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Abstract: Background: Exploring the spatial and temporal evolution patterns of regional ecosystem
service functions and their main drivers can provide effective support for formulating regional
ecological conservation policies and coordinating sustainable economic–ecological development.
Methods: This study quantifies the service functions of the water production, soil conservation,
carbon storage, habitat quality, and net primary productivity (NPP) in the study area based on the
Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model and the Carnegie–Ames–
Stanford Approach (CASA) model and constructs a comprehensive index for ecosystem services
(CES) based on the analytic hierarchy process (AHP) to reflect the total supply of various ecosystem
services spatially and explore the main driving mechanisms of their spatial variation. The main
driving mechanisms of the spatial variation were investigated. Results: (1) Water production in
the study area from 2010 to 2020 showed a trend of increasing before decreasing, soil retention
showed a trend of continuously decreasing, carbon storage and biotope quality showed a trend of
decreasing before increasing, and the NPP showed a trend of continuously increasing. (2) The mean
CES of the study area from 2010 to 2020 (0.5398, 0.5763, 0.5456) showed a trend of increasing before
decreasing. The improvement areas were mainly concentrated in the western, southwestern, and
northeastern parts of the study area, and the degraded areas were mainly distributed in the southeast
and northwest. (3) The fit of the geographically weighted regression (GWR) was higher than that
of the ordinary least squares (OLS) in all the periods, and the main driving factors affecting the
spatial variation in the CES were the NDVI and tea plantation area (T-Area). Conclusion: This study
constructed the CES model, explored the regional CES spatiotemporal evolution pattern and its main
driving mechanism, and provided a reference basis for promoting the high-quality development of
specialized tea regions.

Keywords: ecosystem service functions; InVEST model; CASA model; driving forces

1. Introduction

Multiple ecosystem services can coexist in a single ecosystem or a geographical area [1].
Specifically, current research has focused on the total value of multiple ecosystem service
functions [2], multiple ecosystem service function relationships [3], and the mechanisms
driving multiple ecosystem service functions [4,5]. However, assessing and managing
multiple ecosystem service functions remains a key challenge. The assessment of multiple
ecosystem service functions can be understood as providing a pathway to socioeconomic–
ecosystem interactions and sustainable ecosystem management [6,7]. Therefore, it is neces-
sary to identify the spatial characteristics of multiple ecosystem service functions, quantify
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the total impacts of multiple ecosystem service functions from an integrated perspective,
and analyze the driving mechanisms of multiple ecosystem service functions as a way to
provide stability in the performance of ecosystem service functions [8–10].

Ecosystem service modeling tools can quantify ecosystem service functions at spatial
scales and analyze their supply and demand [11], trade-offs [12], and driving mecha-
nisms [13] in lieu of ecosystem management decisions. Ecosystem service modeling tools
include the InVEST model [14], ARIES model [15], ecological footprint model [16], VER
model [17], SolVES, etc. [18,19]. Since these models are not yet well developed, it is difficult
to achieve a large-scale assessment of ecosystem service functions, with the exception of
the InVEST model with several modules (the water production module, soil conservation
module, carbon storage module, habitat quality module, etc.) due to its limited model
parameters and low data requirements. It is the most applied model for ecosystem service
function assessment and has been widely used and validated for its reliability at different
scales [20–22]. The InVEST model is able to better represent ecological processes in different
ecosystems, excels in evaluating the spatial characteristics of ecosystems, and can be ap-
plied to a range of ecosystem assessments. The CASA model is a vegetation physiological
process-based vegetation NPP mechanism model that has been widely adopted in the
vegetation NPP studies [23]. Regional ecosystems usually include provisioning, regulating,
and supporting services, with provisioning services mainly providing food and water;
regulating services mainly including carbon fixation storage, climate regulation, and soil
conservation; and supporting services mainly providing biodiversity, plant organic matter,
etc. [24]. However, these functions have different focuses and have different impacts on the
ecosystem. In existing studies, it has been shown that three to five key ecosystem service
functions are usually selected to measure the ecosystem services in a region. Usually, water
production is chosen to represent the provisioning services [25], soil conservation and
carbon storage are used to represent the regulating services [26,27], and the habitat quality
and NPP are used to represent the supporting services [5].

Although some progress has been made on the types of ecosystem service func-
tions and assessment methods [28,29], there is still a lack of understanding of the overall
ecosystem service functions. On the one hand, there are still relatively few methods for
establishing and integrating multiple ES. Current studies have focused on the quantification
of single indicators, such as water production services [22,30] or habitat quality [31,32], or
the simulation and prediction of future ecosystem services using the Markov models [33],
FLUS models [34,35], PLUS models [36,37], etc. to simulate and predict future ecosystem
service functions under multiple scenarios. In this way, these approaches can help decision
makers. On the other hand, scholars have explored the synergistic relationships of ES
spatial trade-offs at different scales and classified different ecological reserves using the
principal component or correlation clustering methods [38,39]. However, the driving mech-
anism of the ecosystem service function is not clear, especially in the special geographic
unit of a specialized tea area. Does the spatial differentiation of tea plantations affect the
change in ecosystem service functions? What is the spatial extent and magnitude of the
drivers affecting ecosystem service functions? At present, these are the key questions that
urgently need to be addressed.

Integrating multiple ecosystem service functions can reflect the comprehensive situa-
tion of regional ecosystem services more comprehensively and solve the drawbacks of bias
and a lack of completeness in the assessment of individual ecosystem service functions. The
integration of ecosystem service functions requires considerations for the weighting of each
ecosystem service function, and a large number of studies currently assign equal weights to
all ecosystem services. However, the importance of the various ecosystem service functions
is different. Therefore, in this study, after selecting several ecosystem service functions with
typical representatives, the AHP was applied to construct the CES (comprehensive index
for ecosystem services) to assess the regional ecosystem services. This approach solved
the problem where several different ecosystem service functions had different emphases
in a regional ecosystem service assessment and were not on the same scale. It also solved
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the problems of different focuses, different scales, and the applicability of several different
ecosystem service functions in the regional ecosystem service assessment.

In summary, constructing the CES and analyzing its driving mechanism can provide
a reference for the stable performance of regional ecosystem service functions. The focus
of this study is the process of constructing the CES and analyzing its driving mechanism.
Therefore, Anxi County, a typical leading county in tea production in the southern hilly
region of China, was selected as the study area, and the research process was as follows.
(1) Quantify each ecosystem service function in the study area from 2010 to 2020 using the
InVEST model; (2) construct the CES by determining the weights of each ecosystem service
function using the AHP; (3) analyze the driving mechanisms affecting the study area using
the OLS and GWR methods; and (4) analyze the driving mechanisms affecting the changes
in the CES in the study area using the OLS and GWR methods.

2. Materials and Methods
2.1. Study Area

Anxi County is located in the southeastern Fujian Province (117◦36′–118◦17′ E,
24◦50′–25◦26′ N) at the headwaters of the West River of the Jinjiang River under the juris-
diction of Quanzhou City, Fujian Province, with a total area of 3057.28 square kilometers,
24 townships, and a total population of over 1.2 million. Anxi County is part of the south-
eastern extension of the Dayun Mountains, with hilly mountainous terrain and river valley
basins featuring a pearl-shaped distribution. The terrain slopes from the northwest to
the southeast, featuring undulating mountains, peaks, steep mountains, large slopes, and
narrow river valleys in the northwest with an average altitude of 700 m above sea level, a
highest peak of 1600 m, and 2461 mountains above 1000 m. In the southeast, the terrain
is relatively gentle, with 475 mountains around 1000 m and an average altitude of 500 m
or less. The average annual temperature is 16–21 degrees Celsius, and the annual rainfall
is 1800 mm, thus forming an excellent area for the growth of Oolong tea, ranking first in
China’s key tea-producing counties, known as “China’s tea capital”. Anxi County has a tea
plantation area of approx. 60,000 hectares, accounting for around a third of the total area of
the tea plantations in Fujian Province, with an annual tea production of 62,000 tons and an
industry output value of CNY 32 billion. More than 80% of the population is engaged in
tea and related industries, and nearly 60% of the income of tea farmers comes from the tea
industry (Figure 1).
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2.2. Data Source and Pre-Processing

The remote sensing image data of the study area were mainly obtained from Land-
sat/TM/TIRS/OLI released by the Geospatial Data Cloud (http://www.gscloud.cn
(accessed on 16 September 2022). Due to the satellite shooting angle and other factors, the
image data were used for three time periods from 2010, 2015, and 2020, with a total of nine
image data points, as shown in Table 1. The image data of each period were processed
using image mosaic, cropping, and correction, converted to true color display using wave-
band combination, and then compared with Google Earth Pro high-precision historical
image data. After the visual interpretation and combination with the field verification and
calibration, according to the standard of the National Classification of Land Use Status
(GB/721010-2017), combined with the research needs, the maximum likelihood method
was used to classify the study area into a total of nine land categories, including forest land,
shrubs, grassland, arable land, tea gardens, orchards, construction land (settlements, indus-
trial and mining land, and towns), mudflats, and water bodies. The overall accuracy of the
classification of each of these periods was 87.63%, 86.92%, and 88.32%, respectively, to meet
the needs of the study. Among them, the data of the tea-related population density in Anxi
County and the gross tea product in Anxi County were obtained from the Anxi County
Bureau of Statistics, and the uniform projection coordinates and spatial resolution of 30 m
were achieved using GIS Kriging interpolation, cropping and resampling operations, and
driving-factor data sources (Table 2, Figure 2).

Table 1. Remote sensing image information data.

Year Image Source Image Date Path Row Cloud Volume

2010 Landsat/TM
3 August 2010 120 42

<5%

9 December 2010 120 43
18 December 2010 119 43

2015 Landsat/TIRS/OLI
14 January 2015 119 43
21 January 2015 120 43

13 May 2015 120 42

2020 Landsat/TIRS/OLI
20 February 2020 120 42
20 February 2020 120 43

16 March 2020 119 43

Table 2. Data sources for the drivers.

Data Type Resolution Data Source

Precipitation 30 m http://cdc.nmic.cn/ (accessed on 22 September 2022)
Temperatures 30 m http://cdc.nmic.cn/ (accessed on 22 September 2022)

Normalized Difference Vegetation Index 30 m http://www.nesdc.org.cn (accessed on 22 September 2022)
Slope 30 m Calculated from DEM
DEM 12.5 https://asf.alaska.edu/ (accessed on 22 September 2022)

Area of tea plantation 30 m Extracted by land use
Population density involving tea 30 m http://www.fjax.gov.cn/ (accessed on 22 September 2022)

Total tea production value 30 m http://www.fjax.gov.cn/ (accessed on 22 September 2022)
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2.3. Methods
2.3.1. Selection of Ecosystem Service Functions

Anxi County is one of the important bases for specialized tea areas in China, and
the expansion of the tea cultivation scale will have a long-term impact on the provision
of ES. Therefore, the selection of the evaluation indicators should first conform to the
widely recognized assessment framework, usually based on the Millennium Ecosystem
Assessment and the mainstream classification of ecosystem service functions [40]. Second,
in line with the preferences and well-being of the tea plantation stakeholders, the effects of
temperature and light on the quality-related metabolites in tea should be considered [41,42].
Finally, the availability of the data is important. For this purpose, we selected the water
production services, soil conservation services, carbon sequestration services, habitat
quality services, and NPP services as the indicators for constructing the CES. Water is
one of the basic elements to maintain the growth of tea trees and assessing the water
production service can help us understand the contribution of the ecosystem in the study
area to maintain the water cycle and water regulation. The soil conservation service aims
to provide habitat and nutrient sources for the cultivation of tea trees, reflecting the cycle
and supply of soil nutrients in tea plantations and also characterizing the soil erosion in
the study area. Woodland was the largest land type in the study area. Therefore, a carbon
stock service can help to estimate the carbon stock changes and carbon sink capacity of
the study area. Assessing the habitat quality of the study area can reflect its biodiversity
changes in different periods. The total plant organic matter reflects the nutrient cycling
in the ecosystem and assessing the total plant organic matter can help us understand the
ability of the ecosystem for maintaining these ecological processes, such as nutrient cycling.

2.3.2. Ecosystem Service Function Assessment Methods

In this paper, the InVEST model was used to quantitatively estimate the water produc-
tion services, soil conservation services, carbon sequestration services, and habitat quality
services in the study area, and the CASA model was used to quantitatively assess the NPP
services [43]. The water production services were calculated using the water production
module of the InVEST model, which is based on the water balance principle, where the
actual evapotranspiration is subtracted from the precipitation of each raster to obtain the
water production of that raster [44]. The soil conservation services were calculated using the
sediment retention module of the InVEST model [36]. The parameters were set according
to the relevant references. The carbon sequestration service was calculated using the carbon
storage module of the InVEST model, and the specific principles and calculation methods
are described in [45]. The average carbon density of the different land types was referred to
in relevant studies [33,46,47]. The habitat quality was assessed using the habitat quality
module of the InVEST model [48]. This module reflects the impact of human activities on
the environment, and the higher the intensity of human activities, the greater the threat
to the habitat [49,50]. In this paper, we referred to relevant studies to select arable land,
construction land, tea plantations, and orchards as the stressors, and defined woodlands,
grasslands, shrubs, mudflats, and water bodies as the habitats [49]. The NPP services were
assessed and calculated using the CASA model since the NPP responds to the total amount
of organic matter accumulated by photosynthesis by its green plants per unit area per unit
time [51,52].

2.3.3. Comprehensive Index for Ecosystem Services

To reflect and quantify the total impact of multiple ecosystem services, a comprehen-
sive index for ecosystem services (CES) was constructed for this paper. In many studies,
all the ecosystem services were given equal weights [53,54]. However, the importance of
the various ecosystem service functions is different. In this paper, based on the previous
studies, the CES was constructed using a hierarchical analysis (AHP) [55] to reflect the
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overall level of multiple ecosystem services in the study area at different times. The CES
was calculated as follows.

CESj =
n

∑
i=1

wi·Sij (1)

where CESj is the composite ecosystem service index in year j; wi is the weight of the ith
ecosystem service; Sij is the normalized value of the ith ecosystem service in year j; and n
is the number of ecosystem service types. The AHP was used to determine the weights of
each type of ecosystem service (Table 3).

Table 3. Weights of different ecosystem service indicators in the study area.

Ecosystem Service Functions Water
Production

Soil
Conservation

Carbon
Sequestration Habitat Quality NPP

Weights 0.3 0.1 0.2 0.2 0.2

2.3.4. Factor Selection

The results of numerous studies have shown that both natural environmental factors,
such as topography and climate, and socioeconomic factors influence the spatial differ-
entiation of ecosystem service functions. Therefore, it is important to clarify the spatial
differentiation of ecosystem service functions and the natural–social and other driving
mechanisms for the sustainable development of ecosystem service functions [56]. Based on
the relevant studies and the actual natural–socioeconomic context of the study area, for the
representativeness of the selected factors and the availability of data, this study selected the
precipitation (PER), temperature (TEM), vegetation cover (NDVI), slope (Slope), elevation
(DEM), tea plantation area (T-Area), tea-related population density (T-Pop), and the total
tea production value of the study area (T-GDP) as well as another eight representative
factors to explore the drivers of the spatial variation in ecosystem service functions [36,57].

2.3.5. GWR Model

Ordinary least squares (OLS) models are commonly applied to different regions with
related influences [58]. However, this relationship is assumed to be unchanged across
spatial locations. In contrast, a geographically weighted regression, a local regression
model, captures the spatial relationships between the dependent and independent variables
that vary across locations [59]. Its equation is as follows.

Yi = β0(ui, vi) +∑kβk(ui, vi)Xik + εi (2)

where Yi is the dependent variable, Xik is the k independent variables, (ui, vi) are the
geographical coordinates of the ith point; β0(ui, vi) is the intercept of the ith point, βk(ui, vi)
is the coefficient of Xik, and εi is the residual of the ith point.

A regression equation considering only nearby observations was developed for each
point by using the weighted least squares method [60]. Using various methods, each nearby
observation was weighted by a distance function from the regression point. The common
spatial weighting or distance decay methods include the fixed Gaussian and adaptive
bisquared kernel functions. The fixed Gaussian function can be written as the following.

Wij = exp

(
−
(dij

b

)2
)

(3)

where Wij is the weight value of the observation j for estimating the observation coefficient
i, dij is the distance between i and j, and b is the kernel bandwidth.



Sustainability 2023, 15, 10153 7 of 16

The adaptive bisquare function allows the spatial extent to vary at different regression
points and includes the same number of adjacent cells for the local model estimation. The
formula is as follows.

Wij =


(

1− d2
ij/b2

i(k)

)2
i f dij < bi(k)

0 i f dij > bi(k)

(4)

where bi(k) is the adaptive bandwidth. The other variables are the same as in Equation (3).

3. Results
3.1. Ecosystem Services Assessment 2010–2020

As evaluated by the InVEST model, the results showed (Figure 3) that from 2010 to
2020 in the study area, the water yield (average water yield depth) was 24.0110 × 108 m3

(803.4045 mm), 24.5233 × 108 m3 (820.3977 mm), and 16.1511 × 108 m3 (540.2287 mm).
The water production and the average water production depth both showed a trend of
increasing before decreasing. The soil retention was 5.2216 × 108 t/ha, 4.3514 × 108 t/ha,
and 3.3058 × 108 t/ha, showing a continuous decreasing trend. The carbon storage was
9.8842 × 107 t, 9.7268 × 107 t, and 10.1328 × 107 t, showing a trend of decreasing and then
increasing. The mean values of the habitat quality were 0.6502, 0.6334, and 0.6919, showing a
trend of decreasing and then increasing. The mean values of the NPP were 368.2420 gc·m−2,
371.1052 gc·m−2, and 448.2230 gc·m−2, showing a trend of gradually increasing.
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3.2. CES Changes from 2010 to 2020

The CES mean value reflects the overall supply state of the ecosystem services, and
the CES mean values in the study area from 2010 to 2020 were 0.5398, 0.5763, and 0.5456, in
that order. The CES mean values in the study area varied less within each period, showing
a trend of increasing and then decreasing. The CES results were divided into five grades:
low (0–0.2), lower (0.2–0.4), moderate (0.4–0.6), higher (0.6–0.8), and high (0.8–1). The
results showed (Table 4) that the CES in the study area was high and high grade during
the 10 years, and the proportion of the high-grade and low-grade results showed a trend
of increasing and then decreasing, while the proportion of the high-grade and low-grade
results showed a trend of decreasing and then increasing. The trend of the medium-grade
CES results continued to increase while the percentage of the high-grade results decreased
by 14.62% and the percentage of the low-grade results decreased by 2.99% (Figure 4).

Table 4. Changes in the percentage of the CES under each class in the study area from 2010 to 2020.

Low Lower Moderate Higher High

2010 17.64% 34.94% 2.30% 38.86% 6.26%
2015 30.87% 21.85% 5.10% 41.18% 1.00%
2020 3.02% 52.11% 6.04% 35.56% 3.27%
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To further explore the spatial and temporal dynamics of the CES in the study area,
the CES changes were calculated for each image element and classified into five levels:
strongly degraded (−1–−0.5), slight degradation (−0.5–−0.1), stayed stable (−0.1–0.1),
slight improvement (0.1–0.5), and strongly improved (0.5–1). As shown in Table 5 and
Figure 5, most areas of the CES in the study area remained stable during the 10-year period,
with an area of 2026.8144 km2, accounting for 67.81% of the total area of the study area. The
area of both the improved and degraded areas showed a continuous increase, with the area
of the improved areas being larger than that of degraded areas. The improved areas were
mainly concentrated in the western, southwestern, and northeastern parts of the study area,
while the degraded areas were mainly distributed in the southeastern and northwestern
parts. During the period of 2010–2015, the CES of the study area showed little change, and
the area of maintaining a stable grade accounted for 92.36%. However, during the period of
2015–2020, the area and proportion of both the improved and degraded areas of the study
area CES increased, with the slightly improved areas being concentrated in the western
and eastern regions of the study area while the slightly improved areas were concentrated
in the southern region of the study area.



Sustainability 2023, 15, 10153 9 of 16

Table 5. Area and ratio of the CES changes in the study area from 2010 to 2020.

2010–2015 2015–2020 2010–2020

Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%)

Strongly degraded 2.6046 0.09% 19.7307 0.66% 11.4714 0.38%
Slight degradation 59.3739 1.99% 516.6234 17.28% 288.8415 9.66%

Stayed stable 2760.5943 92.36% 2066.9607 69.15% 2026.8144 67.81%
Slight improvement 138.0393 4.62% 385.3017 12.89% 626.4378 20.96%
Strongly improved 28.4616 0.95% 0.4572 0.02% 35.5086 1.19%
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3.3. CES Driver Analysis

The eight selected drivers were fitted with OLS models, and their R2 reached above
0.8. The results indicated that the eight selected drivers could effectively explain the spatial
variation in the CES in the study area from 2010 to 2020. However, the OLS model could not
spatially present the extent and magnitude of each driver, so this study further combined
the application of the GWR model to elucidate the spatial influence of each driver on the
ecosystem service function. The results of fitting the OLS model with the GWR model
showed that the GWR model fit better than the OLS model, and the GWR model could
be used to reveal the spatial distribution of the influence of each driver on the ecosystem
service function (Table 6).

Table 6. Fit of the OLS model to the GWR model.

OLS GWR

R2 AICc R2 AICc

2010 0.8386 −148.3223 0.8546 −7040.7156
2015 0.8355 −166.7644 0.8373 −7186.8097
2020 0.9121 −417.9535 0.9146 −10,653.2362

3.3.1. OLS-Based Regression Coefficient Analysis

The p-value test of the regression coefficients of the OLS model showed that the
five drivers of the precipitation, NDVI, DEM, slope, and tea plantation area were highly
significantly correlated from 2010–2020. However, the temperature and T-GDP were not
correlated. In addition, the T-Pop was not significantly correlated in 2015 (Table 7).
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Table 7. Regression coefficients of the OLS model.

PRE TEM NDVI DEM SLOPE T-Area T-Pop T-GDP

2010 0.2062 ** −0.0325 0.8986 ** 0.0772 ** 0.5054 ** −0.4911 ** 0.1990 * −0.0355
2015 0.1273 ** 0.0197 0.9949 ** 0.0471 ** 0.5150 ** −0.4749 ** 0.1017 −0.0100
2020 0.1014 ** 0.0060 0.6913 ** 0.1288 ** 0.3048 ** −0.3228 ** −0.1646 * 0.0168

** represents p = 0, highly significant correlation; * represents 0 < p ≤ 0.05, significant correlation.

3.3.2. GWR-Based Driver Analysis

The results of the GWR spatial visualization showed that the precipitation, NDVI,
DEM, and slope were positively contributed to the CES in most areas of the study area.

The positive promoting effect of the precipitation was mainly concentrated in the
western part of the study area, and the influence area gradually decreased with time. The
negative inhibition effect was mainly concentrated in the eastern part of the study area,
and the negative influence showed a trend of increasing and then decreasing. The reason
for the above changes could be that the tea plantations in the western region encroached
on the forest land, and the surface capacity to retain water weakened. As the precipitation
increased and increased the surface runoff, it caused soil erosion and weakened the CES.

Generally speaking, the higher the elevation, the lower the impact of human activities
and the higher the CES. However, in the present study, the positive contribution of the
DEM was mainly concentrated in the northeast and south, the significant positive influence
area gradually decreased to the northeast region over time, and the negative influence area
narrowed and shifted from the west to the east. The reason for the above changes could be
that the expansion of tea plantations to higher altitudes has led to the weakening of the
positive contribution of the DEM to the CES.

The distribution of the high- and higher-value areas as the second major driver of the
positive promoting influence of the slope on the CES showed a trend of first increasing
and then sharply decreasing in the eastern region of the study area, gradually shifting
to the medium-value area. The negative influencing areas were concentrated in the west
and southwest, and the influence range gradually decreased. The reason for the above
changes could be that, with the expansion of tea plantations to high-slope areas, the original
vegetation cover was changed, which in turn caused the positive contribution of the slope
to the CES area to decrease.

The distribution of the NDVI, as the largest driver of the positive contribution of the
CES, showed a trend of increasing and then decreasing in the western and southern regions,
indicating that the positive contribution of the NDVI to the CES weakened. The reason
for the above changes could be that the forest and grassland in the western region were
encroached upon by tea plantations, and the original vegetation cover was reduced, which
in turn led to a reduction in the positive contribution area of the NDVI.

The tea plantation area and the tea-related population density played a negative
inhibitory effect on the CES in most areas of the study area. The higher-value and high-
value areas of the negative inhibitory effect of the tea garden area generally changed to the
distribution of the medium- and lower-value areas, and the negative inhibitory effect on
the CES weakened. Although the area of tea gardens is increasing, with the promotion of
green production in tea gardens, ordinary tea gardens have been gradually transformed
into ecological tea gardens, and the biodiversity and ecological environment of tea gardens
have been improved. Therefore, the negative inhibition of the CES weakened. The positive
and negative effects of the tea-related population density on the CES spatially coexisted,
and the negative inhibitory effect area decreased, indicating that the negative effect of the
tea-related population density on the CES weakened. The reason for the above changes
could be that, with the construction of information tea gardens and the rise of tea markets,
some tea farmers changed from engaging in tea cultivation to tea management, which
reduced the population density engaged in tea cultivation, weakened the impact of human
activities on tea gardens, and reduced the negative inhibitory effect areas (Figure 6).
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4. Discussion

(1) Impact of the land use type on the CES

Land use is the most important factor that directly affects ecosystem services. With
the development of the tea industry economy and rise of the tea market, the regional
land use type and distribution pattern with tea as the leading industry has produced
significant changes. The disorderly expansion of tea plantations in the study area, high-
altitude forest land, low-altitude grassland, and arable land are gradually encroached upon
by tea plantations, which affects ecosystem services, such as the water connotation, soil
conservation, and carbon sequestration in the study area, causing a series of ecological
problems such as soil erosion, reduced vegetation cover, reduced biodiversity, and habitat
fragmentation, triggering ecological security. Therefore, it is important to explore the
changes in ecosystem services caused by tea plantation expansion to reveal the spatial
and temporal evolution patterns of the CES and the main driving factors. The research
results provide decision aids for enhancing a regional CES and formulating ecological
protection policies.

(2) CES drive mechanism

The CES is mainly influenced by the positive promotion of the NDVI and the negative
inhibition of the tea garden area. However, the ecosystem service is a whole, and the
influence on its overall function is a comprehensive result of multiple factors. The increase
or decrease in precipitation directly affects the growth of plants, thus affecting the NDVI,
and the level of slope determines the ease of land use development, which determines the
reclamation of tea plantations and affects the vegetation cover, thus affecting the ecosystem
service function. Meanwhile, related studies showed that the main driving factors affecting
the suitability of tea planting and ecosystem service functions in specialized tea areas are
the altitude and slope [61,62]. This was mainly due to the effect of the elevation and slope
on the microclimate of the area, which in turn improves the temperature and precipitation.
The NDVI as the response of vegetation to geographic and climatic drivers was the most
dominant driver in this study, which laterally illustrated the influence of the geographic
environment and climate on the CES. The information construction of tea plantations and
the rise of tea markets will not only affect the number of tea farmers but will also adjust the
structure of the tea-related population and change the impact of human activities on tea
plantations. Therefore, in the exploration of the driving factors of the CES, the correlation
between the influencing factors was comprehensively analyzed, which in turn provided
the basis for enhancing the CES performance.

(3) Shortcomings and Prospects

There were some shortcomings in this study in terms of the selection of the CES drivers.
Although two drivers, the tea garden area and the tea-related population density, were inno-
vatively proposed in conjunction with the actual situation of the study area, the mechanism
of the policy influence on the spatial variation in the CES was not considered. The driving
mechanism of the policy on the spatial variation in the CES should be considered in future
studies. The InVEST model was based on a set of simplified assumptions and equations for
conducting ecosystem service assessments on a large scale. This simplification may lead
to some discrepancies between the model’s results and reality. In addition, the interaction
between the tea agro-ecosystem service functions and the surrounding areas should be
further explored in future studies.

5. Conclusions

In this study, the InVEST model was applied to assess the ecosystem services in the
study area from 2010 to 2020. The mean CES of the study area from 2010 to 2020 was
measured and its spatial and temporal evolution characteristics were analyzed. The OLS
and GWR models were used to explore the drivers of the spatial and temporal evolution of
the CES and the conclusions are as follows.



Sustainability 2023, 15, 10153 13 of 16

(1) During the 10 years in the study area, both the water production and average water
production depth showed a trend of increasing before decreasing, and the overall water
production (average water production depth) decreased by 7.8599 × 108 m3 (263.1758 mm).
The soil retention continued to decrease by 1.9158 × 108 t/ha, and the carbon storage
showed a trend of decreasing before increasing, with an increase of 0.406 × 107 t. The
mean value of the habitat quality showed a trend of decreasing and then increasing, from
0.6502 to 0.6919, and the mean value of the NPP showed a gradual increase, with a total
increase of 79.9810 gc·m−2.

(2) The mean value of the CES in the study area from 2010 to 2020 showed a trend
of increasing and then decreasing, with an overall increasing trend from 0.5398 to 0.5456.
The proportion of the high-value area to the lower-value area in the study area during
the 10-year period showed a trend of increasing and then decreasing, and the proportion
of the higher-value area to the lower-value area showed a trend of decreasing and then
increasing. The changes in the spatial characteristics of the CES maintained the largest area
of stable grade. The area of both the improved and degraded areas showed a continuous
increasing trend, and the area of the improved areas was larger than that of degraded areas.
The improved areas were mainly concentrated in the west, southwest, and northeast of the
study area, and the degraded areas were mainly distributed in the southeast and northwest.

(3) The OLS correlation coefficients indicated that the precipitation, NDVI, DEM, and
slope positively contributed to the CES. The correlation coefficients of the precipitation,
NDVI, and slope decreased and the positive contribution weakened, while the correlation
coefficients of the DEM and slope increased and the positive contribution increased. How-
ever, the correlation coefficient values of the precipitation, NDVI, and slope decreased and
the positive contribution weakened, while the correlation coefficient values of the DEM and
slope increased. The negative inhibition effect of the tea plantation area and the tea-related
population density weakened over the study period.

(4) The main drivers of the spatial variation in the CES were the NDVI (0.8986–0.6913)
and the tea plantation area (−0.4911–−0.3228). The high values of the positive contribution
of the NDVI were mainly concentrated in the western and southern regions, showing an
increasing and then decreasing trend, and indicated that the positive contribution of the
NDVI to the CES weakened. The high value of the negative inhibition of the tea garden
area was mainly distributed in the northern and southern regions, showing a decreas-
ing trend and indicated that the negative inhibition effect of the tea garden area on the
CES weakened.
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