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Abstract: In the past couple of years, the world has come to realize the importance of renewable
sources of energy and the disadvantages of excessive use of fossil fuels. Numerous studies have
been conducted to implicate the benefits of artificial intelligence in areas of green energy production.
Artificial intelligence (AI) and machine learning algorithms are believed to be the driving forces
behind the fourth industrial revolution and possess capabilities for interpreting non-linear relation-
ships that exist in complex problems. Sustainable biofuels are derived from renewable resources
such as plants, crops, and waste materials other than food crops. Unlike traditional fossil fuels
such as coal and oil, biofuels are considered to be more sustainable and environmentally friendly.
The work discusses the transesterification of jatropha oil into biodiesel using KOH and NaOH as
alkaline catalysts. This research aims to examine and optimize the nonlinear relationship between
transesterification process parameters (molar ratio, temperature, reaction time, and catalyst concen-
tration) and biodiesel properties. The methodology employed in this study utilizes AI and machine
learning algorithms to predict biodiesel properties and improve the yield and quality of biodiesel.
Deep neural networks, linear regression, polynomial regression, and K-nearest neighbors are the
algorithms implemented for prediction purposes. The research comprehensively examines the impact
of individual transesterification process parameters on biodiesel properties, including yield, viscosity,
and density. Furthermore, this research introduces the use of genetic algorithms for optimizing
biodiesel production. The genetic algorithm (GA) generates optimal values for transesterification
process parameters based on the desired biodiesel properties, such as yield, viscosity, and density.
The results section presents the transesterification process parameters required for obtaining 72%,
85%, and 98% biodiesel yields. By leveraging AI and machine learning, this research aims to enhance
the efficiency and sustainability of biodiesel production processes.

Keywords: biodiesel; deep neural networks; genetic algorithms; machine learning transesterification
process; kinetics optimization

1. Introduction

The rise in economic progress for countries across the world has increased their need
for energy, the majority of which is sourced from scarce fossil fuels such as coal, natural gas,
and petroleum. This, together with increasing environmental concern and strict environ-
mental rules, has prompted a plethora of scientists to investigate renewable feedstock as a
source of alternative fuels [1,2]. Among various options, biodiesel is becoming an increas-
ingly popular choice because of its environmental benefits. Biodiesel is a clean-burning
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alternative fuel that can be synthesized from indigenous resources [3,4]. Basically, it is a
methyl ester with long-chain fatty acids generated from vegetable oil and animal fats. When
compared to petroleum-based diesel, it has several benefits, such as a reduction of exhaust
emissions, viz., less carbon monoxide, sulfur oxides, nitrogen hydride, particulate matter,
unburned hydrocarbons during combustion, improved biodegradability, non-toxicity, in-
herent lubricity, a higher flash point, and domestic origin. Therefore, it is advantageous to
utilize biodiesel as an alternative fuel to replace conventional petroleum-based fuels [5].
Biodiesel can be directly used in the existing diesel engine, either in neat or blended form.
The alternative fuel must be technically, ecologically, and commercially viable. These
conditions make triglycerides and their derivatives viable diesel fuel replacements.

The major problems with triglycerides being used as diesel fuel replacements are
high viscosity, poor volatility, and polyunsaturation. These problems, however, can be
mitigated by developing vegetable oil derivatives through different processes such as
dilution, microemulsion, pyrolysis, and transesterification. Among various methods,
transesterification is the most prevalent technique for making biodiesel, where triglycerides
react with alcohol in the presence of a catalyst to produce biodiesel and glycerol. The process
depends on the free fatty acid (FFA) content of the feedstock. If the FFA content of the oil
is less than 1 wt % FFA, an alkali-catalyzed method is used. However, for oil containing
a higher level of FFA, a two-step transesterification process is suggested that involves
acid esterification followed by alkali transesterification. This present study focuses on the
transesterification of Jatropha Curcas with FFA less than 1% using potassium hydroxide
(KOH) as a catalyst and the implementation of a DNN model along with multiple machine
learning models over process parameters of the transesterification process for predicting
multiple characteristics of the biodiesel produced.

Machine learning is a branch of AI that works on the concept of self-learning and
enables computers to do so without explicit programming [6,7]. With the assistance
of adequate training data, machine learning algorithms can detect patterns, learn from
them, and make conclusive predictions [8]. Similar to machine learning algorithms, the
application of neural networks for predictions is a subset of AI and is inspired by the
workings of the human brain. Neural networks are widely applicable for solving supervised
learning and reinforcement learning-related problems. A deep neural network (DNN) is a
sophisticated version of an artificial neural network (ANN) comprising multiple densely
connected hidden layers between the input and output layers [9,10]. Multiple studies have
suggested the superiority of DNN over shallow ANN in modeling complex nonlinear
relationships. A DNN comprises several connected nodes, also known as neurons. The
neurons receive input signals and trigger computational processes, which subsequently
generate outputs that act as inputs for other neurons in the subsequent layers of the
neural network.

The richness of the data and learning time are directly proportional to the efficiency of
a DNN, with certain caveats that are introduced with different problem areas. The reason
for selecting a DNN or machine learning algorithm is to identify complex relationships that
exist between different input variables; the relationships may be nonlinear or polynomial in
nature. The ability of the model to understand the existing relationships will determine its
efficiency in predicting outcomes. Similar to AI and machine learning algorithms, the use
of genetic algorithms (GA) has started gaining popularity in terms of its implementation
beyond traditional computer science [11]. GA is widely used for solving optimization
problems across different areas of medical science, vehicle routing, financial markets, etc.
A genetic algorithm is an optimization technique that works on the principle of natural
selection and helps find optimal or near-optimal solutions. GA is a type of evolutionary
algorithm that is inspired by Darwin’s theory of evolution. It is a randomized approach that
works towards finding the best solution by making slow and slight continuous changes in
every set of solutions. GA and AI are complementary in nature to one another and, when
used in combination, can prove significantly beneficial.
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Alternative fuels must be technically, environmentally, and economically viable. These
requirements make triglycerides (vegetable oils/animal fats) and their derivatives viable
diesel fuel alternatives [12–15]. Substituting triglycerides is difficult due to their high
viscosity, low volatility, and polyunsaturation in the catalytic process during the transes-
terification of oils [16,17]. The optimization of these parameters is required for any effort
that seeks.

The work discusses the use of two regression algorithms, random forest and artificial
neural networks, for predicting cetane numbers for biodiesel [18]. The authors collected
experimental data from various literary works and created a consolidated dataset. The
data set included 12 different FAME profiles from 131 different biodiesel types. The author
is aiming at establishing the impact of the FAME composition on the cetane number for
biodiesel. The root mean squared error (RMSE) and the coefficient of determination (R2) are
used as performance indicators for both regression algorithms. The experimental analysis
depicted a better performance for ANN as compared to the random forest algorithm. The
RMSE and R2 values for ANN are 0.95 and 2.53, respectively. Higher values of stearic acid
and myristic acid beyond 51.95 and 44.95%, respectively, resulted in a positive impact on
the cetane number, whereas higher values beyond 68.4% for linolenic acid resulted in a
negative impact on the same.

The authors propose the creation of an estimation model for the cetane number of
biodiesels [19]. The work combines the use of least squares support vector machines,
genetic algorithms (GA), particle swarm optimization (PSO), and a hybrid of GA and PSO.
The dataset comprised 232 fuel samples that were collected by the authors from different
literary works. The coefficient of determination (R2) and mean relative errors (MREs) were
used as performance indicators. The statistical analysis indicated LSSVMHGAPSO as the
most accurate model for the estimation of cetane numbers.

The work discusses the use of ANN for predicting the physical and chemical properties
of biodiesel blends [20]. The authors described the production process of biodiesel as a
result of blends of virgin castor oil (VCO) and waste frying oil (WFO). The following are
the respective blend compositions: B1 (100% VCO), B2 (100% WFO), B3 (50% VCO), B4
(25% VCO), and B5 (75% VCO). Acidity level, saponification index, and density were
considered independent variables of the ANN model. The statistical analysis indicated
the influence of WFO on the physical and chemical properties of biodiesel. Depending
on the blend composition and the subsequent transesterification process, the ANN model
predicted different values for fuel acidity, cetene index, and kinematic viscosity.

The authors discuss the production of biodiesel from cotton oil. Subsequent blends for
biodiesel were created by mixing diesel fuel with the produced cotton biodiesel. The work
proposes the use of artificial neural networks and a linear regression model for predicting
the viscosity and density of the fuel and its blends that were produced [21]. The authors
used temperature and blend ratio as the two independent variables for the model. The
temperatures ranged from 293 K to 373 K, whereas the blends were created by mixing 20,
30, 40, 50, and 75% of diesel fuel in volumetric ratios. MAPE was used as a performance
indicator for both models. The ANN model performed better in comparison to the linear
regression model with a 0.02% ANOVA for predicted density.

The authors propose a genetic algorithm-based back propagation neural network
model for predicting biodiesel properties concerning its FAME compositions. The model
comprises five input parameters or independent variables such as methyl palmitate, methyl
stearate, methyl oleate, methyl linoleate, and methyl linolenate [22]. The proposed predic-
tion model aims to identify the nonlinear relationship between FAME compositions and
biodiesel properties. The root mean square error (RMSE) and mean absolute percentage
error (MAPE) are the performance indicators chosen by the authors. The authors observed
that combining a genetic algorithm with a back propagation neural network assists in
parameter optimization and improves prediction accuracy. The authors consider cetene
number, kinematic viscosity, iodine value, and cold filter plugging point as the four output
parameters or dependent variables. The experiment analysis concluded that saturated
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FAMEs had a positive impact on cetane number, kinematic viscosity, and cold filter plug-
ging point, whereas the iodine value for biodiesel was dependent on unsaturated FAMEs.

The authors propose an ANN-based model for yield prediction of biodiesel blends. The
work discusses the production of biodiesel blends from the Jatropha algae oil mixture [23].
Catalyst concentration, reaction time, temperature, and methanol/oil volumetric ratio
were used as independent variables for the model. The coefficient of determination (R2) is
selected as a performance indicator for the model in terms of predicting blend yield.

The work discusses the use of linear regression algorithms for the prediction of
biodiesel properties. The biodiesel samples used in the dataset were produced from
17 different blends [24]. The authors selected viscosity, density, flash point, higher heating
value, and oxidative stability as dependent variables. Saponification value, iodine value,
and polyunsaturated fatty acids were considered independent variables. Flashpoint and
oxidative stability displayed no correlation during the statistical analysis. The authors im-
plemented the ANOVA model after regression analysis to determine the significance of the
model and the importance of individual independent variables. The proposed model was
successful in predicting biodiesel properties such as viscosity and density with significantly
higher accuracy as compared to the flashpoint. An increase in accuracy for the model was
observed by the authors when they included polyunsaturated/monounsaturated fatty acid
balance (PU/MU) as part of the independent variables.

The work discusses the implementation of a linear regression model and artificial
neural networks to predict yield for biodiesel [25]. The authors produce biodiesel using the
transesterification process of soybean oil at a constant temperature. Reaction time, catalyst
percentage, and molar ratio were selected as independent variables for both models. R2 and
RMSE are the selected performance indicators for both models. The ANN model presented
better results in terms of accuracy and establishing a correlation in comparison with the
linear regression model. The R2 values for linear regression and ANN are 0.41 and 0.98,
respectively. The ANN model predicted a minimum of 70.97 and a maximum of 87.56%
yield for biodiesel.

The study discusses publication distribution for the applicability of machine learning
algorithms for biodiesel production during 2017 and 2022 from the Scopus database [26]
mentioned in Appendix A. Table 1 illustrates a comparative study between selected works
focusing on the application of machine learning algorithms and neural networks for
biodiesel production.

Table 1. Applications of ML algorithms in biodiesel production.

Reference Feedstock Input Parameters Output Parameters Model Selected Performance
Parameters

Genetic Algo for
Optimization

[27] -
Composition of fatty

acid methyl
ester (FAME)

Cetane number (CN),
Viscosity and density ANN MSE NA

[18] - 12 FAMEs, 131 different
biodiesel types Cetane Number Random Forest, ANN RMSE, R2 NA

[20] Virgin castor oil and
Waste frying oil

Fuel acidity, ketone
index, and

kinematic viscosity
Yield % ANN average absolute

deviations NA

[22] - FAME

CN, kinematic
viscosity, iodine value

and cold filter
plugging point (CFPP)

GA-based BPNN RMSE, MAPE Yes

[21] Cotton Oil Temperature, Blend
Ratio Viscosity, density LR, ANN MAPE NA

[28] Soybean oil
Molar ratio of

methanol/oil, Reaction
temperature

Yield ANN Accuracy NA
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Table 1. Cont.

Reference Feedstock Input Parameters Output Parameters Model Selected Performance
Parameters

Genetic Algo for
Optimization

[29] Castor Oil
Catalyst concentration,
methanol to oil molar

ratio, temperature
% FAME Yield ANN MSE NA

[30] Thevetia peruviana
seed oil

Catalyst loading,
methanol/oil molar

ratio, time
Yield Adaptive neuro-fuzzy

inference system SEP, R2, MAPD Yes

[23] Jatropha-algae oil Flash point, FFA,
Acid number Yield ANN R2 NA

[31] Waste Cooking Oil

Dosage of catalyst,
molar ratio, mixing
speed, mixing time,

temperature, humidity
and impurities

Viscosity turbidity,
density, high heating

value, and yield
SVM RMSE Yes

[32] Rice bran

FFA %, Methanol to rice
bran ratio, Sulfuric acid
to rice bran mass ratio,

reaction time, 5 N
NaOH content

Yield SVM RMSE Yes

Proposed Work Jatropha
molar ratio, temperature,

reaction time,
catalyst concentration

Yield, Density,
and Viscosity

DNN, Linear
Regression,
Polynomial

Progression, KNN

MSE, RMSE,
MAE Yes

In the context of the present paper, it is divided into two broad sections: prediction and
optimization. In terms of prediction, a DNN model along with multiple machine learning
models is created over the process parameters of the transesterification process for predict-
ing multiple characteristics of the biodiesel produced. The aspect of optimization discusses
the use of genetic algorithms for predicting optimized transesterification process parameter
values with respect to the desired biodiesel characteristics. A detailed explanation of our
work is discussed in the subsequent methodology section.

2. Methodology

The transesterification process was carried out in a reactor. The apparatus comprises
an oil bath, a reaction flask fitted with a condenser, and a digitally controlled mechanical
stirrer. The glass reactor had a capacity of 500 mL, and it had three necks: one for the stirrer,
the other for the condenser, and the inlet for the reactants. To determine the temperature of
the reaction, a thermometer indicator was utilized. At the very bottom of the batch reactor
was a valve that could be used to collect the finished product. To keep the temperature
stable, the flask used for the reaction is stored inside an oil bath. Before beginning the
reaction, the oil sample (200 mL) was brought up to the desired temperature through
preheating. To preserve the catalytic activity and avoid moisture absorption, the potassium
hydroxide–methanol solution was freshly prepared. The methanolic solution was then
added to the oil that was contained in the reaction flask, and at this point, the measurement
of the time began. This laboratory setup was utilized to optimize the primary process
conditions in relation to the transesterification of the virgin Jatropha oils.

In order to guarantee the accuracy of the measurements of all the raw materials for the
chemical reactions, as well as the temperature measurement and the other safety measures,
precautions were taken. The traditional approach to the production of biodiesel, which
makes use of a homogenous alkali catalyst such as KOH and produces a high yield of
methyl ester, was utilized in this experiment. In the first case, the reaction conditions were
optimized for maximum yield while simultaneously keeping the quality of the methyl
esters as close to the specification as possible.

The amounts of methanol and metal hydroxide, in addition to the temperature of the
reaction and the amount of time it takes, are the most important factors that influence the
transesterification reaction. It has been determined that the molecular weight of Jatropha
curcus oil, including its primary chemical constituents, is 870.19. Since the oil also consists
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of some other less significant components. It was estimated that the molecular weight of
the oil extracted from Jatropha curcus was approximately 900. For the transesterification
reaction to take place, there must be a total of three moles of methanol present for every
mole of vegetable oil. Because the molecular weight of methanol is 32, 96 g of methanol
was required for the transesterification of one mole (or 900 g) of Jatropha curcus oil, which
resulted in a methanol concentration of 10.67 percent.

The process of systematic literature review has resulted in the creation of the following
research questions. The research questions have been formulated concerning existing
works and futuristic possibilities concerning the production of biodiesel. The authors have
attempted to answer the following research questions through their respective findings in
the results section:

RQ1 What are the key transesterification parameters that determine biodiesel properties?
RQ2 What is the relationship between different transesterification parameters?
RQ3 What is the impact of individual transesterification parameters on different properties

of biodiesel?
RQ4 What methods can be adopted to produce biodiesel with the desired physical and

chemical properties?
RQ5 How can we optimize transesterification parameters to yield the most sustainable and

profitable biodiesel?

Tables 2 and 3 illustrate the training dataset for input and output variables, respec-
tively. NaOH and KOH are the two alkaline catalysts that have been used during the
training process.

Table 2. Training data input variables.

Methanol Oil Temp Duration NaOH/KOH

0.5 0.5 60 60 1
0.66666667 0.33333333 60 60 1

0.75 0.25 60 60 1
0.8 0.2 60 60 1

0.83333333 0.16666667 60 60 1
0.85714286 0.14285714 60 60 1
0.92307692 0.07692308 60 60 1
0.92307692 0.07692308 60 60 1
0.94736842 0.05263158 60 60 1
0.85714286 0.14285714 60 60 0.1
0.85714286 0.14285714 60 60 0.2
0.85714286 0.14285714 60 60 0.3
0.85714286 0.14285714 60 60 0.4
0.85714286 0.14285714 60 60 0.5
0.85714286 0.14285714 60 60 1
0.85714286 0.14285714 60 60 1.5
0.85714286 0.14285714 20 60 1
0.85714286 0.14285714 30 60 1
0.85714286 0.14285714 45 60 1
0.85714286 0.14285714 60 60 1
0.85714286 0.14285714 60 30 1
0.85714286 0.14285714 60 60 1
0.85714286 0.14285714 60 90 1
0.85714286 0.14285714 60 120 1
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Table 3. Training data output variables.

Yield Density Viscosity Yield Density Viscosity

NaOH

32 0.8898 4.82

KOH

34 0.8876 4.64
40 0.8898 4.84 46 0.8877 4.64
51 0.8898 4.96 57 0.8877 4.65
64 0.8895 4.89 69 0.8878 4.63
70 0.889 4.89 78 0.888 4.63
89 0.8891 4.98 93 0.8885 4.63
92 0.8892 4.88 93.5 0.8885 4.63
89 0.8886 4.89 94 0.8885 4.62
88 0.8886 4.92 94 0.8885 4.62
39 0.889 4.89 43 0.8891 4.71
50 0.889 4.9 54 0.8891 4.69
61 0.889 4.92 69 0.889 4.69
75 0.889 4.98 80 0.8889 4.67
82 0.8885 4.99 91 0.8886 4.63
89 0.8886 4.99 93 0.8885 4.63
82 0.8885 4.97 92.5 0.8885 4.63
30 0.898 4.98 35 0.899 4.9
60 0.899 4.97 65 0.8975 4.88
75 0.8891 4.99 82 0.8885 4.76
85 0.889 4.63 93 0.8885 4.63
72 0.8898 4.84 78 0.8895 4.84
82 0.8891 4.8 93 0.8891 4.8
83 0.8898 4.73 95 0.8888 4.73
88 0.8898 4.63 92 0.8885 4.63

3. Experimental Details

Biodiesel is a renewable and biodegradable form of diesel synthesized from renewable
sources such as vegetable oils, waste oils, and animal fat oils. The process of biodiesel
production involves multiple steps such as feedstock pre-treatment, transesterification reac-
tions, purification of biodiesel, etc. Our current work focuses on the application of machine
learning and neural network algorithms for optimizing the transesterification reaction.
Figure 1 represents the model workflow. Figure 2 depicts the architecture for the DNN
model implemented in our work. In this section, the authors discuss the four algorithms
that have been implemented to comprehend the relationships between transesterification
process parameters and predict biodiesel properties. The section talks about the role of
genetic algorithms in optimizing the process parameters for transesterification. A flowchart
has been presented that depicts the workings of the genetic algorithm.
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Linear regression is one of the most widely implemented machine learning algorithms
for predictive analytics. It falls under the category of supervised learning and performs
regression tasks. The purpose of a regression model is to predict the target variable based
on certain independent variables. The target variable may also be addressed as the output
variable, whereas the independent variables may be addressed as input variables. The
LR algorithm assesses the relationship between dependent and independent variables. It
estimates the impact of independent variables on the magnitude of the output variable.
The linear regression algorithm generates a straight line or a surface that minimizes the
distance between predicted and actual output values. A simple linear regression model may
comprise one input and one output variable, whereas in the case of multivariate regression,
there are multiple independent variables involved. Multi-output linear regression involves
predicting multiple output variables from a set of various independent variables. In this
work, the multi-output linear regression algorithm has been implemented, which considers
transesterification process parameters as input variables and properties of biodiesel as
target or output variables. The model establishes a linear correlation between input and
output variables. It predicts the behavior of output variables based on the values of multiple
independent variables.

The linear regression algorithm works well in the case of a linear relationship between
independent and dependent variables. In the case of a non-linear relationship between
dependent and independent variables, certain polynomial expressions have been added
to the linear regression to convert it into a polynomial regression problem. A polynomial
regression model computes an nth-degree polynomial relationship between independent
and dependent variables. In the current work, the polynomial regression algorithm has
been implemented to ensure the prediction of biodiesel properties. The work computes
the model on different polynomial degrees, evaluates the performance and accuracy of the
model at each stage, and subsequently selects the best nth-degree option.

The K-Nearest Neighbor (KNN) regression model is non-parametric and intuitive in
nature. It approximates the association between independent and dependent variables
based on distance functions. KNN-based regression is most suited for problems with lower
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data dimensionality. The KNN algorithm can be used for both classification and regression
problems. The KNN model works on the concept of common intuition (feature similarity)
and is adequate for handling nonlinear relationships in the data set without involving any
complicated data engineering practices.

The final set of algorithms that have been implemented in this work of ours is the
deep neural network (DNN). The DNN architecture comprises an input layer, multiple
densely connected hidden layers, and an output layer. Each layer in the neural network
is comprised of an activation function that is responsible for introducing nonlinearity in
the data set. Hyperparameter tuning is one of the key aspects of implementing a DNN
model. The efficiency, accuracy, and learning rate of the model are directly related to its
hyperparameters. The proposed work discusses the implementation of a DNN model
coupled with a genetic algorithm for its hyperparameter tuning. The deep net model
considers transesterification process parameters as input variables, constructs generaliza-
tions based on input values, and stores them in the form of weights in the hidden layers.
Table 4 describes the various hyperparameters that have been used to construct the deep
neural network.

Table 4. DNN network parameters.

Parameters Values

Number of neurons in the Input Layer 20
Total number of hidden layers 4
Number of Input Parameters 5

Number of neurons in hidden layer 1 20
Number of neurons in hidden layer 2 32
Number of neurons in hidden layer 3 48
Number of neurons in hidden layer 4 64

Number of neurons in the output layer 3
Activation function ReLu

Optimization Algorithm Adam
Learning Cycles 200, 250, 300 Epochs
Loss functions MSE, Cross Entropy

Deep neural networks (DNNs) are a type of artificial neural network (ANN) with
multiple layers of interconnected nodes, also known as artificial neurons. These networks
are called “deep” because they have many layers, typically more than three. DNNs are
modeled after the structure and function of the human brain and are used for a wide
variety of tasks, such as image and speech recognition, natural language processing, and
decision-making. They are trained to recognize patterns and make predictions by adjusting
the weights and biases of the artificial neurons in each layer. A DNN typically has an input
layer, one or more hidden layers, and an output layer. The input layer receives the raw data,
and the output layer produces the final prediction or decision. The hidden layers process
the data and extract features that are used to make the final decision. The training process
of DNNs is conducted by providing them with a large set of labeled data and adjusting
the weights and biases of the artificial neurons in each layer to minimize the error between
the predicted output and the true output. The training process of a DNN is carried out by
providing it with a large set of labeled data and adjusting the weights and biases of the
artificial neurons in each layer to minimize the error between the predicted output and the
true output.

The algorithm used to adjust the weights and biases is called backpropagation. During
the forward pass, the input data is passed through the network, and the artificial neurons
in each layer process the data by applying a set of mathematical operations to it. These
operations include matrix multiplications, activation functions, and bias additions. The
activation function is a non-linear function that is applied to the output of each neuron to
introduce non-linearity into the network, allowing it to learn and represent more complex
patterns. During the backward pass, the error is propagated back through the network,
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and the weights and biases of the neurons are updated to reduce the error. This process
is repeated multiple times until the error is minimized. After the training is complete,
the DNN can be used to make predictions on new, unseen data by passing it through the
trained network. The predictions are made by the output layer, which produces the final
decision based on the features extracted by the hidden layers.

A genetic algorithm (GA) is a type of optimization algorithm that is inspired by the
process of natural selection. It is used to find an optimal solution to a problem by mimicking
the process of evolution. A GA is used to find an optimal solution in a large search space by
simulating the process of natural selection. Table 5 describes the operating parameters for
the implemented GA. Figure 3 explains the workflow for a GA. The basic components of the
GA are a population of candidate solutions, a fitness function, a selection mechanism, and
genetic operators such as crossover and mutation. The population of candidate solutions
is a set of potential solutions to the problem, represented as a set of chromosomes. Each
chromosome is a string of bits or numbers that encodes a possible solution. The fitness
function is used to evaluate the quality of each candidate solution by assigning it a fitness
value. The selection mechanism is used to select the fittest individuals from the population,
which will be used to generate the next generation of solutions.
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Table 5. Genetic algorithm operating parameters.

Parameters Values

Number of generations 100
Population size 50
Crossover Rate 0.8
Mutation Rate 0.2

Selection Scheme Tournament selection

The genetic operators are used to create new solutions by combining the genetic
information of the selected individuals. The process starts with a random population of
candidate solutions, and then it repeatedly applies the selection, crossover, and mutation
operators to create new generations of solutions. The algorithm stops when a satisfactory
solution is found or when a stopping criterion is met, such as a maximum number of
iterations. Tables 6 and 7 represent the results obtained after implementing GA.

Table 6. Genetic algorithm optimization data KOH.

Biodiesel Properties Values Methanol Oil Temperature Duration Catalyst

Yield
72 0.83 0.17 60 60 0.5
85 0.86 0.14 40 60 1.2
98 0.85 0.15 43 98 0.7

Density 0.89 0.85 0.15 30 60 0.9
0.88 0.83 0.17 60 60 1.2

Viscosity
4.8 0.86 0.14 60 60 0.9

4.99 0.85 0.15 30 60 1
4.63 0.87 0.13 60 60 1

Table 7. Genetic algorithm optimization data NaOH.

Biodiesel Properties Values Methanol Oil Temperature Duration Catalyst

Yield
72 0.86 0.14 43 60 0.5
85 0.86 0.14 48 60 1
98 0.93 0.07 60 60 1.2

Density 0.89 0.85 0.15 60 60 0.3
0.88 0.88 0.12 60 60 1

Viscosity
4.8 0.86 0.14 60 60 1

4.99 0.85 0.15 43 60 0.7
4.63 0.85 0.15 60 60 1

4. Results and Discussion

In this section, a clear and concise summary of the experimental results has been
added, including quantitative evaluations of the performance of the proposed model.
These results provide insight into the behavior of different regression models and discuss
patterns that have emerged from the experiments. Tables 8–15 represent prediction values
for yield, density, and viscosity obtained from the implementation of DNN along with
different regression models.
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Table 8. Deep neural network prediction NaOH.

S No. Predicted Yield Predicted Density Predicted Viscosity

1 27.2 0.863106 4.6272

2 34 0.863106 4.6464

3 43.35 0.863106 4.7616

4 54.4 0.862815 4.6944

5 59.5 0.86233 4.6944

6 75.65 0.862427 4.7808

7 78.2 0.862524 4.6848

8 75.65 0.861942 4.6944

9 74.8 0.861942 4.7232

10 33.15 0.86233 4.6944

11 42.5 0.86233 4.704

12 51.85 0.86233 4.7232

13 63.75 0.86233 4.7808

14 69.7 0.861845 4.7904

15 75.65 0.861942 4.7904

Table 9. Deep neural network prediction KOH.

S No. Predicted Yield Predicted Density Predicted Viscosity

1 30.26 0.878724 4.5472

2 40.94 0.878823 4.5472

3 50.73 0.878823 4.557

4 61.41 0.878922 4.5374

5 69.42 0.87912 4.5374

6 82.77 0.879615 4.5374

7 83.215 0.879615 4.5374

8 83.66 0.879615 4.5276

9 83.66 0.879615 4.5276

10 38.27 0.880209 4.6158

11 48.06 0.880209 4.5962

12 61.41 0.88011 4.5962

13 71.2 0.880011 4.5766

14 80.99 0.879714 4.5374

15 82.77 0.879615 4.5374
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Table 10. Linear regression observed and predicted data KOH.

Yield Density Viscosity Predicted Yield Predicted Density Predicted Viscosity

91 0.8886 4.63 70.30959831 0.88879447 4.67993182

82 0.8885 4.76 66.14170564 0.89243599 4.746798

69 0.8878 4.63 75.74625353 0.8883315 4.654406

93 0.8885 4.63 84.82672903 0.88849759 4.654877

78 0.8895 4.84 79.92276644 0.88843614 4.649803

65 0.8975 4.88 47.45668226 0.8963744 4.838719

54 0.8891 4.69 61.59931988 0.8889726 4.694965

78 0.888 4.63 81.04319753 0.88842838 4.654681

Table 11. Linear regression observed and predicted data NaOH.

Yield Density Viscosity Predicted Yield Predicted Density Predicted Viscosity

82 0.8885 4.99 64.79293 0.889073 4.895656

75 0.8891 4.99 60.10289 0.892384 4.919801

64 0.8895 4.89 69.48634 0.889182 4.875849

89 0.8886 4.99 78.16462 0.889014 4.883681

72 0.8898 4.84 73.2634 0.888542 5.01589

60 0.899 4.97 42.04116 0.895753 4.95592

50 0.889 4.9 56.76992 0.889109 4.90284

70 0.889 4.89 74.54867 0.889084 4.880418

Table 12. Poly regression observed and predicted data KOH.

Yield Density Viscosity Predicted Yield Predicted Density Predicted Viscosity

34 0.8876 4.64 29.39312 0.887523 4.62954

46 0.8877 4.64 54.28247 0.887761 4.660547

57 0.8877 4.65 68.04869 0.887977 4.663683

69 0.8878 4.63 76.73132 0.888137 4.661608

78 0.888 4.63 82.69595 0.888257 4.658575

93 0.8885 4.63 87.0427 0.888349 4.655601

93.5 0.8885 4.63 99.45522 0.888631 4.643853

94 0.8885 4.62 99.45521731 0.888631 4.643853

Table 13. Poly regression observed and predicted data NaOH.

Yield Density Viscosity Predicted Yield Predicted Density Predicted Viscosity

32 0.8898 4.82 27.8818 0.889884 4.821446

40 0.8898 4.84 47.63148 0.889698 4.867874

51 0.8898 4.96 60.52953 0.889464 4.88095

64 0.8895 4.89 69.23578 0.889279 4.88555

70 0.889 4.89 75.44304 0.889136 4.887265

89 0.8891 4.98 80.07423 0.889025 4.887828

92 0.8892 4.88 93.75772 0.888678 4.886507

89 0.8886 4.89 93.75772 0.888678 4.886507
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Table 14. K nearest neighbor observed and predicted data KOH.

Yield Density Viscosity Predicted Yield Predicted Density Predicted Viscosity

91 0.8886 4.63 67.4 0.88894 4.678

82 0.8885 4.76 85.2 0.8903 4.706

69 0.8878 4.63 78 0.8881 4.634

93 0.8885 4.63 90 0.88852 4.664

78 0.8895 4.84 90 0.88882 4.706

65 0.8975 4.88 73.6 0.8924 4.76

54 0.8891 4.69 67.4 0.88894 4.678

78 0.888 4.63 90 0.88852 4.664

Table 15. K nearest neighbor observed and predicted data NaOH.

Yield Density Viscosity Predicted Yield Predicted Density Predicted Viscosity

82 0.8885 4.99 61.4 0.8889 4.936

75 0.8891 4.99 79.6 0.89096 4.912

64 0.8895 4.89 72.6 0.8892 4.942

89 0.8886 4.99 83 0.88896 4.858

72 0.8898 4.84 83.4 0.88912 4.848

60 0.899 4.97 68.6 0.89276 4.982

50 0.889 4.9 61.4 0.8889 4.936

70 0.889 4.89 83 0.88896 4.858

PDP (partial dependence plot) graphs are a way to visualize the relationship between
a single feature of a dataset and the outcome variable in a machine learning model. The
graph shows how the outcome variable changes as the features of interest are varied while
keeping all other features constant. PDP graphs are often used to interpret the results of
complex models and identify which features have the greatest impact on the outcome. They
are also useful for identifying non-linear relationships between features and the outcome
variable. Figures 4 and 5 illustrate the PDP graphs between transesterification process
parameters and biodiesel properties for NaOH and KOH as catalysts, respectively.

4.1. Influence of Methanol/Oil Ratio

One of the crucial aspects that determines the outcome of the transesterification
reaction is the proportion of alcohol to oil that is used. In theory, transesterification requires
three moles of alcohol for every mole of oil that is being converted. In actuality, however,
the molar ratio ought to be on the higher side to move the reaction forward in accordance
with Le Chatelier’s principle, which states that an increase in the concentration of the
reactant shifts the equilibrium toward the formation of the product. This is the case to
move the reaction forward in accordance with Le Chatelier’s principle. Experiments were
run at 60 ◦C and 400 revolutions per minute with varying proportions of methanol to oil to
determine the optimal amount of methanol needed for the reaction (6:1, 12:1, 15:1, 18:1).
When using a ratio of 6:1, the yield that could be obtained in two hours was a maximum of
88% weight. There is not much of an increase in the % yield with higher molar ratios, but
the process takes less time.
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4.2. Influence of Catalyst Concentration

KOH was used as a catalyst for the transesterification of Jatropha curcus oil with
methanol. The reaction was carried out at a temperature of 60 ◦C, with a rotational speed
of 400 revolutions per minute and a ratio of six parts methanol to one part oil. It was
determined through observation that a concentration of KOH of 1.0% is necessary for the
most efficient transesterification possible. It was observed that although there was not a
significant increase in the ester yield when the concentration of KOH was decreased below
or increased above 1%, there was an increase in the formation of glycerol. The highest
possible ester yield of 97% was achieved by using a KOH concentration of 1.0% by weight.

4.3. Influence of Reaction Temperature

The temperature ranges of 30, 45, and 60 ◦C were used in this investigation. The
reaction was carried out with a constant reaction time of 120 min, a constant methanol-
to-oil ratio, and constant KOH concentrations of 6:1 and 1.0%, respectively. The highest
ester yield of 97% was achieved at a temperature of 60 degrees Celsius. It is evident from
this that the ester yield increases in direct proportion to the degree to which the reaction
temperature is raised. The temperature of the reaction should never rise above methanol’s
boiling point, which is 65 degrees Celsius. As a result, the temperature of the reaction was
maintained at 60 degrees Celsius.

4.4. Influence of Reaction Time

In order to determine the optimal time for the reaction, it was carried out for 30, 60,
90, and 120 min at a temperature of 60 ◦C with a rotational speed of 400 revolutions per
minute and a ratio of 6:1 methanol to oil. According to the findings, it is abundantly clear
that the ester yield rises as the reaction time increases. At 90 and 120 min of reaction time,
the ester yields were almost identical. It is abundantly clear that a reaction time of 120 min
resulted in the highest ester yield possible, which was 89% by weight.

Figures 6 and 7 describe the performance evaluation graphs for the DNN with respect
to NaOH and KOH as catalysts. The graphs indicate the comparison between actual values
of biodiesel properties and predicted values.
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Figures 8 and 9 discuss the functioning of polynomial regression in terms of calculating
the degree of the polynomial equation that describes the best non-linear relationship
between transesterification process parameters and individual biodiesel properties.
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Figure 9. Polynomial regression NaOH and KOH yield.

Figures 10 and 11 illustrate the correlations that exist between individual transes-
terification process parameters and biodiesel properties and transesterification process
parameters, respectively. The following heatmaps indicate the level of importance of a
transesterification process parameter in terms of its impact on biodiesel properties.

Mean absolute error (MAE), mean square error (MSE), and root mean square error
(RMSE) have been used as performance indicators for comparing the performance of
different regression models and the DNN. Figures 12–17 represent the same for individual
biodiesel properties of yield, density, and viscosity.
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4.5. Physichemical Characterization of Biodiesel

ASTM D-6584 is the most important biodiesel analysis and standard test technique
for monitoring the refining process. This outlines a GC-FID (gas chromatography with
flame ionization detection) method for quantifying free and total glycerol in 100% methyl
esters (B-100) biodiesel. The G.C. accurately determines the percent mass of free glycerin,
mono, di, and triglycerides in methyl esters. Measuring the level of free glycerol and
any unreacted mono-, di-, or triglycerides in biodiesel will indicate how efficiently the
transesterification reaction is proceeding.

A detailed analysis giving the % composition of various components is given in
Table 16.

Table 16. Concentration levels of the analyte components as seen in the chromatographic display.

Components Concentration %

Glycerol 0.21
Butanetriol 1.11

C14 Tetradecanoic acid 0.56
C16 Hexadecanoic acid 22.94

C18 + 20, Octadecanoic acid + 9-Cis, 12-Cis
Octadecadienoic acid + 9-Octadecenoic acid,
(E)- (E)-9-Octadecenoic acid (E)-Oleic acid +

Eicosanoic acid

61.5

C22 Docosonic (Behnic/Erusic) 1.19
Monopalmitin 1.58

Monolein + Monolinolenin +
Monolinolein(Monglycerides) 2.48

Monostearin 0.39
Other: Diglycerides and Triglycerides

GC analysis (Table 16) of the jatropha biodiesel shows that jatropha curcus methyl
ester contains mostly C18 + C20 carbon-number fatty acids (stearic and arachidic) and C16
hexadecanoic acid. Other components: monglycerides at 2.48%, di and triglycerides.

4.6. Future Work and Recommendation

The developed model can be used to predict the optimal conditions for biodiesel
synthesis from various feedstocks. Moreover, the sustainability of biodiesel production can
be evaluated with a number of different tools. These include techno-economic, life cycle
assessment, energy, and exergy assessments [33,34].

5. Conclusions and Prospects

The study investigates various parameters to obtain optimized conditions for the
production of Jatropha biodiesel using NaOH and KOH as catalysts. A group of multi-
objective regression models coupled with a deep neural network were implemented for
the production of biodiesel properties. The statistical analysis enabled us to categorize
the most relevant transesterification process parameters in terms of having the maximum
impact on biodiesel properties. The empirical analysis depicted a positive correlation
between temperature and duration and a negative correlation between methanol content
and catalyst concentration. Moreover, the analysis stated that methanol concentration had
the maximum positive correlation with the density and viscosity of the biodiesel produced.
The PDP graphs depicted an almost linear curve between viscosity and duration, whereas
the S-shaped curve between viscosity and amount of oil content. The analysis depicted the
nature and extent of the correlation that exists between different transesterification process
parameters. Mean square error (MSE), mean absolute error (MAE), and root mean square
error (RMSE) were used as performance indicators for different prediction models. The
deep neural network model proved to be more accurate in predicting yield and viscosity in
comparison with linear regression, polynomial regression, and the KNN model. Whereas,



Sustainability 2023, 15, 9785 29 of 33

on the contrary, linear regression and polynomial regression proved to be better in terms of
accuracy when predicting the density of the biodiesel produced. The same can be confirmed
from Tables 10–13. Following the prediction phase, an evolutionary optimization technique
in the form of a genetic algorithm is applied to optimize the transesterification process
parameters based on desired biodiesel properties. The work presented in the paper signifies
the applicability of AI in producing biodiesel with the desired set of properties and aligns
itself with its contemporaries [35,36]. The GA-based optimization algorithm was able
to predict trance esterification process parameters for three different sets of values for
yield, density, and viscosity of the biodiesel. The deep neural network exhibits favorable
performance in simulating the biodiesel production process. The sustainability aspect
of biodiesel production, which involves using environmentally friendly feedstocks and
minimizing resource usage, is emphasized. The authors look forward to extending the
existing work by incorporating data regarding biodiesel blends and simulating the biodiesel
production process to produce more sustainable and economically viable forms of biodiesel.

Author Contributions: Conceptualization, A.K. and S.J.; methodology, A.K. and B.Y.L.; software,
A.K., S.J., V.B. and D.B.; validation, A.K., B.Y.L., V.B. and D.B.; formal analysis, A.K., B.Y.L., V.B. and
D.B.; investigation, A.K., B.Y.L., S.J. and V.B.; resources, A.K. and B.Y.L.; data curation, A.K., S.J., V.B.
and D.B.; writing—original draft preparation, A.K., B.Y.L., S.J. and V.B.; writing—review and editing,
V.B., D.B., V.P. and A.S.; visualization, S.J., V.B., V.P. and A.S.; supervision, V.B., D.B., S.J. and V.P.;
project administration, A.K.; funding acquisition, A.K., V.B., D.B., V.P. and A.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data can be made available on request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

FFA Free Fatty Acid
NaOH Sodium Hydroxide
KOH Potassium Hydroxide
FAME Fatty Acid Methyl Ester
VCO Virgin Castor Oil
WFO Waste Frying Oil
CN Cetane Number
CFPP Cold Filter Plugging Point
GC Gas Chromatography
GC-FID Gas Chromatography with Flame Ionization Detection
AI Artificial Intelligence
DNN Deep Neural Network
GA Genetic Algorithm
ANN Artificial Neural Network
RMSE Root Mean Squared Error
MAPE Mean absolute percentage error
ANOVA Analysis of variance
LR Linear Regression
SVM Support Vector Machine
KNN k-nearest neighbours
PDP Partial Dependence Plot
MSE Mean Square Error
MAE Mean Absolute Error
R2 Coefficient of determination
PSO Particle swarm optimisation
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