijin City is located in the middle of Ganzhou City, Jiangxi Province in the Ningyu
depression and Wuyi uplift belt on the southwest side of the Mount Wuyi vein, with strong
structural deformation and frequent magmatic activity, characterized by strong fault activ-
ity. The territory belongs to the Gongjiang River system, with the main rivers including the
Meijiang River, Mianjiang River, and Jiubao River (Figure 1). The transportation is mainly
composed of highways, with national highways supplemented by crisscrossing county
township (town) and village highways, forming a “three vertical and four horizontal”
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highway transportation network centered around the urban area. However, due to the con-
struction of roads in the area adjacent to mountains and rivers, especially the reconstruction
and expansion of roads, the mountains on both sides of the road have become unstable due
to man-made slope cutting, which has resulted in multiple engineering geological disasters,
such as collapses and landslides. At the same time, there are also serious geological hazards
in some sections [31].
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3.2. Indicator Selection and Data Source

The accurate evaluation of landslide disasters requires the correct selection of envi-
ronmental factors, combining the environmental geological characteristics of Ruijin City
and the occurrence regularity of landslide disasters, based on GIS technology and re-
mote sensing images, selecting twelve environmental factors, including four linear hazard
factors, such as lithology, geological boundaries, rivers, and roads, including geology,
topography, vegetation coverage, and hydrology. The basic data sources mainly come from
1:50,000 geological maps, Landsat 4-5 TM remote sensing images (geospatial data cloud
http://www.gscloud.cn/ accessed on 19 April 2023), ASTER GDEM data with a spatial reso-
lution of 30 m (Geospatial Data Cloud http://www.gscloud.cn/ accessed on 19 April 2023),
Soil Type Structure Data of Jiangxi Province (China Soil Database http://vdb3.soil.csdb.cn/
accessed on 19 April 2023), and precipitation data from meteorological stations in Jiangxi
Province. Google Earth’s high-resolution remote sensing images can serve as an important
complementary source of historical landslide disasters and basic geographic environmental
data, such as roads and rivers.

According to the 1:50,000 geological disaster survey data in Ruijin City, from 1970
to 2013, a total of 370 landslides occurred in the study area, as shown in Figure 1. In
the RF classification problem, the selection of non-landslide stability points is also very
important [32]. In Google Earth in this area, non-landslide stable points with the same
amount of landslide data are selected from flat areas with low slopes, such as cities,
farmland, and water bodies, and, together with historical landslide samples, a sample set of
landslide susceptibility prediction models is formed. Select 70% of the data as the training

http://www.gscloud.cn/
http://www.gscloud.cn/
http://vdb3.soil.csdb.cn/
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set to build the model; select 30% of the data as a verification set to verify the accuracy of
the model.

3.3. Environment Factors

Landslide environmental factors refer to internal factors that control the occurrence
of landslides, mainly including basic geological and hydrological conditions, topography,
and other factors [33,34]; The external inducing factors mainly include factors such as
earthquake action, human activity, and surface cover. Select the twelve types of landslide
environmental factors shown in Table 1 and use the natural breakpoint method in ArcGIS
to divide the selected factors into six interval levels. After processing with the frequency
ratio method, the FR values of each attribute interval are obtained as shown in Table 1.

Table 1. Frequency ratios of index factors.

Environmental
Factors Values Number of Grids

in the Whole Area Grid Scale/% Landslide Grid Landslide Grid
Scale/% FR

Elevation (m)

139.7~250.9 836,745 30.419 173 46.757 1.152
250.9~335.3 796,482 28.956 121 32.703 1.175
335.3~423.5 578,691 21.038 49 13.243 0.796
423.5~538.6 332,056 12.072 20 5.405 0.650
538.6~695.9 147,930 5.378 4 1.081 0.159

695.9~1117.8 58,787 2.137 3 0.811 0.376

Slope (◦)

0~4.4 685,218 24.911 41 11.081 0.260
4.4~8.8 643,535 23.395 125 33.784 0.986

8.8~13.2 608,755 22.131 113 30.541 1.276
13.2~17.9 446,520 16.233 56 15.135 1.945
17.9~28.7 344,703 12.532 34 9.189 0.632
28.7~51.2 21,960 0.798 1 0.270 0.398

Aspect

−1 155,940 5.669 27 7.297 0
0~22.5 297,924 10.831 31 8.378 0.994

22.5~67.5 354,479 12.887 62 15.757 0.954
67.5~112.5 359,791 13.080 48 12.973 1.301
112.5~157.5 332,830 12.099 54 14.595 1.198
157.5~202.5 332,143 12.075 42 11.351 1.160
202.5~247.5 378,011 13.742 48 12.973 1.086
247.5~292.5 370,195 13.458 38 10.270 0.792
292.5~337.5 169,378 6.158 20 5.405 0.716

Profile
curvature

0~2.029 884,499 32.156 98 26.486 0.596
2.029~4.057 773,416 28.117 125 33.784 1.072
4.057~6.324 561,551 20.415 69 18.649 1.126
6.324~8.949 324,376 11.793 54 14.595 1.213

8.949~14.529 187,647 6.822 23 6.216 0.823
14.529~30.428 19,202 0.698 1 0.270 1.829

Plan curvature

0~13.422 651,677 23.691 111 30.000 1.246
13.422~24.927 625,675 22.746 99 26.757 1.417
24.927~37.710 471,544 17.143 58 15.676 1.434
37.710~52.091 354,666 12.894 42 11.351 0.932
52.091~67.749 301,696 10.968 24 6.486 0.657
67.749~81.491 345,433 12.558 36 9.729 0.852

Topographic
relief

0~6.022 651,450 23.683 35 9.459 0.476
6.022~12.420 721,236 26.220 148 40.000 0.566

12.420~18.819 641,938 23.337 104 28.108 1.163
18.819~22.969 293,597 10.674 43 11.622 2.575
22.969~35.379 385,799 14.026 38 10.270 0.431
35.379~95.975 72,855 2.649 3 0.811 0.367
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Table 1. Cont.

Environmental
Factors Values Number of Grids

in the Whole Area Grid Scale/% Landslide Grid Landslide Grid
Scale/% FR

Lithology

Metamorphic rock 1,218,584 44.301 108 29.189 1.301
Magmatic rock 503,748 18.314 27 7.297 1.611

Clastic rock 899,363 32.696 19 5.135 0.209
Carbonatite 128,996 4.689 216 58.378 0.659

NDVI

−0.054~0.006 68,098 2.476 5 1.351 0.192
0.006~0.018 299,115 10.874 34 9.189 0.803
0.018~0.025 580,373 21.099 56 15.135 1.009
0.025~0.033 848,420 30.843 146 39.459 0.955
0.033~0.042 635,132 23.089 87 23.514 1.075
0.042~0.098 315,488 11.469 42 11.351 1.141

NDBI

−0.650~−0.389 74,963 2.725 13 3.513 1.101
−0.389~−0.318 234,632 8.529 28 7.568 0.928
−0.318~−0.267 428,674 15.584 58 15.676 1.418
−0.267~−0.219 699,581 25.433 92 24.865 1.233
−0.219~−0.173 803,445 29.209 110 29.729 0.901
−0.173~−0.050 505,331 18.371 69 18.649 0.729

MNDWI

−0.035~0.110 365,882 13.301 48 12.973 1.374
0.110~0.164 773,621 28.125 118 31.892 1.221
0.164~0.217 772,212 28.073 94 25.405 0.952
0.217~0.276 492,158 17.892 67 18.108 1.174
0.276~0.352 256,718 9.333 29 7.838 1.082
0.352~0.643 86,035 3.128 13 3.514 0.708

Distance to
river (m)

<150 155,212 5.642 47 12.703 2.586
150~300 55,808 2.029 7 1.891 1.689
300~450 279,114 10.147 118 31.892 0.672

>450 2,274,116 82.674 198 53.514 0.497

Distance to
roads (m)

<150 265,206 31.431 112 30.270 0.963
150~300 366,479 28.134 90 24.324 3.139
300~450 337,201 21.789 82 22.162 1.663
450~600 599,351 12.259 45 12.162 0.558
600~800 773,872 6.052 34 9.189 0.327

>800 408,582 0.335 7 1.891 0.127

(1) Topographical factor

Using ArcGIS and DEM, topographic and geomorphic factors, such as elevation,
aspect, slope, plane curvature, section curvature, and topographic relief, are extracted.
As shown in Table 1 and Figure 2, the relationship between elevation and FR value is
approximately inversely correlated. When the elevation is less than 335 m, the FR value
is greater than 1. The difference between slope orientations is mainly manifested in the
differences in temperature and surface vegetation on sunny and cloudy slopes. The FR
value of slope orientations is greater than 1 at 67.5◦ to 245.5◦. The slope can measure the
steepness of the surface, as shown in Table 1. When the slope is between 8.8◦ and 17.9◦,
the FR value is greater than 1. The plane curvature is an environmental factor that can
describe the horizontal terrain characteristics obtained by extracting the slope from the
slope direction. In Ruijin City, the plane curvature range with an FR value greater than
1 is 0 to 37.710. The section curvature can be referred to as the slope of the slope. When
the section curvature is between 2.029 and 8.949, its FR value is higher than 1, which is
conducive to the development of landslides. The topographic relief can be used to describe
the topographic and geomorphic characteristics from a macro perspective. When the value
is between 12.420 and 22.969 m, FR > 1 can create good conditions for the development
of landslides.
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Figure 2. Basic environmental factors of landslide. (a) Elevation; (b) slope; (c) Aspect; (d) Plane
curvature; (e) Profile curvature; (f) Lithology; (g) Distance to river; (h) Topographic relief; (i) NDVI;
(j) NDBI; (k) MNDWI; (l) Distance to roads.
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(2) Surface cover factor

It includes the normalized vegetation index (NDVI) and the normalized building
index (NDBI), which determine landslide development conditions through vegetation
coverage and building coverage, respectively. As shown in Table 1 and Figure 2, landslides
are more likely to occur when NDVI is between 0.018 and 0.025, 0.033 and 0.098, and NDBI
is between −0.318 and −0.219.

(3) Hydrological condition factor

This includes distance from the water system, water system density, normalized
differential water body index (MNDWI), and topographic humidity. As shown in Table 1
and Figure 2, MNDWI is commonly used to reflect surface water information. When its
value is between 0.217 and 0.276, the FR value is greater than 1. The impact of water
systems on landslide development can be expressed by the distance from the water system.
According to the buffer analysis, about 89.2% of the landslide grids are included in the
0–300 m interval from the water system, indicating that the water system in this interval
can promote the development of landslides.

(4) Basic geological factors

Including lithology, distance from highway, etc. As shown in Table 1 and Figure 2,
the rock types at the landslide site mostly belong to metamorphic and clastic rocks. In the
impact factor machine learning model, the distance from the highway is selected as the
environmental factor for modeling.

(5) Human activity impact factors

Including distance from highway, highway density, etc. As shown in Table 1 and
Figure 2, the buffer analysis shows that 83.73% of landslide units are included within a
distance of 450 m from the highway. Artificial slope cutting has a significant impact on the
development of landslides in Ruijin City. During the construction of highways, it is often
necessary to manually cut the slope toe of the excavation.

4. Buffer Distance Analysis Based on Pearson Model
4.1. Landslide Density

Based on the selection and analysis of linear hazard factors in previous landslide
susceptibility assessment work, this study selected lithologic geological boundaries [35],
road, and river factors as the analysis objects based on the actual situation of landslide
disasters in Ruijin City. Using the relationship between landslide density and linear factor
distance, the impact of each factor on landslides in different grading ranges was evaluated.
The higher the density of landslides, the greater the likelihood of landslides occurring
within the classified state.

As shown in Figure 3, the susceptibility of landslides is closely related to the distance
of linear factors. The closer the linear factor distance is, the easier it is for landslides to occur,
especially the more obvious the distance between lithologic and geological boundaries.
This is because different strata contact zones are prone to generate unstable surfaces, which,
triggered by multiple factors, lead to sliding along the contact surface. When the buffer
boundary is greater than 300 m from the geological boundary and river factor, and greater
than 120 m from the road factor, the landslide density is the lowest, and the impact on the
landslide is small (Figure 3).

4.2. Pearson Model Establishment and Analysis

In the process of establishing a landslide susceptibility prediction model, the main
treatment of linear disaster factors is to establish a multi-ring buffer zone [36]. The elements
of a multi-ring buffer include a buffer band and a single-ring buffer distance, as shown
in Figure 4.
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Figure 3. Relationship between landslide distribution and linear hazard factors. (a). The relation-
ship between landslide density and geological boundary distance; (b). The relationship between 
landslide density and road distance; (c). The relationship between landslide density and river dis-
tance. 
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Figure 3. Relationship between landslide distribution and linear hazard factors. (a) The relationship
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Pearson correlation coefficients are widely used to analyze the correlation between
variables, specifically the covariance cov(X, Y) between two variables divided by the
product (σX · σY) of their respective standard deviations:

P(x,y) =
∑N

i=1 (xi − x)(yi − y)[
∑N

i=1 (xi − x)2∑N
i=1 (yi − y)2

] 1
2

(4)

where P(x,y) is the correlation coefficient between the variables to be analyzed; xi is the
linear factor distance (m) of the outer boundary of each buffer zone in the multi-ring buffer;
x is the mean value of the linear factor distance (m) of the outer boundary of each buffer
zone; yi is the density of landslides within the buffer zone (pcs/m2); y is the mean value
of the density of landslides within the buffer zone (pcs/m2); N denotes the total number
of buffer zones. The P(x,y) coefficient takes values from −1.0 to 1.0, with larger absolute
values indicating stronger correlations.

Previous studies on the prediction of landslide susceptibility have shown that the
buffer distance of linear disaster-causing factors is 50–500 m [37,38]. In order to better
reflect the influence of the linear disaster-causing factor on the landslide, the minimum
single-loop buffer distance is set to 30 m, with a total of 10 loops to cover the influence
range of the linear factor; the maximum single-loop buffer distance is set to 150 m, beyond
which the influence of the linear disaster-causing factor on the landslide will not be well
reflected, resulting in the deviation of the prediction. In this study, a total of eight rings of
buffer zones with single-ring buffer distances of 30 m, 80 m, 100 m, and 150 m were created
for lithologic geological boundaries, roads, and rivers regarding linear disaster-causing
factors, respectively. The Pearson correlation model of linear factor distance and landslide
density within the corresponding buffer zone was developed using Matlab software under
different single-loop buffer distances. The correlation between landslide density and linear
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factor distance under different single-loop buffer distances was analyzed by reflecting the
correlation degree through the absolute value magnitude of Pearson correlation coefficient.

As shown in Figure 5, the correlation between the distance of the linear disaster-
causing factor and the landslide density in the corresponding buffer zone is the largest
when the single-loop buffer distances of the lithological geological boundary, river, and
road factors are 50 m, 30 m, and 30 m, respectively, which are 0.776, 0.838, and 0.834. Due
to the large influence of the road on the landslide, setting a larger single-loop buffer zone
is optimal. The impact of rivers and roads on landslides is limited in scope, especially
for road construction, which is very small and mainly reflected in the area of cut slope
instability on both sides of the road. The lithologic geological boundary factor distance and
landslide density as a whole did not reflect an extremely strong correlation. In the field
survey, it was found that landslides mainly occurred at the junction between the quaternary
and other strata and were mainly influenced by human engineering activities, such as road
construction and house building.
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tionship between the absolute value of Pearson’s correlation index and the buffer distance of the 
single ring of the geological boundary; (b). Relationship between the absolute value of Pearson’s 
correlation index and the buffer distance of a single loop of the river; (c). Relationship between the 
absolute value of Pearson correlation index and road single-loop buffer distance. 
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Figure 5. Absolute value of Pearson correlation index versus single-loop buffer distance. (a) Relation-
ship between the absolute value of Pearson’s correlation index and the buffer distance of the single
ring of the geological boundary; (b) Relationship between the absolute value of Pearson’s correlation
index and the buffer distance of a single loop of the river; (c) Relationship between the absolute value
of Pearson correlation index and road single-loop buffer distance.

5. Optimal Distance Verification

The RF model is an integrated classifier consisting of multiple decision trees, and the
final result of the model is determined by the votes of all decision trees. The training samples
used for each decision tree in the set are obtained by bootstrap sampling, i.e., randomly
drawing the same number of training samples as the original training set samples with
put-back. Suppose the original training set contains N training samples, and the probability
that each sample is not drawn is (1 − 1/N)N . When N is large enough, (1 − 1/N)N will
converge to 1/e ≈ 0.368, which indicates that nearly 37% of the original sample set will
not appear in the bootstrapping sample training samples, which are called out-of-bag data,
and the metric used to estimate model performance is called out-of-bag error. In contrast to
cross-validation, the out-of-bag error is internally estimated, is unbiased, and fluctuates
from the beginning to gradually decrease and converge to a threshold as the number of
trees increases. Out-of-bag error helps to understand the model classification accuracy and
how to improve it.

This study focuses on the selection of the optimal single-loop buffer distance based
on buffer analysis for linear disaster-causing factors. The RF out-of-bag error accuracy
and confusion-matrix-based accuracy metrics are used to verify the reasonableness of the
single-loop buffer distance setting, and the RF modeling process and other factor processing
methods are not highlighted here. The lithological geological boundary, road, and river
factors with single-loop buffer distances of 50 m, 30 m, and 30 m, respectively, are the most
relevant single-loop buffer distance combinations with nine other environmental factors
to form a landslide-causing factor set and establish the RF model. As a comparison, the
combination of linear disaster-causing factors with the same single-loop buffer distance
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was also modeled separately for RF landslide susceptibility prediction. Only under the
most optimized parameters can the performance of the model be improved optimally, and
the prediction will reach the optimal state. Therefore, how to choose the optimal factor is
the key to construct the random forest model. To solve this problem is mainly based on the
calculated out-of-bag (OOB) error. In this study, in order to obtain the best disaster-causing
factor for random selection of the RF model, the out-of-bag error under different buffer
distances was selected by using circular iterations of Matlab language, and, the smaller the
out-of-bag error, the higher the prediction accuracy of the corresponding model. As shown
in Figure 6, the trend of the out-of-bag error of the RF landslide susceptibility prediction
model with increasing number of decision trees was calculated to obtain linear disaster-
causing factors at different single-loop buffer distances. The most relevant single-loop
buffer distance combination model shows the lowest trend of out-of-bag error with the
number of decision trees, and its model accuracy is the highest.
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The optimal number of decision trees is selected by iterating the out-of-bag error (OOB
error) with different numbers of decision trees, and the model performance is evaluated
by combining the confusion matrix. The out-of-bag error results approximate the k-fold
cross-validation that requires extensive computation. The ratio of the number of all misclas-
sifications to the total number of samples was calculated as the OOB error of the random
forest. The lower the OOB error, the better the accuracy of the model classification. In this
study, Matlab was used to iterate and calculate from 15 to 500 decision trees to obtain the
OOB error for different numbers of decision trees. When the number of decision trees is
small, the OOB error is large, so the number of decision trees is increased continuously
while the error of each curve is calculated and observed. When the number of decision
trees increases to a certain degree, the OOB error and the curves basically remain stable,
which is expressed as a small fluctuation of the OOB error within a certain range. Thus, in
this study, the optimal number of decision trees is 300.

The accuracy rate in the confusion-matrix-based accuracy index represents how many
landslide points predicted by the model are correct, the recall rate represents how many
landslide samples are predicted by the model, the Kappa coefficient represents the reliability
of the model, and the accuracy rate represents the overall accuracy of the RF model. As
shown in Table 2, the recall, kappa coefficient, and accuracy of the validation set of the
most correlated single-loop buffer distance combination model are 96.65%, 88.67%, 83.17%,
and 91.58%, respectively. With 300 decision trees, the final error rate for non-slippery
slope points was 4.2% in the test sample. The error for landslide points was 11.3%, and
328 landslide points were correctly predicted out of 370 landslide point samples. With
300 decision trees, the final error rate of non-slippery points in the test sample was 4.2%.
The error of landslide points was 11.3%, and 328 landslide points were correctly predicted
in the sample of 370 landslide points, and the overall accuracy is better than the accuracy
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of the model with the same single-loop buffer distance combination, which also indicates
that the model is a model with high accuracy calibration. The reasonableness of the most
relevant buffer is further corroborated from the perspective of landslide susceptibility
prediction accuracy.

Table 2. Accuracy of validation set based on confusion matrix.

Buffer Distance/m Recall/% Kappa Factor/% Accuracy/%

30 84.05 76.45 88.20
50 85.63 78.40 89.18
80 86.79 80.36 90.16

100 88.24 79.12 89.61
150 86.79 82.48 91.22

Most relevant buffer 88.67 83.17 91.58

6. Model Predictions

Based on the above analysis, the number of decision trees is 300, and the most relevant
combination of single-loop buffer distance and nine other environmental factors is selected
to form a landslide-causing factor set, and then the RF model is established to predict
the whole study area. The probability of susceptibility was classified into five grades of
low susceptibility zone, lower susceptibility zone, medium susceptibility zone, higher
susceptibility zone, and high susceptibility zone by the natural breakpoint method, and the
susceptibility grading chart was obtained (Figure 7). According to the model prediction
results, the number of graded rasters, the proportion of graded rasters, the number of
landslide points, the proportion of graded landslides, and the frequency ratio under each
susceptibility class were counted to obtain Table 3. From Table 3, it can be concluded
that 43.2% of the landslide sites occurred in the higher- and high-susceptibility areas, and
63.8% of the landslide sites occurred in the areas above the medium susceptibility level.
The landslide hazard increases from low to high, and the corresponding landslide ratio
gradually increases from 0.248 to 3.076. The area of the lower susceptibility zone and
low-susceptibility zone in the study area is about 36.28%, which indicates that the landslide
hazard is high in most areas of the study area. The model calculation shows that the
landslide hazard increases from small to large as the susceptibility level increases.
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Table 3. Frequency ratios of five susceptibility classes assessed with the RF model.

Class Total Grid
Number Proportion (%) Landslide Grid

Number Proportion (%) Landslide Density

Very high 587,270 21.35 243 75.95 3.076
High 600,890 21.85 61 13.24 0.755

Moderate 565,391 20.55 33 7.03 0.434
Low 591,490 21.50 20 2.70 0.249

Very low 406,548 14.78 13 1.08 0.248

7. Discussion

Taking Ruijin City as the research object, 12 environmental factors, such as elevation,
topographic relief, distance from water system, and road, were selected to establish a Pear-
son correlation statistical model of landslide density and distance of linear disaster-causing
factors at different single-loop buffer distances to obtain the most relevant combination of
linear disaster-causing factors at single-loop buffer distances. It provides ideas for studying
the influence of correlation between linear disaster-causing factors and landslides and
provides appropriate suggestions for the selection of buffer distance size.

(1) For regional landslide studies, the sensitivity analysis of impact factors (environmental
factors and trigger factors) is one of the difficult points. Moreover, different landslide
susceptibility evaluation models have different sensitivities to the landslide evaluation
factors. The importance of the 12 environmental factors selected in this paper still
has certain limitations and cannot yet fully reflect the degree of influence of landslide
evaluation factors on landslides in an objective and realistic way. Therefore, how
to find the evaluation factors that play a decisive role in landslide evaluation needs
further research.

(2) The number of decision trees is selected by iteratively calculating the out-of-bag error
under different numbers of decision trees, and the model parameters are evaluated
by combining the confusion matrix to finally obtain the optimal RF parameters. The
integrated and stochastic nature of the RF model gives it the advantage of landslide
susceptibility modeling that is less affected by disturbances in the data, high judg-
ment accuracy, and effective prevention of overfitting [39]. Some of the literature
investigating the performance of machine learning models for predicting landslide
susceptibility shows that RF exhibits higher prediction accuracy than other models,
such as logistic regression, SVM, and conventional artificial neural networks, and is
more suitable for landslide susceptibility mapping [40–43]. The findings of this paper
are more in line with the existing literature.

(3) Slope is an important influence factor of landslide and is one of the important parame-
ters for landslide susceptibility evaluation. In this paper, the non-landslide points are
distributed in the flat topographic area of Ruijin City, which ensures the stability and
good prediction accuracy of the selected non-landslide points. However, the largest
problem of the model is that it overemphasizes the role of slope, and the results of the
factor importance ranking in the random forest model show the importance of slope
at the top [44,45], resulting in a large area of very high- and high-susceptibility zones
in the prediction results of the model and weak identification of stable areas with high
slope. The next step of the study will focus on the selection of non-landslide sites.

(4) This paper was conducted in the Ruijin area as the study area, and the experiment
verified that the proposed RF model of landslide susceptibility evaluation method
has better results. However, experiments and analyses are needed for larger spatial
scales and study areas characterized by other geological formations (e.g., fault struc-
tures) and hydrogeological conditions to further verify the generalizability of the
method proposed in this paper, which is also the focus of the authors’ subsequent
research work.
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8. Conclusions

Using Ruijin City as the study area, Pearson correlation was used to analyze the
correlation between landslide density and the distance of linear hazard-causing factors
under different single-loop buffer distances, and an RF model was developed to verify the
rationality of the combination of the most relevant single-loop buffer distance and linear
hazard-causing factors for landslide susceptibility measurement.

(1) There are 370 landslide hazards and historical landslide sites in Ruijin. Landslide
hazard development is mainly small- to medium-sized, shallow to medium, earthy or
mounded landslides, while large or giant, deep, and rocky landslides are
less developed.

(2) The correlation between the landslide density and the distance of linear disaster-
causing factors is greatest in the Ruijin area when the single-loop buffer distances of
the lithological geological boundary, road, and river factors are 50 m, 30 m, and 30 m,
respectively, reflecting the different influence ranges of different factors on landslides.
In other areas, the differences in the influence range of different linear factors should
be fully considered when building predictive models for landslide susceptibility.

(3) The landslide susceptibility prediction model built with the most correlated single-
ring buffer distance combination of linear hazard-causing factors has a low out-of-bag
error curve trend, and the validation set accuracy index is overall higher than that
of the same single-ring buffer distance combination of linear hazard-causing factors.
The most correlated buffer approach is justified in terms of both model accuracy and
prediction accuracy.

(4) The RF model effectively reflects the spatial distribution pattern of landslide suscepti-
bility. The very low and low susceptibility areas are mainly distributed in the north
and west of Ruijin City, while the very high- and high-susceptibility areas are mainly
concentrated in the central zone. According to the results of susceptibility evaluation,
corresponding disaster mitigation and prevention measures should be arranged for
the above areas.
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