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Abstract: Predictable logistics disruptions due to scheduled lockdowns for large-scale events such as
the Olympic Games may not only reduce supply chain profits, but also increase carbon emissions. To
help solve these problems, an emergency transit policy to be applied to the logistics path is an effective
solution. However, optimal inventory control is needed. This paper proposes an optimization model
to control ordering and inventory policies for decentralized and centralized supply chains. The model
considers the logistics path damping coefficient, the logistics path acceleration coefficient, and the
vehicle loading capacity ratio in emergency transit. Our major findings include the following. First,
supply chain profits under centralization are confirmed to be higher than under decentralization.
Second, a price discount mechanism can achieve supply chain coordination. Third, the manufacturers
in a centralized supply chain are more inclined to choose a logistics path with a high acceleration
coefficient in order to let their cargo arrive quickly and to reduce the impact of the lead time
demand fluctuations. Finally, the implications of our research results for carbon emission reductions
are discussed.

Keywords: logistics path damping coefficient; logistics path acceleration coefficient; optimal inventory
control; supply chain coordination; carbon emission

1. Introduction

In supply chains, logistics are a dominant source of carbon emissions worldwide.
In particular, carbon emissions during logistics disruptions can increase by about 20%
compared to normal operation conditions. Since the COVID-19 pandemic started in 2020,
due to lockdowns and traffic regulations, there have been a number of logistics disruptions
worldwide, and in many supply chains such as healthcare and food supply chains [1,2].
This led to shortages of high-demand products such as food, testing kits, masks, and
medical gloves, and shutdowns of non-essential businesses worldwide [3,4]. A recovery
and resiliency plan should be considered for supply-side disruptions to these supply chains’
transportation and supply networks. Moreover, large-scale events such as the summer G20
and the Olympic Games also lead to planned disruption risks to logistics routes [5]. For all
these predictable variabilities in demand and supply, it is critical to know how to mitigate
operational disruption risks and coordinate the supply chain.

To deal with these predictable supply disruption risks, firms often modify or recon-
struct their logistics routes. For example, they may set up an emergency transit facility
on the outskirts of the affected city. Then, products are transported to the transit facility
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using large-tonnage vehicles without local plates, then further transported with local small-
tonnage vehicles, which are permitted to travel via permissible logistics routes. In this way,
the necessary products can be delivered on time. However, reconstructed logistics routes
may still face the risk of congestion or even closure due to traffic control. This can lead
to overstocking in the emergency transit facility, and can negatively affect the lead time
of a manufacturer and its suppliers. To the best of our knowledge, the existing literature
usually omits potential rerouting strategies for these predictable supply disruption risks,
which are not uncommon in business practices. Our study fills this research gap.

To model these situations, we employ a damping coefficient of logistics routes to
describe the possible adverse effects of route congestion or closure on the ordering lead
time of a manufacturer and its suppliers’ logistics decisions. On the other hand, as traffic
control is an expected disruption risk, the government may simultaneously establish
express logistics routes for authorized vehicles, for which a firm has to pay extra. Therefore,
we also employ an expediting coefficient to describe these potential positive effects of traffic
regulation.

When a manufacturer’s ordering lead time changes, its ordering quantity and ordering
point (i.e., the suppliers to order from) must be re-optimized to better satisfy customers’
demands. On the other hand, when a supplier adopts the strategy of an emergency transit
facility to deal with traffic control to reduce logistics costs, it needs to optimize the vehicle
capacity ratio, i.e., the ratio between the tonnage capacity of the supplier’s vehicle and that
of the manufacturer’s vehicle. Therefore, in this paper, we aim to answer the following main
questions: in the presence of predictable logistics route disruption risk, what is the optimal
ordering policy of the manufacturer in a supply chain? What is the optimal vehicle capacity
ratio? How do supply chain centralization and decentralization affect these decisions?
How should a centralized supply chain be coordinated to achieve optimal performance for
the whole chain?

To answer the above questions, this study develops a mathematical model, considering
logistics route disruption risks. An optimization model to control inventory policies,
considering the logistics path choice (the logistics path damping coefficient and acceleration
coefficient) and vehicle loading capacity ratio in the emergency transit options, is built to
optimize inventory control for both decentralized and centralized supply chains. Using
numerical examples, this study demonstrates how the model can optimize the recovery plan
for tackling such supply disruptions. Furthermore, it shows how profits in a centralized
supply chain are higher than in a decentralized one, and demonstrates the optimal price
discount mechanism needed to coordinate the behavior of suppliers and buyers.

The main contributions of this study can be summarized as follows. First, we develop
a mathematical model for logistics recovery, considering the impact of predictable logistics
route disruptions from some major events such as the COVID-19 pandemic and the Olympic
Games. Second, unlike earlier studies, the model considers the scenario in which supply
could be disrupted due to logistics route congestion or closure. In the model, the logistics
delivery lead time is variable, and is affected by the logistics route damping or expediting
coefficient. Third, considering two scenarios of logistics route reconstruction under both
decentralized and centralized supply chains, the optimal order quantity, reorder point,
logistics route expediting coefficient, and vehicle capacity ratio at the emergency transit
point are derived. Fourth, we focus on how to coordinate the supply chain to achieve
optimal performance, analyze the model’s properties, and provide managerial implications.

The remainder of this paper is organized as follows. Section 2 reviews the supply
disruption literature focusing on production, inventory, and logistics issues. Section 3
describes the problem and presents models for both decentralized and centralized supply
chains. The results of the model are exemplified using numerical examples in Section 4.
The managerial implications for practitioners and the contributions of the study’s findings
are also discussed in Section 4. This paper is concluded by summarizing the main insights
and outlining an agenda for future research in Section 5.
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2. Literature Review

In this paper, our research focuses on redesigning logistics routes in the context of
predictable disruptions due to scheduled large-scale events such as the summer Olympic
Games. It also deals with production and inventory issues faced by manufacturers. Hence,
in this literature review, we will first review studies on production and inventory issues
related to disruptions, and then logistics route redesign issues.

2.1. Production and Inventory Issues

Supply chain (SC) risks are multifaceted, and can be classified into operational and
disruption risks [6–15]. While operational risks are concerned with day-to-day disturbances
in the SC operations, such as lead time and demand fluctuations, disruption risks belong
to low-frequency, high-impact events [13,14]. To deal with disruption risks, many studies
have been carried out on building and analyzing production recovery models. To date,
employing mathematical programming tools, many studies have been carried out on
production and inventory issues under disruptions in a variety of domains, such as supplier
selection and order allocation [16], reverse supply chains [17], blood supply chains [18], and
fashion supply chains [19,20]. Besides, some studies have developed production recovery
models for managing transportation and scheduling disruptions [21,22]. For example,
backorder, buffer inventory, or safety stock may be used [23–27].

2.2. Logistics Route Redesign Issues

In cargo logistics, transport risk (or delivery reliability) is an essential service per-
formance measure, defined as the deviation of the actual arrival time from the planned
arrival time [28]. Neither earliness nor tardiness is desirable for customers and freight
forwarders. However, confronted with disruptive supply and congestion problems, there
should be a recovery plan to make supply resilient within its logistics network. On issues
related to transshipment and scheduling, most studies investigate multi-echelon inventory
control models (R, nQ) [29,30]. They assume demand mostly follows a Poisson distribution
in the scenarios of supply chain centralization and decentralization, and analyze how to
implement pricing to coordinate ordering quantities and reordering points to improve
customer service level. Lewis et al. [31] consider global supply chains facing port-of-entry
disruption risks. They investigate the potential operational and economic impact of the
temporary closure of ports of entry, focusing specifically on using supply chain inventory
as a risk mitigation strategy for a one supplier, one customer system in which goods are
transported through a port of entry subject to temporary closures. Closure likelihood and
duration are modeled using a completely observed, exogenous Markov chain. Order lead
times depend on the port of entry’s status, including potential congestion backlogs of
unprocessed work. An EOQ model with random disruption and partial order backlogs
and how they relate to logistics disruptions are examined in [32].

A few studies have shown how demand disruption impacts logistics service supply
chains [33,34]. They compare the decentralized decision-making, centralized decision-
making, and centralized decision-making of the suppliers’ alliance only. Three optimization
models used to manage operations in intermodal logistics networks, from routine schedul-
ing delays to recovery from major disruptions, are developed in [35]. Efficient transfer
coordination in intermodal logistics networks can reduce the freight dwell time at transfer
terminals where various routes interconnect, and reduce storage requirements at terminals.
The first model coordinated vehicle schedules and cargo transfers at intermodal freight
terminals, primarily by optimizing coordinated service frequencies and slack times. When
delay perturbations propagated within a logistics network that used schedule coordina-
tion, a second model determined whether each ready outbound vehicle should have been
dispatched immediately or held to wait for late incoming vehicles. Finally, a set of optimal
resilient actions was considered using the proposed third model during the post-disruption
phases, such as switching shipping modes and routes, renting other carriers’ capacities, re-
allocating local trucks, and prioritizing the order of shipments because of limited capacities.



Sustainability 2023, 15, 10093 4 of 20

Several scenarios to recover from disruptions, so as to increase the system performance
under supply and transportation disruptions, are considered in [36]. The simulation results
show that the best alternatives were chosen by finding a compromise or tradeoff between
the key performance indicators, specifically the service level and the cost of achieving the
goals. A bilevel optimization problem for determining the most critical depots in a vehicle
routing context is introduced in [37]. The problem is modeled as an attacker–defender
game (or Stackelberg game) from the perspective of an adversary agent (the attacker) who
aims to inflict maximum disruption on a routing network. They use the r-interdiction
selective multi-depot vehicle routing problem to describe this problem and optimize the
vehicle routes.

2.3. Knowledge Gap

Existing studies have made substantial contributions to managing severe disruptions
specific to a particular firm or its supply chain from a strategic perspective. However, in the
context of some predictable supply disruptions due to major events such as the COVID-19
pandemic and the Olympic Games, the existing literature has typically ignored rerouting
strategies for these predictable risks. More specifically, time-to-recover, time-to-survive
(e.g., out-of-service time, on-time delivery), the recovery level (e.g., service level, unful-
filled demand rate), and the profits lost during the recovery period have been extensively
employed to quantify the impact of supply chain disruptions (e.g., [5]). However, these
metrics are difficult to measure based on operational data. In practice, metrics such as the
logistics path damping coefficient, acceleration coefficient, and vehicle loading capacity
ratio in transit logistics are easier to measure for rerouting strategies for predictable supply
disruptions. As a matter of fact, they are implemented extensively by companies such as
Delphi (China) as a risk exposure index. To our knowledge, no studies have adopted these
metrics from an operational perspective; our study fills this gap as well.

3. Models of Centralized and Decentralized Supply Chains

In this paper, we study a two-echelon supply chain consisting of a manufacturer and
its raw material or part supplier, as illustrated in Figure 1. Generally, there are two potential
logistic strategies for the supply chain when it faces a predictable supply disruption from
large-scale events such as the Olympic Games. One strategy is the normal route, in which
the supplier delivers products to the manufacturer’s desired location, such as an assembly
plant or a warehouse. This strategy often results in severe road congestion. Moreover, this
strategy has been studied extensively in the literature to help minimize traffic congestion.
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The other strategy is to reroute the logistic channel by setting up a transit point near the
boundary between urban and suburbs when confronted with a predictable disruption. The
manufacturer in the city chooses the local vehicle (which may be licensed by government
regulation) to transport the cargo from the transit point to its facility site, and keeps the
nonlocal vehicle between the supplier and the transit point. This strategy is commonly
adopted by governments all over the world. For example, in London, the municipal
government only permits some licensed vehicles to enter the city, in order to protect the
environment. In this study, we focus on this strategy, in which an emergency transit point is
set up between the supplier and the manufacturer. In order to help firms minimize delivery
delays during these predictable supply disruptions, governments sometimes set up special
traffic routes (e.g., express logistic roadways) with major businesses to ensure municipal
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economic growth. Therefore, the manufacturer or the supplier should decide if setting
up an emergency transit point can decrease their delivery delay, and how they should
choose optimal express logistics. In the meantime, adding an emergency transit point
means increasing supply chain costs (e.g., through warehouse setup costs and inventory
costs). Moreover, express logistic roadways may not be free.

We set up our models and assumptions as follows.

(1) Suppose the manufacturer faces a demand rate of X ∼ N
(
µ, σ2) from its customers,

and implements an order policy of (r, Q1). That is, when the inventory level drops be-
low r, it places an order of Q1 to the supplier. Additionally, suppose X is Independent
and Identically Distributed at different times.

(2) Suppose the manufacturer and the supplier choose a strategy to set up an emergency
transit point at the boundary between an urban and suburban area, and change their
transportation model and capacity. For example, the manufacturer is scheduled to
pick up at the emergency transit point with a full truck load vehicle with a capacity
Q1. The manufacturer must determine the optimal order policy (r, Q1) to minimize
the supply chain cost, include the inventory cost and utilization cost of express logistic
routes.

(3) Suppose the supplier chooses the capacity Q2 ≥ Q1 for a full truck load vehicle to
ship the raw materials or products to the transit point.Q2 −Q1 is the inventory at
the transit point, which is managed by the supplier. When the supplier schedules its
shipping, it should consider the relevant inventory cost and set up an appropriate
ratio n to match its truck load capacity Q2 with the manufacturer’s order Q1. We
define this ratio n as the tonnage capacity ratio between the supplier’s vehicle capacity
in full truck load and the manufacturer’s vehicle capacity in full truck load. Here, we
have Q2 = nQ1. The supplier’s question is to determine the optimal quantity Q2 to
deliver to the emergency transit point or the optimal n.

(4) In the meantime, the manufacturer should determine the proper lead time to satisfy
its customer’s requirements. A key factor is the time taken for materials or products
to move from the emergency transit point to the manufacturer’s site. We denote this
L. When considering traffic regulations of municipal governments, it may be modeled
as L = (1 + τ)L0/(1 + bα), where τ is the logistics route damping coefficient used to
describe the degree of normal municipal congestion. If τ = 0, there is no municipal
congestion; if τ = 1, there is full disruption. L0 is the regular time taken for materials
or products to move from supplier to manufacturer with no traffic regulation. b is a
constant. α is the expediting coefficient, used to measure the degree of decongestion
on express logistic roadways. When α = 0, the express logistic roadway has the
same congestion as a normal route; when α = 1, the express logistic roadway has
less congestion, and with the help of traffic regulation, the material flow time is
restored to L = (1 + τ)L0/(1 + b). However, to use the express routes, there is a cost
of w = (1 + α)2w0, where w0 is the normal transportation cost. A larger α means
stronger traffic control and a higher transportation cost. Obviously, the lead time L
decreases in α. Thus, when the manufacturer determines the proper lead time, it can
decide whether or not to use the express logistic roadways and their types (i.e., α).

(5) Assuming the customer’s demand at the lead time is XL ∼ N
(
µL, σ2

L
)
, we have

µL = µL, σL =
√

Lσ. Suppose the standard distribution function for XL is F(x), and
f(x) is the cumulative distribution function (CDF) and probability density function
(PDF), with mean µL. Thus, the reorder point r = µL + SS = µL + k

√
Lσ. Let CSL

be the desired cycle service level for the manufacturer to service its customer; we
can then denote the safety coefficient k = F−1

S (CSL), where F−1
S (CSL) is a standard

inverse function of standard probability density function for N(0, 1) at CSL. Thus, the
safety inventory ss for the manufacturer is ss = k

√
Lσ.

(6) If there is a shortage, the expected shortage for every ordering cycle is E(X− r)+ =∫ ∞
r (x− r)f(x)dx = σ

√
LΨ(k).Ψ(k) = ϕ(k)− k[1−Φ(k)] represents the loss func-

tion for k = (r− µL)/
√

Lσ. ϕ(k) and Φ(k) are the PDF and CDF of the standardized
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normal distribution. Let CSL denote the desired cycle service level for the manufac-
turer to service its customer. We thus have the safety coefficient k = Φ−1(CSL).

For clarity, Table 1 summarizes the notations used in this paper.

Table 1. Notation of parameters and decision variables.

Variables Definitions

Parameters

µ
The expected value of demand rate from the manufacturer’s

customers

σ
The standard deviation of the demand rate for the

manufacturer’s customers

D The cumulative demand over an observation period (e.g., one
year or before disruption recovery)

Q1 The manufacturer’s vehicle load capacity in full truck load.

L0
The normal time for materials or products to move from

supplier to manufacturer with no traffic regulation

b A constant coefficient

τ
The logistics route damping coefficient to describe the degree

of normal municipal congestion

w0
The normal transportation cost from the transit point to the

manufacturer

w
The cost for the manufacturer to pay the government when

using the express routes, w = (1 + α)2w0

sb The manufacturer’s unit selling price

sc The supplier’s unit selling price

p The opportunity cost due to shortage

CSL The desired cycle service level for the manufacturer to service
its customer

Ab The manufacturer’s ordering cost

hb The manufacturer’s unit holding cost

Cs The supplier’s unit production cost

As The supplier’s ordering cost at the emergency transit facility

hs Holding cost at the emergency transit facility

Decision
Variables

r The manufacturer’s reorder point

Q1 The manufacturer’s order quantity during the lead time

n
The tonnage capacity ratio between the supplier’s vehicle
capacity in full truck load and the manufacturer’s vehicle

capacity in full truck load

α The type of the express logistic roadways

In summary, the manufacturer and supplier should determine the optimal order
policies

(
r, Q*

1

)
, the optimal number n*, and the optimal logistics routing type α*. Their

objectives are to minimize the supply chain costs, including the increasing inventory costs
and utilization cost of express logistic routes, etc. Subsequently, they may obtain their
optimal material flow time (or lead time) L*, safety stock ss = k

√
Lσ, unit shipping cost

w for using express, w = (1 + α)2w0

)
and the capacity (or quantity) Q*

2 of a full truck
load vehicle for shipping the raw materials or products to the transit point. These decision
variables are discussed in two decision-making structures (a decentralized scenario and
centralized scenario).
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3.1. Decentralized Supply Chain

With a decentralized supply chain, the supplier and the manufacturer aim to maximize
their own profits. They decide on their own ordering, transportation, and inventory
decisions. Specifically, they choose the optimal logistics route expediting coefficient α*,
ordering quantity Q*

1, and vehicle capacity ratio n* at the emergency transit facility.

3.1.1. The Manufacturer’s Decisions

Without considering the express logistics route, the manufacturer’s profit πb under
traffic regulation is

πb = (sb − sc)D−Ab
D
Q1
− hb

(
Q1
2

+ ss
)
− p

D
Q1

E(X− r)+ − Dw0

Q1
(1)

This consists of revenue (sb − sc)D with demand D at an observation period, the
manufacturer’s fixed ordering cost, the inventory holding cost, the expected shortage cost,
and the transportation cost.

To satisfy the customer’s lead time requirement, the manufacturer should guarantee
the material flow time L = (1 + τ)L0/(1 + bα) to meet the requirement, due to the logistics
disruption. Setting up an emergency transit point is one effective solution to the supplier’s
delivery problem. In the meantime, utilizing an express logistics route or choosing the
appropriate type α of express logistic roadway is another effective policy. However, this
brings about the extra cost w compared with normal w0. Where w = (1 + α)2w0, 0 ≤ α ≤ 1
and 0 ≤ τ ≤ 1. Thus, the manufacturer’s profit under traffic regulation is

πb = (sb − sc)D−Ab
D
Q1
− hb

(
Q1
2

+ ss
)
− p

D
Q1

E(X− r)+ − Dw
Q1

(2)

In (2), Dw/Q1 is the cost for the manufacturer to choose the express logistic roadways;
ss and E(X− r)+ are also changed, and related to the L or α. The other is familiar with
(1). When α = 0, w = w0 and L = (1 + τ)L0, the manufacturer chooses to transport using
routes without vehicle regulations. The state in (2) returns to the state in (1). To describe
these changes, we may rewrite the (2):

πb = (sb − sc)D−Ab
D
Q1
− hb

Q1
2

+ kσ

√
(1 + τ)L0

1 + bα

− p
D
Q1

σ

√
(1 + τ)L0

1 + bα
Ψ(k)− Dw0

Q1
(1 + α)2 (3)

In (3), Ψ(k) = ϕ(k)− k[1−Φ(k)] represents the loss function for k = (r− µL)/
√

Lσ,
0 < Ψ(k) < 0.5. To derive the optimal ordering policies

(
r*, Q*

1

)
and the appropriate type

α*, the manufacturer should maximize the objective function on the decision variables Q1,
α and r. To this end, we have the first conditions, as follows:

∂πb
∂Q1

= Ab
D
Q2

1
− hb

Q1
2

+ p
D
Q2

1
σ

√
(1 + τ)L0

1 + bα
Ψ(k) +

Dw0

Q2
1
(1 + α)2 (4)

∂πb
∂α

=
bσ(hbk + pDΨ(k))

√
(1 + τ)L0

2(1 + bα)3/2 − 2Dw0

Q1
(1 + α) (5)

where Ψ′(k) = ϕ′(k) + kϕ(k) + Φ(k)− 1. Similarly, we also have ∂2πb
∂Q2

1
, ∂2πb

∂α2 and ∂2πb
∂k2 , as

follows:
∂2πb

∂Q2
1
= −D

(1 + α)2w0 + Ab + p + σ

√
(1 + τ)l0

1 + bα
Ψ(k)

Q−3
1 (6)
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∂2πb
∂α2 = Q−1

1

[
−3b2σ

√
(1 + τ)l0(Q1hbk + DpΨ(k))(1 + bα)−

5
2 − 2Dw0

]
(7)

For simplicity, suppose k = Φ−1(CSL) is known. The manufacturer sets up an optimal
CSL* in advance, according to customers’ requirements. Therefore, we have computed the

value of k. We use Matlab to simulate the actual data, and find that ∂2πb
∂Q2

1
< 0 and ∂2πb

∂α2 < 0.

These results mean that πb is a convex function in(Q1, α). Setting the first conditions (4)–(6)
equal to zero, we have the following proposition:

Proposition 1. Under decentralization and logistics route reconstruction, the supplier’s optimal
order quantity, reorder point, and logistics route expediting coefficient maximize the following profit
function:

The optimal order quantity Q*
1 and reorder point r* are

Q*
1 =

√√√√√ 1
hb

2D

(1 + α)2w0 + Ab + pσ

√
(1 + τ)L0

1 + bα
Ψ(k)

 (8)

r* = µ
(1 + τ)L0

1 + bα
+ kσ

√
(1 + τ)L0

1 + bα* (9)

The optimal logistics route expediting coefficient can be obtained by solving

bσ
√

1 + τL0[Q1hbk + Dpψ(k)](1 + bα)−
3
2 − 4D(1 + α)w0 = 0 (10)

Apparently, we still cannot obtain their closed-form solutions. Thus, we propose an iterative
algorithm, as detailed below.

Step 1: Set α = 0.
Step 2: Obtain Q1 according to (9).
Step 3: Substitute Q1 into (8) and obtain α, and ensure 0 ≤ α ≤ 1. If not, abort. If the optimal

α is not obtained, increase the step size by 0.001 and repeat.
Step 4: Substitute the α obtained from Step 3 into (8), and obtain Q1.
Step 5: If the two consecutive Q1 obtained are similar, go to Step 6. If not, go back to Step 2.
Step 6: Use the Q1 and α obtained to obtain the optimal inventory control strategy

(
Q*

1, r*
)

and the corresponding maximal profit of the manufacturer.

3.1.2. The Supplier

After the manufacturer’s inventory control decisions, the supplier will make decisions
to maximize its own profit. At the emergency transit point, the supplier ships Q2 inbound,
but delivers the quantity Q1 outbound. Hence, Q2 −Q1 is temporarily stored at the transit
at lead time LI. Therefore, the supplier’s decision on Q2 depends on the manufacturer’s Q1
and the tonnage capacity ratio n. That is Q2 = nQ1. In multi-echelon inventory control,
when the upper echelon’s quantity is an integer number of multiples of the lower echelon’s,
the upper echelon’s inventory cost can be minimized. Hence, the supplier’s total profit is

πs = (sc − cs)D−As
D

nQ1
− hs

(n− 1)Q1
2

(11)

where the first item represents the supplier’s revenue over an observation period (e.g.,
one year, or before disruption recovery). The second is the supplier’s order dealing cost,
including the transportation cost during lead time LI. The third is the inventory holding
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cost at the transit point. As (7) is a concave function of n, there exists an optimal n, which
can be obtained by solving ∂πb/∂Q1 = 0. The solution is

n* =

√
2DAs

hsQ2
1

(12)

Make n0 an integer and [ ] the rounding operator. Then, n* is between [n0] and [n0] + 1.
Hence, the supply chain’s total profit consists of the optimal profit of the manufacturer
πb

(
Q*

1, r*
)

and the optimal profit of the supplier πs
(
n*).

πb,s

(
Q1

*, α*, n*
)
= πb

(
Q*

1, r*
)
+ πs

(
n*
)

(13)

In a decentralized decision-making structure, the supply chain’s profits comprise
the optimal manufacturer and supplier profits. Due to objective conflict and information
asymmetry, there is probably a double marginalization effect. Thus, we analyze the scenario
of a centralized structure as a benchmark.

3.2. Centralized Supply Chain

Under a centralized supply chain, the manufacturer orders QI (Q2 = nQI) and chooses
the express logistics route with expediting coefficient αI. Thus, that supply chain disruption
risk can be reduced. The supplier’s transportation cost is wI = (1 + αI)

2w0. Hence, the
supplier’s total profit is

πI = (sb − cs)D−Ab
D
QI
−As

D
nQI
− hb

(
QI
2

+ ss
)
− hs

(nI − 1)QI
2

− p
D
QI

E(X− rI)
+ − DwI

QI
(14)

where rI is the reorder point of the supply chain for the centralized decision. LI =
(1+τ)L0

1+bαI

and wI = (1 + αI)
2w0 denote the lead time under the centralized supply chain and the

manufacturer’s transportation cost, respectively. w0 is the same as in the decentralized
scenario. The first item represents the revenue of the whole supply chain. The second is the
manufacturer’s fixed ordering cost. The third is the supplier’s cost for transportation to
the transit point and the related dealing cost, except for inventory costs. The fourth is the
manufacturer’s inventory holding cost. The fifth is the inventory holding cost at transit,
taken by the supplier. The sixth is the expected shortage cost to the manufacturer. Finally,
the last is the cost for the manufacturer to transport the material from the transit point
to its site, and the extra cost of using the express logistics route of type αI. Under these
conditions, with wI = (1 + αI)

2w0, LI = (1 + τ)L0/(1 + bαI) and ss = kσ
√

LI, we may
rewrite (16) into the following supply chain profit function:

πI = (sb − cs)D− D
QI

[
Ab +

As
nI

+ pσ
√

(1+τ)L0
1+bαI

Ψ(k) + (1 + αI)
2w0

]
− QI

2 [hb + (nI − 1)hs]

−hbkσ
√

(1+τ)L0
1+bαI

(15)

Suppose the manufacturer implements the same safety stock; its safety stock is affected
only by the LI and the CSL does not change. Thus, E(X− r)+ =

∫ ∞
r (x− r)f(x)dx =

σ
√

LIΨ(k), where Ψ(k) = ϕ(k)− k[1−Φ(k)],k = Φ−1(CSL), k = (rI − µLI)/
√

LIσ, and
Ψ(k) > 0. We have the following first condition for (17):

∂πI

∂QI
=

D
Q2

I

Ab +
As

nI
+ pσ

√
(1 + τ)L0

1 + bαI
Ψ(k) + (1 + αI)

2w0

− 1
2
[hb + (nI − 1)hs] (16)
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∂πI

∂α
=

bσ(pDΨ(k) + hbkQI)
√
(1 + τ)L0

2QI(1 + bα)3/2 − 2Dw0

QI
(1 + α) (17)

∂πI

∂nI
=

AsD
QIn2

I
− hsQI

2
(18)

Similarly, we also have the second condition for the profit:

∂2πI

∂Q2
I
= − D

Q3
I

(1 + αI)
2w0 + Ab + p + σ

√
(1 + τ)L0

1 + bαI
Ψ(k)

 (19)

∂2πI

∂α2
I

= − 1
4QI

[
3b2σ

√
(1 + τ)l0(QIhbk + DpΨ(k))(1 + bαI)

− 5
2 + 2Dw0

]
(20)

∂2πI

∂n2
I

= −2AsD
QIn3

I
(21)

Furthermore, 0 ≤ αI ≤ 1, 0 ≤ τ ≤ 1, and 0 < Ψ(k) < 0.5. We also confirm that
∂2πI
∂Q2

I
< 0, ∂2πI

∂n2
I
< 0, ∂2πI

∂QI ∂nI
< 0, ∂2πI

∂α2
I
< 0. Hence, we can obtain the optimal solutions by

setting the first derivatives to 0. Then, we have the following proposition.

Proposition 2. Under centralization, the supplier chain’s optimal order quantity Q*
I and logistics

route expediting coefficient are given as follows:

Q*
I =

√√√√√2D

nIAb + As + nIpσ

√
(1 + τ)L0

1 + bαI
Ψ(k) + nI(1 + αI)

2w0

/nI[hb + (nI − 1)hs] (22)

The optimal vehicle capacity ratio at the emergency transit point is

n*
I =

√
2DAs

hsQ2
I

(23)

The optimal logistics route expediting coefficient α*
I solves the following equation:

bσ
√

1 + τL0[QIhbk + DpΨ(k)]
(

1 + bαI
*
)− 3

2 − 4D
(

1 + αI
*
)

w0 = 0 (24)

where 0 ≤ αI ≤ 1 and 0 < Ψ(k) < 0.5. Then, (24) can be solved for the optimal α*
I .

Furthermore, we can use the following iterative algorithm to obtain the optimal Q*
I , αI

*, and
n*

I .
Step 1: Initialize n = 1.
Step 2: Using a similar iterative algorithm, obtain QI and αI, and the supply chain’s total

profit based on (12).
Step 3: Calculate n0 using the QI from Step 2. If nI < n0 + 1, make nI = nI + 1 and go to

Step 2. Otherwise, go to Step 4.
Step 4: Given nI, find the maximal supply chain profit and the associated optimal

(
Q*

I , α*
I , n*

I

)
,

as well as the manufacturer’s optimal inventory policy
(

Q*
I , r*

I

)
.

Under centralization, the supply chain’s total profit is

πI

(
Q*

I , r*
I , n*

I

)
= πb

(
Q*

I , r*
I

)
+ πs

(
n*

I

)
(25)
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Comparing (13) and (25), we can see that the supply chain profit is higher under centralization
than under decentralization. This is because decentralization leads the manufacturer and the supplier
to maximize their own profits, which results in the double marginalization phenomenon.

3.3. Supply Chain Coordination

To achieve supply chain coordination, we propose a price discount contract. Specif-
ically, the supplier will set the selling price to be δcsc, where δc is the price discount
parameter, and 0 ≤ δc < 1. This is to help to move the optimal decisions

(
Q*

1, α*
)

under

decentralization to the optimal decisions
(

Q*
I , α*

I

)
under centralization. Hence, we have

sc =

{
sc Q*

1 < Q*
I , α* 6= α*

I
(1− δc)sc Q*

1 ≥ Q*
I , α* = α*

I
(26)

Suppose Q1 is adjusted by a coefficient δQ, and the logistics route expediting coefficient
is adjusted by δα. To achieve the optimal profit level under the centralized case, we need
to have δQ = Q*

I/Q*
1 and δα = α*

I/α*. The manufacturer will accept the price discount
contract only when

πb

(
δcsc, δQQ*

1, δαα*
)
≥ πb

(
sc, Q*

1, α*
)

(27)

Based on (2) and (27), the manufacturer’s added profit due to the price discount
contract is

∆πb = δc1scD + Ab
D

Q*
1

(
1− 1

δQ

)
+ hb

(1−δQ)Q*
1

2

+ w0D
Q*

1δQ

[
δQ(1 + bα)2 − (1 + bαδα)

2
]

+ pσΨ(k)D
Q*

1δQ

[
δQ

√
(1+τ)L0

1+bα −
√

(1+τ)L0
1+δαbα

] (28)

Choosing the appropriate δc1, we can obtain ∆πb ≥ 0. On the other hand, the supplier
will accept the price discount contract only if

πs

(
δcsc, δnn*

)
≥ πs

(
sc, n*

)
(29)

Based on (11) and (29), the supplier’s additional profit from the price discount con-
tract is

∆πS = (δc2 − 1)scD + AS
D

n*Q*
1

(
1− 1

δQδn

)
+

hsQ*
1[n*(1−δQδn)−(1−δQ)]

2

(30)

Similarly, we can obtain ∆πs ≥ 0 by choosing an appropriate δc2. Based on our
analysis so far, only when δc2 ≤ δc ≤ δc1 will both the manufacturer and the supplier be
willing to adopt the price discount contract and maximize the total profit of the supply
chain. Consequently, the manufacturer’s order quantity changes from Q*

1 to Q*
I , the logistics

route expediting coefficient changes from α* to α*
I , and the supplier’s selling price changes

from sc to δcsc. In general, a lower δc means a lower profit for the supplier, but a higher
profit for the manufacturer. The final choice of δc will depend on the bargaining power of
the two firms. Next, we conduct numerical examples to illustrate our analytical results and
obtain more managerial insights.

4. Numerical Experiments
4.1. For the Decentralized Decision Structure

We set the parameters as follows: lead time demand D = 2000 units/week, µ = 4
units/week, σ = 3 units/week, k = 1, hb = 2/unit, p = 10/unit, hs = 1.2/unit, τ = 1, L0 = 10 h,
w0 = 2/unit, Ab = 30/unit, As = 40/unit, Sb = 20/unit, ss = 10 unit, cS = 5/unit, and b = 0.7.
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We simulated all the above scenarios and input all parameters into the models above. All
these simulations resulted in a sensitivity analysis, as follows.

4.1.1. The Impact of Inventory Holding Cost hb

When changing the inventory holding cost hb in the arrangement of (1, 8), (take the
proportion from 5% to 40% of the sales price, but fixing the other parameters) we have the
results for the decision variables in the scenario of a decentralized supply chain, as shown
in Table 2.

Table 2. The impact of hb on (Q∗1 , r∗), α∗, n∗, πb and πs.

hb Q*
1 α* r* n* πb πs

1 425 0.2 331 1 19,559 9811
1.5 347 0.22 326 1 19,456 9769
2 301 0.25 322 2 19,368 9687

2.5 269 0.27 319 2 19,289 9690
3 246 0.28 316 2 19,218 9689

3.5 228 0.3 312 2 19,151 9687
4 213 0.31 310 2 19,088 9684
5 191 0.34 306 2 18,973 9675
6 174 0.36 302 3 18,867 9637
7 161 0.38 299 3 18,769 9641
8 150 0.4 296 3 18,676 9642

We may find the optimal profits of the manufacturer and the supplier vary with the
inventory holding cost hb, but the variability is not high. On the contrary, the impacts of
the inventory holding cost hb on the manufacturer’s optimal

(
Q*

1, r*
)

, the type of express

roadway α*, and the tonnage capacity ratio n* are high, as shown in Figures 2 and 3.
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∗ , 𝒓∗). Figure 2. The impact of hb on the optimal order policy

(
Q*

1, r*
)

.

In Figure 2, we may find that the manufacturer’s optimal
(

Q*
1, r*

)
decreases with

its inventory holding cost. This shows that the manufacturer is reluctant to order more
quantity, and holds too much safety inventory when faced with predictable supply chain
disruptions.
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Figure 3. The impact of hb on (a∗, n∗).

In Figure 3, the optimal tonnage capacity ratio n* increases in intervals (1.5, 2) and
(5, 6) of hb. This means the supplier should avoid these ranges when choosing its n* policy.
The cost of the optimal type of express roadway α* increases stably with hb. All these results
show that the manufacturer prefers to choose the express roadway to keep safety inventory
in the presence of predictable logistics disruptions by decreasing the delivery lead time.
The supplier prefers to optimize the tonnage capacity ratio to support the processes of
one-time shipping and multiple deliveries to the transit point.

4.1.2. The Impacts of Delivery Cost As and Ordering Cost Ab

We also study the impact of delivery cost As (mainly the transportation cost) from
the supplier, and the ordering cost Ab on the manufacturer. We find that Ab, but not As,
impacts these decision variables significantly, as shown in Figures 4 and 5.
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Figure 4. The impact of Ab on the optimal order policy
(

Q*
1, r*

)
.

In Figure 4, the optimal order policy Q*
1 increases with Ab, but r* changes little. This

is because the manufacturer wants to keep the ordering cost Ab unchanged by increasing
the order quantity, when it should pay the extra fee for utilization of the express roadway.
The reorder point r* chiefly depends on the the desired cycle service level (CSL) or safety
coefficient k.
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In Figure 5, α* changes little with Ab. This is because the choice of α* depends on
the fees incurred by government traffic regulations. n* varies in intervals of (25, 35) with
increasing Ab. That is to say, when Ab is more than 30, Q2 −Q1 decreases with Ab. The
manufacturer is thus inclined to order more; this is consistent with Figure 4.

4.1.3. The Impact of Demand Uncertainty σ

When the demand uncertainty σ changes within the range of (0, 8), we may produce
the following table.

In Table 3, we can see that to deal with logistics disruption risk, as the standard
deviation of the lead time demand increases, the manufacturer’s optimal order quantity
increases and the optimal logistics route expediting coefficient α* increases, but the optimal
reorder point r* decreases. This indicates that in the presence of logistics disruption risk,
the supply chain’s optimal strategy is not to increase safety stock but to reduce the lead
time by adopting express routes. Moreover, the optimal vehicle capacity ratio n* becomes
more insensitive as σ increases. Hence, the choice of vehicles depends on the ordering
quantity and delivery quantity of the supplier and the manufacturer, but is more or less
independent of the manufacturer’s demand uncertainty.

Table 3. The impacts of σ on
(

Q*
1, r*

)
, α*, n*, πb and πs.

σ Q*
1 α* r* n* πb πs

0 155 0 360 3 19,690 9641
1 181 0 365 2 19,627 9635
2 203 0 370 2 19,570 9681
3 224 0.2 330 2 19,520 9687
4 242 0.39 302 2 19,476 9689
5 259 0.55 283 2 19,436 9690
6 273 0.7 325 2 19,456 9769
7 286 0.83 258 2 19,365 9688
8 300 0.96 250 2 19,333 9686
9 310 1 250 2 19,303 9684

4.1.4. The Impact of Logistics Route Damping Coefficient τ

By changing the logistics route damping coefficient τ within the range of (0, 1), we
obtain the results in Table 4.
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Table 4. The impacts of τ on
(

Q*
1, r*

)
, α*, n*, τb and τs.

τ Q*
1 α* r* n* πb πs

0 197 0 129 2 19,585 9679
0.1 202 0 154 2 19,576 9680
0.2 205 0 179 2 19,567 9682
0.3 208 0.03 200 2 19,560 9683
0.4 211 0.06 220 2 19,553 9684
0.5 213 0.09 239 2 19,547 9685
0.6 216 0.11 258 2 19,541 9685
0.7 218 0.14 275 2 19,535 9685
0.8 220 0.16 295 2 19,530 9686
0.9 223 0.18 313 2 19,525 9687

In Table 4, the logistics route damping coefficient τ has a significant impact on the
optimal order strategy

(
r*, Q*

1

)
, a smaller impact on α*, πb and πs, and no impact on

n*. It also shows that the manufacturer’s optimal order quantity and reorder point
both increase in τ. To alleviate the logistics disruption risk, the manufacturer will or-
der more to increase the safety stock. This is because of the relationship between τ and L:
L = (1 + τ)L0/(1 + bα).

In Table 4, the greater τ is, the greater the degree of traffic congestion is, and the longer
the logistics time L is. This suggests that the manufacturer should choose the express
roadway to decrease the possible long lead time and maintain the same customer service
level (CSL). However, it costs more to use these express roadways.

4.2. For the Centralized Decision Structure
4.2.1. The Impact of Demand Uncertainty σ

When changing the demand uncertainty σ within the range of (1, 5) (taking the
proportion from 5% to 25% of the demand rate, but fixing the other parameters to be
the same as those in the decentralized structure), we may find the results of the decision
variables in the scenario of a decentralized supply chain, as shown in Table 5.

Table 5. The impact of σ on
(

Q*
1, r*

)
, α*, n*, τb and τs.

σ Q*
I α*

I r*
I n*

I πI
b πI

s

0 245 0 360 2 19,657 9689

1 286 0 365 1 19,588 9733

2 323 0.04 362 1 19,526 9752

3 356 0.28 317 1 19,472 9775

4 373 0.47 290 1 19,430 9785

5 384 0.63 272 1 19,395 9791

In Table 5, πI
b and πI

s are the profit for the manufacturer and the supplier, respectively,
under a centralized supply chain. The total profit is π*

I = πI
b + πI

s. The impact of σ on
π*

I and the total profit π*
D for a decentralized structure are shown in Figure 6. To better

understand the comparison between centralized and decentralized supply chains, we also
assess how σ impacts the optimal solutions of

(
Q*

1, Q*
I

)
,
(
α*, α*

I
)
,
(
n*, n*

I
)
, and

(
π*

D, π*
I
)
,

as shown in Figures 6–9.
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Figure 6 shows that the supply chain profits under both centralization and decentral-
ization

(
π*

D, π*
I
)

decrease in σ. Additionally, centralization leads to higher supply chain
profits.

Figure 7 shows that the optimal order quantity Q*
I is larger under centralization than

decentralization. Moreover, Q*
I increases in σ. Therefore, supply chain decentralization can

reduce the order quantity.
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From Figure 8, we can see that when σ is below 1.5, supply chain centralization
or decentralization has little impact on the logistics route expediting coefficient

(
α* α*

I
)
.

However, this impact becomes more significant as σ reaches 2 or more. Furthermore, cen-
tralization and decentralization results in

(
α*, α*

I
)
. Thus, as demand uncertainty increases,

the centralized supply chain tends to choose a higher logistics route expediting coefficient
to deal with disruption risk.

From Figure 9, we can see that the centralized supply chain leads to a larger optimal
vehicle capacity ratio, i.e., n*

I > n*. However, these ratios will be unchanged after σ reaches
a certain threshold. Hence, we can conclude that the optimal vehicle capacity ratio is
insensitive to the manufacturer’s demand uncertainty.

4.2.2. The Impact of the Type of the Express Logistic Roadways α

When changing the type of the express logistic roadways α within the range of (1, 0)
(meaning the extent to which congestion is relieved as a result of traffic regulation), and
using w0 = 10/unit (but fixing the other parameters to be the same as in the decentralized
structure), we may obtain results for the decision variables of two scenarios, as shown in
Figures 10 and 11.
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Figure 10. The curves between the order quantities QI/Q1 and αI.
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Figure 11. The curves between profits πI/πD and αI.

From Figures 10 and 11, it can be seen that if the government adopts more strict
traffic control, αI increases. This will then increase the manufacturer’s order quantity Q1.
Furthermore, the difference between QI and Q1 will decrease in αI. In terms of profit, an
increased αI will hurt the total profit of the supply chain. Moreover, the profit difference
between centralization and decentralization will decrease in αI. This means that if the
government’s traffic control policy becomes stricter, it is more beneficial to adopt supply
chain centralization. When αI is smaller, the supplier prefers the strategy of using an
emergency transit facility. Finally, we have performed an analysis that shows that when the
supplier adopts a price discount contract, the supplier and the manufacturer can achieve
supply chain coordination. This will lead to the optimal order quantity and logistics route
expediting coefficient, which maximizes supply chain profits.

5. Conclusions

Predictable logistics disruption due to large-scale events such as the COVID-19 pan-
demic lockdown and the Olympic Games can significantly reduce supply chain profits.
In this paper, we proposed a supply chain logistics model to optimize logistics routes in
terms of the route damping coefficient, route expediting coefficient, and vehicle tonnage
capacity ratio at the emergency transit facility. We also studied the manufacturer’s optimal
order quantity and the supplier’s optimal transshipment strategy under supply chain
centralization and decentralization. Our analysis and results show that a decentralized
supply chain leads to a lower order quantity as demand uncertainty increases. Our results
also confirm that centralization leads to higher supply chain profits. Therefore, we propose
using a price discount contract to improve supply chain profits.

Furthermore, our results show that in the presence of logistics disruption risks, the
optimal strategy of the supply chain is not to increase safety stock, but to shorten the lead
time using express logistics routes. This means the manufacturer should choose logistics
routes with a higher expediting coefficient in order to transport products quickly and
reduce lead time demand uncertainty. Moreover, a centralized supply chain can better deal
with disruption risk. Finally, the choice of transportation vehicle should depend on the
ordering quantity and delivery quantity of the supplier and the manufacturer, not on the
manufacturer’s demand uncertainty.

There are several limitations of this paper; hence, multiple future research directions
can be pursued. First, in this paper, we mainly focus on the economic objectives of the
supply chain and its members. Logistics disruptions have been shown to worsen envi-
ronmental pollution significantly [38]. On the one hand, our research analysis and results
on minimizing the negative impacts of logistics disruptions may help to lessen carbon
emissions. On the other hand, future researchers can look to explicitly incorporate the
objective of carbon emission reduction in their modeling and analyses. Second, although
we propose a price discount contract, there are many existing alternative business practices.
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Thus, more research may be carried out to coordinate the supply chain with the dual
objectives of profit maximization and carbon emission minimization [39]. This may also
be achieved by considering consumers’ low-carbon purchase intentions [40]. Last but not
least, this paper omits the use of big data to address supply chain disruptions. Therefore,
big data analytics can be examined to see how logistics disruptions and carbon emissions
can best be minimized [41].
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