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Abstract: Tropospheric ozone (O3) pollution has emerged as a significant concern, as it can adversely
influence human health, daily activities, and the surrounding environment(The following tropo-
spheric O3 is referred to as O3). Research on the societal contribution to O3 primarily concentrates on
the generation mechanisms and chemical processes, with limited studies examining the influence
of social and economic activities on O3 at a national scale. In this investigation, spatial economet-
ric models, random forest models, and geographically weighted regression (GWR) were adopted
for assessing the effects of meteorological, natural, and socioeconomic factors on O3 concentration
throughout the country. The spatial error model (SEM) revealed that precipitation, temperature,
wind direction, per capita GDP, RD project funding, and SO2 were the primary factors influencing O3

concentration in China, among which precipitation had the strongest effect on O3, followed by tem-
perature and SO2. Subsequently, the GWR model was utilized to demonstrate the regional differences
in the impacts of precipitation, NOx, secondary industry proportion, and electricity consumption. In
central and western regions, such as Jiangxi, Guangxi, and Guizhou, precipitation, NOx, and power
consumption were the leading factors contributing to severe O3 pollution. The secondary industry
proportion substantially affected O3 pollution in the Beijing-Tianjin-Hebei region, indicating that
this sector played a crucial role in the region’s economic growth and contributed to elevated O3

concentrations. Meteorological, natural, and socioeconomic factors exhibited a lesser influence on O3

pollution in most eastern regions compared to central and western regions. This study’s findings
identified the primary contributors to O3 pollution and provided a scientific basis for developing
strategies to mitigate its impact.

Keywords: ozone; socioeconomic factors; spatial econometric model; random forest model; GWR

1. Introduction

In recent years, due to escalating urban development and global warming [1], O3
has become a significant pollutant impacting air quality in China. As outlined in the
Strengthening of the Collaborative Control of PM2.5 and Ozone and Deepening the Battle
to Protect Blue Sky [2], from 2021 onwards, efforts to address the weak links in ozone
pollution prevention and control must be intensified, aiming to effectively control the rise
in ozone concentration by 2025. Numerous studies have shown that exceedingly high
concentrations of O3 can diminish agricultural productivity and quality [3] and negatively
affect food security [4]. Furthermore, elevated O3 concentrations can cause respiratory
diseases and lung function [5] impairment, thereby posing risks to human health [6,7]. In
2013, due to overexposure to O3, 16,000 premature deaths occurred in 28 EU countries,
equivalent to 192,000 years of life lost [8]. Following the implementation of the Action
Plan of Air Pollution Prevention and Control by the State Council on 10 September 2013,
China saw promising results in air pollution prevention and control [9]. Between 2015 and
2020, the concentration of PM2.5 in urban agglomerations significantly decreased [10];
however, O3 concentrations increased. Ozone primarily forms in cities through the reaction
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of nitrogen oxides (NOx), volatile organic compounds (VOCs), carbon monoxide (CO), and
other precursors in the presence of light [11], with these substances consistently affected
by human activities and industrial emissions [12,13]. Given the harmful nature of O3
pollution, it becomes crucial to identify the key factors contributing to O3 generation in
order to mitigate its detrimental effects on humans and crops.

The investigation into the causes of air pollution, particularly the socioeconomic
factors related to PM2.5 and SO2, has garnered increasing attention from researchers. Popu-
lation density, industrialization level, and economic development are the primary factors
influencing PM2.5 [14–16]. The impact of these factors also exhibits spatial differentiation
at the prefecture-level city scale [17]. Chen et al. (2018) further explored the correlation
between energy consumption, energy intensity, and PM2.5 concentration [18]. They dis-
covered that, in the short term, all countries except those with low incomes could reduce
PM2.5 concentration by increasing energy intensity. In China and its central and eastern re-
gions, the association between PM2.5 concentration and urbanization followed an inverted
U-shaped EKC model, while in the developed eastern regions, it adhered to an N-shaped
EKC model [19]. These findings suggest that PM2.5 is significantly influenced by geospatial
attributes and regional economic correlations in China [20]. In addition to PM2.5, research
has also examined SO2 pollution. For instance, Jiang et al. (2020) analyzed the social
and economic factors influencing SO2 pollution in 270 prefecture-level Chinese cities from
2005 to 2016 [21]. They found that SO2 pollution exhibited a gradual decline, indicating
an overall improvement in China’s environmental quality. Although numerous studies
have identified factors influencing PM2.5, SO2, and NO2, comprehensive and systematic
analyses of O3’s influencing factors remain scarce.

Numerous studies have concentrated on examining the impact of PM2.5 and SO2
in relation to socioeconomic factors; however, similar research on O3 is scarce. Near-
surface O3 is a common gaseous pollutant in the fundamental monitoring project of urban
environmental air pollutants [22], and as such, it is influenced by social and economic
factors. Gong et al. [23] explored the factors affecting O3 concentration changes in 96 urban
areas within the Yangtze River Economic Belt from 2013 to 2020, identifying the GDP
proportion of the secondary industry as the most significant factor influencing surface ozone
concentration. Nonetheless, this study only considered regional data and did not examine
changes on a national scale. This issue was addressed by Liu et al. [24], who discovered
that O3 concentrations at a national level are influenced by both natural and human factors,
with temperature, NOx, and VOCs being the key elements influencing O3 emissions. Yang
et al. [25] analyzed O3 pollution in 338 Chinese cities over an extended period and observed
that O3 concentrations in eastern China were generally higher than those in western China,
with the most severe pollution occurring in the North, East, and Central regions. In
addition, the relationship between COVID-19 and air pollution parameters demonstrated
that people living in the epicentre of the outbreak were exposed to lower levels of O3
pollution due to geographical lockdowns [26]. Qi et al. [27] investigated the effect of
lockdown during COVID-19 on surface ozone in Dongguan, an industrial city in southern
China, and observed from long-term measurements in Dongguan that the ratio of daily
Ox (O3 + NO2) enhancement to solar radiation during lockdown was smaller, suggesting
that a significant weakening of photochemistry during the lockdown successfully reduces
local ozone production. However, these studies only took into account meteorological and
natural factors, neglecting the effect of socioeconomic factors on O3 concentrations. Social
and economic factors indeed have a strong influence on O3 concentrations, as Yang et al. [28]
found that changes in ozone concentrations are affected by human activities including
industrialization, urbanization, and economic development. Despite this, these studies only
considered the influence of socioeconomic factors on O3, with limited research examining
the combined effects of meteorological factors, natural factors, and socioeconomic factors
on O3. Consequently, in this study, we provide a comprehensive overview of O3 research
that investigates the interplay of meteorological, natural, and socioeconomic factors across
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different provinces in China. Our findings may offer guidance and recommendations for
the coordinated enhancement of the economic environment in various Chinese provinces.

To address these issues, we analyzed the effects of meteorological factors, natural
factors, and socioeconomic factors on O3 in China on both national and provincial scales
using the geographically weighted regression model (GWR) and spatial econometrics
model, with 31 Chinese provinces from 2015 to 2020 as case studies. First, we examined
the overall temporal change of O3 in the country, identified the temporal and spatial
characteristics of O3 concentrations in different regions, and analyzed the concentration
characteristics of O3 at the national level using the Mohn index. Second, employing
the SLM and SEM, we investigated the linear global correlation between meteorological
factors, natural factors, socioeconomic factors, and O3 concentrations as a whole, and
subsequently, the random forest model was utilized to study the nonlinear relationships
between variables. Third, we applied the GWR model to quantitatively determine the
impact of spatiotemporal variation in the influencing factors on O3 pollution across various
regions. Ultimately, we provided constructive guidance and suggestions for preventing
and controlling O3 pollution in China.

2. Methodology and Data Sources
2.1. Data

The present study utilized the O3 concentration data from the ecological environment
website of China (http://beijingair.sinaapp.com/, accessed on 3 December 2022) to assess
air quality. To calculate the effective values and urban average daily concentration and
establish evaluation standards, the Ambient Air Quality Standards (GB3095–2012) [29],
Technical Specifications for Assessment of Ambient Air Quality (Trial) (HJ663–2013) [30]
were consulted. O3 concentrations were collected from the website of the Ministry of
Ecology and Environment of China, and the results were described as the actual ozone
concentrations in the study area To ensure the validity of the O3 data, values with hourly
O3 concentration ≤10 µg/m3 and missing values were eliminated from the original dataset.
For the calculation of the daily mean value, if the monitoring point lacked test data for less
than 16 h, the data for that day were considered invalid and discarded. To calculate the
monthly mean value, if the monitoring point’s data for the current month was less than the
average value of the maximum 8 h for 20 O3 days, the data for that month was considered
invalid and removed. The method was to filter the data in Python, filtered out the elements
that did not match the conditions, and returned an iterator object to convert it to a list. The
reason for eliminating invalid data was that if the monitored data in one day or one month
were too small, they would cause relatively large errors, which would affect the model
effect. The reliability of the data was tested to confirm their credibility. The meteorological
data applied in the present study included surface climatological data for China from
the National Meteorological Information Center of China Meteorological Administration
(http://data.cma.cn/, accessed on 12 December 2022). This dataset contained daily data for
various parameters, including the average temperature, precipitation, wind speed, wind
direction, and boundary layer height, for 367 Chinese cities from 2015 to 2020. The dataset
adhered to the Meteorological Data Classification and Coding criteria, and the original data
files underwent strict quality control and examination.

The statistics on socioeconomic and natural factors for each province during 2015–
2020 were acquired from the China Statistical Information Network (http://data.sta
ts.gov.cn/, accessed on 20 December 2022) and the China Statistical Yearbook (http:
//www.stats.gov.cn, accessed on 28 December 2022). The data primarily comprised in-
formation on per capita GDP (ten thousand yuan), the proportion of secondary industry
(%), population (ten thousand people), electricity consumption (hundred million kilowatt
hours), forest stock (ten thousand cubic meters), forest coverage rate (%), R&D project
expenditure (ten thousand yuan), NOx (ten thousand tons), and SO2 (ten thousand tons). A
literature review informed the selection of these indicators, which previous studies deemed
as critical factors impacting O3 levels. For instance, per capita GDP is an essential indicator

http://beijingair.sinaapp.com/
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of the economic scale, and the secondary industry, with petroleum and chemical industries
as its mainstays, can emit substantial amounts of atmospheric pollutants (including O3
precursors). Consequently, the economic scale may be the primary driver of increasing O3
column concentration [31]. In densely populated areas, O3 pollution levels are indirectly
affected by VOCs, CO, NOx, and other precursors produced by human activities [32].
Numerous VOCs and BVOCs emitted by plants are significant photochemicals that par-
ticipate in ozone formation [33,34]. NOx, as an O3 precursor, generates ozone through
photochemical reactions under specific conditions, thereby increasing ozone concentration
and exacerbating ozone pollution [35]. Moreover, O3 concentration is influenced by non-
uniform chemical reactions occurring on particle surfaces, and an increase in particles, such
as SO2, can diminish atmospheric radiation. This reduction may subsequently decrease
ozone levels by eliminating ultraviolet rays [35].

2.2. Spatial Autocorrelation Test

Global autocorrelation is employed to describe the spatial clustering of O3 concentra-
tion within a region. In the present study, the spatial correlation of O3 concentration at the
national scale is examined empirically using the Global Moran’s I index. The calculation of
Moran’s I was as follows:

Moran’s I =
n∑ n

i=1∑ n
j=1Wij(xi − x)

(
xj − x

)(
∑ n

i=1∑ n
j=1 Wij

)
∑ n

i=1(xi − x)2
(1)

Here, I indicates the global Mohn index, n indicates the total number of cities; xi and
xj indicate the observed O3 pollution values of the i and j cities, respectively; x refers to the
average O3 concentration values of n cities; Wij indicates the spatial weight matrix element,
whose values are 1 or 0, indicating adjacent or non-adjacent cities, respectively. Moran’s I
has a value that fluctuates between −1 and 1. With the value being closer to −1, the spatial
units with different attributes are more concentrated. Conversely, when the value is closer
to 1, the spatial units with similar attributes are more concentrated.

The cold spots and hot spots of O3 concentration at various spatial locations in the
region were identified using the Local Moran’s I index. The index can be calculated with
the following formula:

Local Moran’s I =
n(xi − x)∑ m

j=1Wij
(
xj − x

)
∑ n

i=1(xi − x)2 (2)

Here, I indicates the local Mohn index, n indicates the total number of cities, m
indicates the number of adjacent cities, xi and xj indicate the observed O3 pollution values
of each province, x is the average O3 concentration of n cities, and Wij suggests the spatial
weight matrix element. On a small scale, the local Moran’s I approach is applied to describe
the relationship between one site and its neighbors. The normalized O3 concentration of
one site and adjacent sites are represented by the local Moran index, and their correlation
can be seen on a scatter plot [36]. There are four local autocorrelation spatial association
patterns, which include “high–high” aggregation (high-concentration city surrounded by
high-concentration city), “high–low” aggregation (high-concentration city surrounded by
low-concentration city), “low–low” aggregation (low-concentration city surrounded by
low-concentration city), and “low–high” aggregation (low-concentration city surrounded
by high-concentration city), and “not significant” indicates the specific spatial location of
agglomeration. HH (LL) represented the proximity of the region to the same observed
value attributes of the agglomeration city, i.e., the agglomeration of a low-value area and a
low-value area, as well as the agglomeration of two high-value areas. HL (LH) represented
the local spatial agglomeration characteristics of regions with opposite observed values.
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2.3. Spatial Econometric Models

When addressing economic problems that involve spatial attributes, traditional econo-
metric models tend to ignore the spatial correlation between research units and variables,
leading to deviations in model findings and violating the classical least square method’s
prerequisite. Therefore, it is essential to establish a spatial econometric regression model
for data processing [37]. The spatial econometric model, which considers spatial effects and
is suitable for sectional data, is a spatial constant coefficient regression model. There are
various spatial econometric models, of which the spatial lag model (SLM) and the spatial
error model (SEM) are widely used.

The spatial lag model (SLM) incorporates the lag variable, considering the time series,
and the spatial lag by considering the impact of the surrounding area on the study area. It
is an autoregressive model that considers spatial variables and is sometimes referred to as
a spatial autoregressive model. The SLM is expressed as follows:

y = α + ρWy + Xβ+ ε (3)

Here, y represents the explained variable matrix, X represents the explained variable
matrix, α represents constant, ρ represents the space effect coefficient, β represents the
parameter vector, W represents the space matrix, and ε stands for the random error term.

The spatial error model (SEM) primarily captures the interactive relationship of ex-
plained variables, considering the system effect by setting the hysteresis term of the distur-
bance term [38]. The model can be expressed as:

Yit = αi + βiXit + θiZit + µit + εit + λ∑ wijvjt (4)

Here, Y suggests the explained variable, X represents the explanatory variable, t
represents time, i and j represent two different cities, α represents constant, w represents the
space weight matrix, λ represents the spatial error coefficient of the explained variable, β
represents the coefficient of the explained variable, θ stands for the coefficient of the control
variable, Z suggests the control variable, µ denotes the individual effect of t time in region
i, and ε represents the perturbation term.

When estimating the SLM and SEM coefficients, the least square approach may result
in biased or invalid coefficient estimation values. Therefore, we employed the maximum
likelihood method to estimate the parameters of SEM and SLM. Regarding the selection
of SEM and SLM, if the LM-Lag and LM-Error statistics were not significant, indicating
no spatial relationship between variables, the spatial econometric model analysis was
not suitable, and the least square method was used directly for analysis. The SLM was
employed when LM-Lag was of significance, but LM-Error was not, while the SEM was
suitable when LM-Lag was not significant but LM-Error was significant. A robust Lagrange
test was conducted when both results were significant. If R-LMLAG was of significance,
but R-LMERR was not, then the spatial lag model was suitable. However, if R-LMERR was
significant but R-LMLAG was not, the spatial error model was appropriate.

2.4. Random Forest

The spatial econometric model is limited to reflecting the linear relationship between
variables and cannot capture nonlinear relationships. Random forest is a popular integrated
algorithm in machine learning, based on decision trees. In this method, multiple trees
are trained and used to predict samples [39]. Random forest performs random sampling
not only when selecting samples but also when constructing input features of a single
decision tree by randomly selecting sub-feature spaces from the original feature spaces. This
approach effectively improves the model’s stability. The random forest regression model
obtains prediction results by averaging the prediction results of many weak evaluators,
where the average value of the prediction results of many decision trees is used as the
regression value of the whole model [40]. This method can handle nonlinear problems,
and thus a random forest model was constructed in this study. To analyze the pollutant
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concentration and its causes, daily precipitation, temperature, boundary layer height, wind
speed, and wind direction from the MERRA2 reanalysis dataset, along with per capita GDP,
the proportion of the secondary industry, population, power consumption, forest stock,
forest coverage, R&D project expenditure, NOx, SO2, and other characteristic quantities
from the statistical yearbook were selected. The stochastic forest simulation was optimized
and determined based on the test set’s simulation accuracy (R2) for analyzing the national
O3 concentration’s response to different variable control scenarios from 2015 to 2020. When
R2 was greater than 0.5, the model was considered valid. The model can be expressed
as follows:

H(x) =
1
N∑ N

t=1ht(x, p1, p2, . . . , pn) (5)

Here, x represents the target variable, p1, p2 . . . , pn represents the input feature related
to x, ht represents the prediction of x for each decision tree, N represents the number of
decision trees, and H(x) represents the final prediction of the target variable x. In contrast
to the RF model used in previous research to predict ozone concentration, x was defined
as the discrepancy between the daily surface MDA8 O3 concentration as predicted and
as actually observed, or CTM deviation. For building the decision tree, the tree nodes
were divided based on the best values of the randomly selected feature subset, and the
segmented data samples had the most similar values among these randomly chosen feature
subsets [41].

2.5. Geographically and Temporally Weighted Regression (GTWR)

Geographically Weighted Regression (GWR) is a widely used method in geography
and other fields for spatial pattern analysis [42]. By creating local regression equations at
each location within the spatial range, GWR analyzes the spatial changes and associated
driving factors of the study area at a specific scale. Compared to ordinary panel regression,
which does not consider the spatial distance factor, GWR can more accurately test the
spatial heterogeneity relationship between independent and dependent variables [43]. In
the present study, the GWR model was used to examine the geographical differentiation
characteristics of O3 concentration in different provinces of China based on meteorological,
natural, and socioeconomic factors. The GWR regression model was considered valid
when R2 and corrected R2 were greater than 0.5, indicating that it could accurately measure
the effect of independent variables on dependent variables. The model can be expressed
as follows:

Yi = β0(ui, vi) + ∑ m
k=1βk(ui, vi)Xik + εi (6)

Here, Yi represents the O3 level of each region; (ui, vi) represents the longitude and
latitude coordinates of the ith sample point; β0(ui, vi) stands for the intercept of the ith
sample point. βk(ui, vi) stands for the regression coefficient of the kth explanatory variable
at sample point i. Xik indicates the value of the kth explanatory variable at sample point i;
εi represents the error term of sample point i.

3. Results and Discussion
3.1. The Spatiotemporal Variation of O3 Concentration

In order to examine the spatial alterations in the yearly average O3 concentration
across 338 cities in mainland China between 2015 and 2020, this study evaluated the
annual average O3 concentration in all Chinese cities utilizing ArcGIS software. Figure 1
illustrates the spatial distribution of the six-year average O3 concentration. Over this period,
Tianjin emerged as the most polluted city, exhibiting an annual average O3 concentration
of 75.9 µg/m3. Conversely, Chongqing displayed the lowest O3 pollution at 75.9 µg/m3,
while Hainan reported a median O3 concentration of 56.3 µg/m3. An analysis of the spatial
variation characteristics, as depicted in Figure 1, reveals significant spatial heterogeneity
in the national O3 concentration. In the six years spanning 2015–2020, the most polluted
areas were Beijing and Tianjin in North China, Shandong and Shanghai in East China, and
Qinghai in Northwest China. The average annual O3 concentrations in these regions were
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66.5, 71.6, 70.6, 72.9, 68.5, and 67.7 µg/m3, respectively. Some areas in Tibet, Gansu, and
Ningxia in Northwest China, Inner Mongolia in North China, Henan in Central China,
and Jiangsu in the Yangtze River Delta also experienced significant pollution. Following
economic development in the eastern region, particularly in the Yangtze River Delta,
population growth and industrial activities surged, leading to the release of large quantities
of atmospheric pollutants including NOx and VOCs. These pollutants provided sufficient
precursors for O3 generation, exacerbating O3 pollution [31]. However, certain cities in
northwest China are characterized by low terrain, which does not facilitate the diffusion
of air pollutants, allowing pollutants to accumulate easily, including in the central region
of Gansu Province [44]. Consequently, these regions exhibited elevated average annual
O3 concentrations. Areas like Chongqing, Sichuan, Guizhou, and Guangxi in the west
and Heilongjiang in the northeast displayed lower pollution levels. The temporal and
spatial distribution of VOC characteristics and sources may significantly differ across
China due to variations in industrial structure, geography, meteorology, and seasonal and
diurnal shifts between regions [45]. For instance, Chongqing possesses unique topographic
conditions and superior air circulation compared to the Chengdu plains, resulting in
enhanced pollutant diffusion in this area [46]. Regarding interannual spatial changes, the
spatial distribution of O3 concentration in 2016 closely resembled that in 2015 (Figure 2a,b),
demonstrating a spatial pattern with higher O3 concentrations in the north and lower
concentrations in the south, predominantly in the Yangtze River Delta and some northwest
regions. In 2017, high O3 concentrations extended southward across the North China
Plain (Figure 2c), while low concentrations declined. In 2018, high O3 concentration
areas were mainly located in the North China Plain and some parts of Northwest China
(Figure 2d), mainly in Qinghai, Shandong, Henan, and Shanxi. The spatial distribution of
O3 levels in 2019 and 2020 was akin to that observed in 2017 and 2018 (Figure 2e,f); however,
the high O3 concentration zone in the northern region diminished. Tianjin recorded the
highest O3 concentration in 2020, a significant increase from its 11th-place ranking in
2015, while Shanghai, which had the third-highest O3 concentration in 2015, experienced
a notable decline in its ranking in 2020. Tianjin, an established industrial base in China,
has experienced a significant increase in industrial activities and automobile usage in
recent years, leading to elevated emissions of VOCs and NOx. Consequently, there has
been a substantial rise in anthropogenic precursor O3 emissions [47]. In contrast, the O3
issue in Shanghai is linked to its sizable population and economic scale. Recently, the
implementation of stringent policies to curb local emissions has diminished the prevalence
of high O3 concentrations, thereby alleviating the ozone problem in Shanghai [48].
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The average annual ozone concentrations in all Chinese cities from 2015 to 2020 were
58.7, 60.2, 64.4, 65.1, 63.5, and 62.3 µg/m3, respectively. The O3 concentration range for
each province gradually increased from 38.6–74.8 µg/m3 in 2015 to 42.6–82.1 µg/m3 in
2019. In total, the O3 concentration experienced a slow growth of 9.1% over five years,
with an average annual increase of 0.66 µg/m3 and a slight decline after 2019 (Figure 3).
This occurred as a result of urbanization which increased anthropogenic industrial emis-
sions and high NOx emissions, providing sufficient precursors for O3 generation and
causing severe atmospheric O3 pollution [49]. However, in 2020, the Chinese government
enforced strict control measures, and the COVID-19 pandemic contributed to the reduc-
tion in O3 concentration [39]. From a regional perspective (Figure 4), areas with high
O3 concentrations between 2015 and 2020 included the Beijing-Tianjin-Hebei region, the
Yangtze River Delta (Shanghai, Jiangsu, Zhejiang), and Tibet, with O3 concentrations of
65.7–77.2 µg/m3, 66.2–71.1 µg/m3, and 62.9–73.0 µg/m3, separately. This indicates that
most of these provinces have developed industries and significant O3 pollution. In most
regions, O3 concentrations decreased after 2019, primarily due to a reduction in VOC
emissions and improvements in meteorological conditions related to pollution [50]. Since
Tibet encompasses a vast area with diverse climates, surface O3 concentrations in the region
exhibit significant variations [51]. The provinces with the largest changes in O3 concentra-
tions between 2015 and 2020 were Beijing and Shanxi (Figure 5). The O3 concentration in
Beijing decreased from 77.5 µg/m3 in 2015 to 70.4 µg/m3 in 2020, likely due to the city’s
numerous air pollution reduction initiatives, including phasing out obsolete vehicles and
replacing coal with clean energy sources [52]. The reduction in automobile emissions and
improvement of fuel standards led to a decreased influence of NOx on O3. Conversely,
the O3 concentration in Shanxi Province increased from 55.4 µg/m3 in 2015 to 68.1 µg/m3

in 2020. As a crucial national energy base and China’s largest coal-producing province,
Shanxi’s residential and commercial areas are concentrated in valleys and basins. The
unique geography and unfavorable meteorological conditions, such as local circulation
and temperature inversion, hinder the dispersion of pollutants [53], resulting in a gradual
increase in O3 concentration. Regarding seasonal variation (Figure 6), O3 pollution in
spring and summer between 2015 and 2020 was notably severe, with an extensive spatial
range. The mean concentration of O3 in summer was 74.2 µg/m3, while in spring, autumn,
and winter, it was 71.4, 56.5, and 47.4 µg/m3, respectively. The regions with high O3 concen-
trations switched between spring and summer. Additionally, the concentration of O3 was
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higher in autumn than in winter. The higher concentration of O3 in the air during spring
and summer is due to the occurrence of photochemical reactions, which are more favorable
for O3 formation under high temperatures and intense solar radiation. Such conditions
exacerbate O3 pollution [54]. Conversely, in autumn and winter, the increase in pollution
emissions, amplified temperature inversion, and relatively stable atmospheric stratification
do not facilitate the local transport of pollutants or their dilution and dispersion [35].
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3.2. Spatial Aggregation Characteristics of O3

To investigate whether there was spatial autocorrelation of O3 concentration among
provinces in China, a spatial autocorrelation analysis was performed on O3 concentration in
31 provinces in China from 2015 to 2020. As displayed in Figure 7, the mean annual Moran’s
I for O3 concentration passed the 95% significance test and was positive, suggesting that
the spatial distribution of O3 concentration in all Chinese provinces had a significant spatial
correlation. The Lisa index was utilized to identify five spatial autocorrelation clustering
relationship types (Figure 8): (1) “high–high” clustering (HH); (2) low–low clustering (LL);
(3) high–low clustering (HL); (4) “low–high” clustering (LH); and (5) no significant agglom-
eration characteristics. According to the results, the national O3 concentration displayed
“high–high” clustering, “low–low” clustering, “low–high” clustering, and “high–low” clus-
tering characteristics. The “high–high” clustering types were primarily located in the
Beijing–Tianjin–Hebei region, Inner Mongolia, Jilin, Liaoning, Shanxi, Shandong, Henan,
and Ningxia. The O3 concentration change rate in these regions was relatively high, and
they were in the diffusion effect region of O3 concentration growth, leading to an increase
in the number of cities with high O3 concentrations that were adjacent to highly polluted
areas [55]. In contrast, the clustering area of the change rate of low O3 concentration was
primarily distributed in Guizhou, Hunan, Jiangxi, Guangxi, Hainan, and other regions.
The urban air diffusion conditions in these regions were favorable and beneficial for the
diffusion of pollutants [56], causing a low-low concentration. These cities were surrounded
by cities with low O3 concentrations, causing the oxygen concentration to decrease. The
high–low cluster type was distributed in Zhejiang, Fujian, and Guangdong. These cities
were surrounded by cities with low O3 concentrations and showed spatial agglomeration
and cross-regional migration [57]. As a result, the concentration of O3 in cities with high
O3 concentration continued to rise, while that of cities with low O3 concentration con-
tinued to decline. Shaanxi Province had a low-high clustering distribution, and the high
concentration of O3 in neighboring provinces adversely affected Shaanxi.
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3.3. Factors Affecting O3 Concentration

To investigate the spatial autocorrelation of O3, we performed a correlation analysis
of 14 meteorological, natural, and socioeconomic factors in each province in China from
2015 to 2020. Considering the spatial correlation, Ordinary Least Squared Regression (OLS)
was adopted for estimating the constraint model, and the results indicated that LM-Error
(0.034) was statistically more significant than LM-Lag (0.107), leading to the choice of the
spatial error model for analysis. In the estimation of OLS, R2 = 0.985, and in the estimation of
the spatial error model, R2 = 0.990, showing that accounting for spatial correlation enhances
model fit. The findings of the SEM model analysis are presented in Table 1, where a total of
9 variables, including temperature, wind speed, wind direction, per capita GDP, RD project
funds, forest stock, forest coverage, SO2, and power consumption, were discovered to
make a significant impact on the national O3 concentration. However, the SEM model only
presented the linear correlation between variables, whereas some variables might show a
nonlinear relationship with O3 concentration. Therefore, a nonlinear model, random forest,
was used to improve the accuracy of the simulation of the influencing factors. The random
forest result (Figure 9) showed that R2 was 0.503, and along with the above variables, the
coefficients of precipitation (98.17) and NOx (78.96) were large, indicating that these factors
were significantly correlated with O3 concentration. A multicollinearity test conducted
using SPSS26.0 (Table 1) showed that the variance inflation factor (VIF) of wind speed
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(13.989), NOx (21.233), and power consumption (13.692) was greater than 10, indicating
significant collinearity among these three factors.

Table 1. The estimation result of the spatial error model.

Variable Coefficient Std.Error z-Value Probability VIF

CONSTANT −0.17 1.03 −0.16 0.87
PBLH −2.53 × 10−3 4.11 × 10−3 −0.61 0.54 6.12

PRECTOT 19585.3 37135.4 0.53 0.60 5.99
T2M 0.25 0.02 10.53 0.00 9.71

U10M 5.40 1.10 4.91 0.00 13.99
V10M −2.71 1.20 −2.27 0.02 2.03

GDP per capita 6.87 × 10−5 2.27 × 10−5 3.03 2.43 × 10−3 3.16
Proportion of secondary industry −0.06 0.07 −0.78 0.44 2.24

Population 2.80 × 10−4 2.88 × 10−4 0.97 0.33 5.32
NOx −0.04 0.06 −0.77 0.44 21.23

RD Project Expenditure −1.19 × 10−6 3.94 × 10−7 −3.03 2.48 × 10−3 4.43
Forest stock −4.23 × 10−5 1.12 × 10−5 −3.78 1.60 × 10−4 3.59

SO2 −0.14 0.06 −2.20 0.03 7.87
Forest coverage −0.24 0.04 −5.71 0.00 5.46

Power consumption 3.07 × 10−3 8.31 × 10−4 3.69 2.20 × 10−4 13.9

R2 = 0.99, Log likelihood = −76.9222, Akaike info criterion = 183.844, p-value = 0.03.
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The regression results demonstrated a significant correlation between precipitation,
temperature, wind direction, per capita GDP, RD project funds, forest stock, forest coverage,
SO2, and O3 concentration which could be utilized for evaluating the correlation between
meteorological, natural, socioeconomic factors, and O3 pollution. The formation, trans-
formation, transport, and removal of O3 are all significantly influenced by meteorological
conditions, and all these factors can affect the concentration of O3 [58]. Although precip-
itation was not significant in the SEM model, its coefficient in the random forest model
was larger (98.17), indicating that precipitation significantly influenced O3 concentration.
This may be due to the scouring effect of precipitation on air pollutants. Particles converge
and settle on the ground through sedimentation, reducing atmospheric O3 concentration.
Therefore, precipitation promotes the reduction of O3 concentration [59]. The temperature
and O3 concentration were found to be positively correlated, with a partial regression
coefficient of 0.248. The generation of O3 mainly depends on high temperatures and intense
solar radiation [60]. The urban heat island effect and air pollution resulting from increased
anthropogenic emissions are major environmental problems in urban areas [61]. Urban-
ization increases heat emission from natural heating systems and man-made sources in
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urban areas, such as indoor heating and air conditioning generated by transportation and
cooking, which can lead to the urban heat island effect [62]. The heat island effect affects
O3 pollution by changing the local cycle and the chemical reaction environment, such as
temperature [63]. The findings of the SEM study demonstrated that the effect of wind
direction on O3 concentration was negative (−2.702). O3 transport is mainly driven by
the wind. When the wind gets stronger, the boundary layer becomes higher, which favors
the diffusion of O3. The direction of the wind not only affects the direction of diffusion of
O3 [64] but also leads to the contaminants for land-based air to build up.

During autumn and winter, the local transport, dilution, and diffusion of pollutants are
not favored due to an increase in pollutant emissions, frequent temperature inversion, and
relatively stable atmospheric stratification [35]. We observed a negative correlation between
SO2 and O3 (−0.14). As the concentration of SO2 decreases significantly, the pollution of
O3 increases, probably due to the complex physical and chemical mechanisms within the
region where O3 interacts with specific pollutants, such as SO2 [65]. An increase in the
concentration of SO2 enhances sulfate production, increases aerosol concentrations, weak-
ens atmospheric photochemical reactions, and thus increases the uptake of HO2 radicals.
However, nitrogen oxides in the air can undergo photochemical reactions under ultraviolet
light and dissociate to form various free radicals, which can further react with oxygen
molecules (O2) in the atmosphere to produce O3 [66] under the catalysis of ultraviolet light.
Therefore, an increase in the SO2 concentration decreases the O3 concentration.

In the SLM, per capita GDP was positively correlated with O3 concentration (0.00007).
Per-capita GDP reflects the socioeconomic growth of a region and indicates socioeco-
nomic development, regional planning, and environmental protection, and thus, it can
affect changes in O3 [58]. Over the past six years, China’s per capita GDP increased from
49,500 yuan in 2015 to 70,700 yuan in 2020, growing at an average annual rate of 35.3%
over the preceding six years. The growth rate was relatively high, and energy consumption
was high, with coal serving as the main energy source in recent decades, leading to high
O3 emissions [67]. However, some studies have found an inverted U-shaped distribu-
tion between China’s GDP and O3 concentration, mainly due to wide regional disparities.
Additionally, the effect of GDP on O3 varied greatly among regions at different develop-
mental stages [68]. The correlation between economic development and ecological health
in economically developed areas crossed the EKC inflection point, and per capita GDP was
negatively related to O3 concentration, while in economically underdeveloped areas, the
mode of economic development has changed from extensive to centralized, promoting
environmental improvement [23]. For example, in Ningxia, O3 increased from 62.8 µg/m3

in 2015 to 65.5 µg/m3 in 2020, with an increase rate of 4.3%, and per capita GDP increased
from 378.76 million yuan in 2015 to 550.21 million yuan in 2020, with an increase rate
of 45.3%.

The SEM results showed a negative correlation (−0.0000012) between the expenditure
on RD projects and O3 concentration. Expenditure on science and technology had a de-
creasing impact on O3 concentration. A 1% increase in technological innovation difference
can increase the degree of O3 pollution control cooperation by 8.7%. High-tech industries
play a strategic role in China [64]. Investments in R&D and resulting technological progress
promote energy efficiency and pollution treatment technology, leading to a decrease in
pollutant emissions and improvement in the pollution treatment rate, thereby promoting
the inter-regional collaborative treatment of air pollution [1]. Increasing investment in
environmental governance and using new technology can enhance the atmospheric envi-
ronment for sustainable economic development, particularly in Northeast and North China,
which are dominated by the secondary industry [69]. The phased rule of technological
progress indicates that regions with higher technological levels have a greater investment
in pollution control, higher resource utilization efficiency, a larger scale of regional pro-
duction activities, higher demand for resources and energy, and lower O3 emission per
unit output [68]. Thus, technological progress significantly affects air quality improvement.
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Additionally, cities with stronger economic growth make greater investments in reducing
pollution [59].

3.4. The Impact of Regional Factors on O3 Concentration

Although the SEM model demonstrated that multiple variables influenced O3 con-
centration across China, it only revealed the global correlation between these variables
and O3 without considering regional implications. Consequently, we utilized the GWR
model to further investigate the correlation between O3 concentration and regional meteo-
rological, natural, and socioeconomic factors. We examined the correlation of 14 variables,
eliminating those with significantly high Pearson’s correlation. Using the GWR model, we
measured R2 values greater than 0.5 and identified 10 unrelated variables, including pre-
cipitation, wind speed, wind direction, NOx, population, per capita GDP, forest stock, RD
project funds, electricity consumption, and the proportion of secondary industry (Table 2).
In this study, we used the variables precipitation, NOx, electricity consumption, and the
proportion of secondary industry for analysis.

Table 2. The estimation result of Pearson’s correlation.

Pearson correlation PRECTOT V10M Population Pearson correlation Forest stock RD project
expenditure NOx

PRECTOT 1 0.044 0.265 Forest stock 1 −0.154 −0.125

V10M 0.044 1 −0.88 RD project
expenditure −0.154 1 0.337

Population 0.265 −0.88 1 NOx −0.125 0.337 1

Pearson correlation Proportion of secondary
industry

GDP per
capita Pearson correlation Power consumption U10M

Proportion of
secondary
industry

1 −0.238 Power
consumption 1 −0.312

GDP per capita −0.238 1 U10M −0.312 1

The impact of precipitation on O3 formation in cities with different geographical
locations was negative (Figure 10a). The maximum O3 concentration occurred when
precipitation was lowest [70]. Guangdong, an old industrial base with high industrial
development, experienced more precipitation. Air convection and heavy precipitation
facilitated the removal and clearing of accumulated O3 in this region [71]. Jiangsu and
Zhejiang, situated in the middle latitudes of the eastern coast of the mainland, belong to
the subtropical monsoon climate with a unique weather condition called Meiyu [72]. This
region had high atmospheric water vapor content, extensive cloud cover, and abundant
annual precipitation. The purification effect of precipitation on O3 exceeded its generation
rate, promoting O3 reduction. As rainfall duration increased, the removal effect of O3 in
Sichuan Province also increased. This phenomenon was likely due to cloud cover, which
reduced solar radiation and photochemical reactions. In terms of precipitation, a longer
duration of rainfall implied a more significant negative impact on O3 generation [73].
Precipitation also affected O3 production by removing precursors. In regions like Hainan
and Guangxi, the upward transport and diffusion of water vapor were greater [74], leading
to increased cloud cover and urban precipitation, ultimately decreasing O3 concentration.
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There are two primary sources of nitrogen oxide emissions in the troposphere: anthro-
pogenic (e.g., thermal power plants, transportation, industrial, and residential use) and
natural (lightning, biomass burning, and soil) [75]. In different areas, the influence of NOx
on surface O3 varied, sometimes even being opposite (Figure 10b). In the NOx control area,
NOx drove O3 concentration, suggesting that reducing NOx could significantly lower O3
concentration. In southeast China, after removing meteorological factors, O3 concentration
decreased, indicating a NOx-limiting or mixed-sensitive O3 formation mechanism in the
area [76]. The O3 concentration was most significantly impacted by NOx emissions in the
Pearl River Delta region and central and western regions like Jiangxi, Anhui, Guangxi,
Guizhou, and Qinghai (Figure 10b). Because of rapid urbanization and industrialization
in western China, anthropogenic emission changes were the primary driving factors of
NO2 alterations in most western provinces, with growth linked to the region’s fast industri-
alization and urbanization after the “Great Western Development” movement [77]. The
concentrations of NO2 and O3 in Guangzhou showed opposing patterns, indicating that
VOCs limited O3 generation. After 2017, with the removal of meteorological factors, NO2
and O3 concentrations in Guangzhou significantly decreased, signifying a change in the
O3 formation mechanism from VOC-limiting to mixed-sensitivity or NOx-limiting due
to a sharp decline in NOx emissions [76]. The Pearl River Delta boasts a high degree of
urbanization in China, with mobile and industrial sources being the primary contributors
to NOx emissions in this area. The rapid increase in automobile ownership and the effective
management of pollutants from large power plants have been the main drivers of NOx
concentration growth [78]. In contrast, most urban clusters intermixed with industrial
bases in northeastern China (north of 30◦ N) were VOC-limiting areas [79], with NOx
mitigating O3 formation and decreasing O3 concentration in northeastern regions such
as Heilongjiang, Jilin, and Liaoning [80]. The opposing trends in Guangzhou’s NO2 and
O3 concentrations before 2017 suggested that VOCs limited O3 generation. After 2017,
upon removing meteorological factors, NO2 and O3 concentrations in Guangzhou signifi-
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cantly declined, indicating that the O3 formation mechanism shifted from VOC-limiting to
mixed-sensitivity or NOx-limiting due to the dramatic decrease in NOx emissions [76]. The
Pearl River Delta is highly urbanized within China, and mobile and industrial sources are
the main contributors to NOx emissions in the region. The rapidly increasing number of
automobiles and the effective control of pollutants from large power plants have been the
primary causes of the increase in NOx concentration [78].

Power consumption and O3 concentration exhibited a negative correlation in Xinjiang,
Qinghai, and Tibet, while they were significantly positively correlated in Guangdong,
Heilongjiang, Jiangxi, Hubei, Guangxi, and Guizhou (Figure 10c). Central regions such
as Jiangxi and Hubei [81,82] have abundant industrial sources and numerous thermal
power plants. Industrial and total power consumptions were relatively high, leading to
the emission of large O3 concentrations. Moreover, NOx and VOCs in waste gas generated
during the thermal power production process can stimulate O3 formation. The positive
effect of electricity consumption on O3 concentration in the Pearl River Delta region may be
related to energy use and policy adjustment. The implementation of the “coal to electricity”
policy and the promotion of new energy vehicles in recent years have led to a year-by-year
increase in electricity consumption, subsequently increasing O3 pollution [83]. Some parts
of Northeast China, such as Heilongjiang, differ from other Chinese megacities due to their
extremely cold winters (daily average temperatures below −20 ◦C) and complex emission
sources like central heating systems and coal-fired power plants, which contribute to the
emission of more industrial pollutants [28,84]. Western regions like Guizhou and Guangxi
are important energy producers (due to the “west-east power transmission” initiative) and
heavy industrial bases (focused on mining, fossil fuels, and raw materials). In contrast,
residential power supply and heating emissions in Qinghai [85] and other areas were found
to be lower, while exhaust gas from energy-intensive industries was primarily responsible
for high O3 concentration emissions.

Although the proportion of secondary industry in the Beijing-Tianjin-Hebei region,
Liaoning, Jilin, Heilongjiang, and western regions such as Xinjiang, Tibet, Sichuan, Yunnan,
and Guizhou showed a significant positive correlation with O3 concentration (Figure 10d),
the differences in industrial development stages across these regions were substantial. The
eastern region had a well-developed light industry, and the high-tech industry was more
advanced than in the central and western regions. The average annual R&D investment in
the Beijing–Tianjin–Hebei region amounted to 5.88 billion yuan from 1999 to 2015, com-
pared to only 83 million and 66 million yuan in central and western regions, respectively,
in accordance with the Statistical Yearbook of China’s High-tech Industry [86]. Northeast
China is a crucial hub for both agricultural and industrial production within China. The
region’s industrial structure is primarily focused on heavy chemical manufacturing and
benefits from robust industrial infrastructure. Pollution in the region is predominantly
attributed to the steel, machinery, petroleum, and chemical industries, with coal com-
bustion, automobile exhaust, and petrochemical emissions being the primary sources of
pollutants [87]. The western region of Northeast China is characterized by high energy
consumption and an abundance of coal and mineral resources, resulting in the presence of
high-pollution industries such as smelting, oil mining, and mineral extraction.

4. Conclusions and Policy Implications

The present study examined the spatiotemporal variation characteristics of O3 con-
centration across China using spatial econometric models, stochastic forest models, and
GWR analysis. The study investigates the correlation between meteorological, natural,
and socioeconomic factors with O3 concentration. Our results show significant spatial
heterogeneity and agglomeration of O3 concentration across the country, with Beijing,
Tianjin, Shandong, and Qinghai being the most polluted regions. Conversely, Chongqing,
Guizhou, Guangxi, and Heilongjiang have lower levels of O3 pollution. From 2015 to 2019,
the annual O3 concentration tended to increase initially but slightly decreased thereafter.
The study identified eight significant factors in determining the spatial distribution of O3
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concentration, with meteorological, natural, and socioeconomic factors playing crucial
roles. Precipitation, temperature, and per capita GDP positively influence O3 concentration,
while wind direction, RD project cost, forest stock, forest coverage, and SO2 have negative
effects. The study indicates that meteorological, natural, and socioeconomic factors have
a strong spatial dependence on O3 concentration, and recent severe O3 pollution in the
Pearl River Delta and central and western regions of China including Jiangxi, Guangxi,
and Guizhou. These results indicated that residential energy use and industrial source
emissions strongly affected air pollution in the Pearl River Delta and the central and west-
ern regions. Additionally, the proportion of the secondary industry significantly affected
pollution in Northeast China, demonstrating that the secondary industry immensely con-
tributed to economic growth. Although industrial coal burning is a significant contributor
to high O3 pollution, high-tech industries are becoming increasingly responsible for O3
pollution in the Beijing–Tianjin–Hebei region. By contrast, the influence of meteorological,
natural, and socioeconomic factors on O3 pollution in eastern China is relatively stable.
High-energy-use and high-pollution industries contribute to O3 pollution in Xinjiang, Ti-
bet, and other western regions, highlighting the need for better energy conservation and
emissions reduction strategies.

Based on these findings, we propose the following policy recommendations:

(1) Recently, the concentration of O3 in Chinese cities has increased, especially in highly
developed areas like the Beijing–Tianjin–Hebei region and the Yangtze River Delta,
where O3 pollution is even more serious. Besides this, some industrial cities in
western China have serious O3 pollution problems. Most studies were performed
only in heavily polluted areas; however, the mechanism of O3 source, favorable
weather conditions, and exogenous transport characteristics in areas with lower
levels of pollution have not been systematically explored. To control air pollution
more effectively, different development stages of provinces and their environmental
capacities. Therefore, a regional division of O3 pollution control should be established,
and strategies for reducing key pollutants in different regions should be developed
to form a collaborative atmospheric environment management system that fosters
fine governance;

(2) To control O3 emissions in areas including the Pearl River Delta and the central and
western regions of Jiangxi, Anhui, Guangxi, Guizhou, and Qinghai, reducing NOx
emissions from industrial sources and motor vehicle exhaust is essential. Strategies
such as replacing coal with clean energy, upgrading old cars with new ones, phasing
out old cars with subsidies, and developing public transport could effectively reduce
NOx emissions. Additionally, regulating meteorological variations, such as creating
artificial rain during summer, could help reduce O3 concentrations;

(3) As for the industrial enterprises with high energy consumption and high pollution,
efforts should be made to develop high-quality and efficient clean energy (including
nuclear power and wind power), high-tech industries, and modern service industries
to satisfy the requirements of optimizing the industrial and energy consumption
structure. At the same time, air pollution is the result of industrial production, urban
construction, residents’ lifestyles, and other factors. Therefore, local governments
should establish a multidisciplinary cooperative control mechanism in order to create
a healthy balance [88].

Our study has certain limitations. Firstly, the variables collected were not compre-
hensive, and some variables had missing data. However, it is essential to consider other
factors that could potentially impact O3 concentration. If additional data become available
in the future, the indicators of all factors could be significantly improved, enabling a more
comprehensive and systematic study. Secondly, the sample size of the study was not large
enough, and more extended periods of observations and continuous research are required
to obtain more accurate results.
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