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Abstract: Carbon emission is the focus of global climate change concerns. Population aging changes
the level of labor structure, which directly affects the industry adjustment and will also have a
long-term impact on carbon emissions. Uncovering the complex association among population aging,
labor allocation, and CO2 emission is crucial for developing effective policies for low-carbon and
sustainable development in China. Therefore, this study aims to analyze whether population aging
contributes to reducing carbon emission intensity by regulating labor allocation. Based on provincial
panel data from 2000 to 2019, the Systematic Generalized Method of Moments (Systematic GMM)
model and the Bias Corrected Least Squares Estimation with Nonsymmetric Dependence Structure
(Bias Corrected LSDV) model are adopted in this study. The results show that nationwide as a whole,
population aging objectively inhibits human capital accumulation and, to some extent, weakens
its positive carbon emission reduction effect. Meanwhile, population aging helps to mitigate the
increase in carbon emissions caused by the capital-labor endowment structure. Due to the dual impact
of aging and population migration, the emission reduction effect of human capital accumulation
is significant in the East. The brain drain in the central and western regions further inhibits the
positive effect of regional human capital accumulation. Promoting the rationalization of population
mobility nationwide, reducing the brain drain in less developed regions, and directing capital into
technology-intensive industrial sectors are the core keys to achieving optimal labor allocation in an
aging society. This will help China meet its carbon neutrality target on schedule.
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1. Introduction

Global warming is one of the most severe problems facing the world, and it has be-
come a global consensus to promote energy saving and emission reduction. To maintain the
hope of achieving the 1.5 ◦C targets for temperature rise control, the Glasgow Climate Pact
(COP26) is a key collective effort to speed up the industrial transition to achieve net-zero
emissions by 2050. This is a crucial step in line with Sustainable Development Goals (SDGs)
after initiating the Kyoto Protocol and Paris Agreement for climate change control [1].
China is the world’s largest carbon emitter, accounting for more than 30% of global CO2
emissions yearly [2]. In 2021, China’s carbon emissions reach 11.47 billion tons, double that
of the US (5 billion tons) and four times that of the EU (2.79 billion tons) (Data source: our-
worldindata.org (accessed on 7 June 2023)). To achieve the goal of carbon neutrality, China
started to strengthen carbon intensity control during the 11th Five-Year Plan, and by 2020
carbon emissions of 10,000 Yuan GDP have been reduced by 46.8% compared to 2005 [3].
The emission control target will be gradually improved during the 14th Five-Year Plan to
fully ensure the achievement of the 3060 strategic goals [4]. Optimizing industrial structure,
improving resource allocation efficiency of production factors, and improving low-carbon
technology innovation has become critical tasks for China’s sustainable development [5,6].
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All of the above are inseparable from the demographic labor force. Since 2000, China has
entered into an aging society. By 2021, the proportion of the population aged 65 and above
has reached 14.2%. Deep aging has become an inevitable trend affecting China’s economic
development [7].

The impact of population aging on China’s labor allocation and carbon emissions
cannot be ignored. First, China’s manufacturing industry is mainly labour-intensive [8].
With the deepening of the aging trend, China has changed from an oversupply of labor
to an undersupply of labor [7,9]. The rise in labor costs has caused China’s traditional
manufacturing industry to lose a large amount of cheap labor [10,11]. This means that
China’s “demographic dividend” has become unsustainable. To achieve healthy and
sustainable development, China’s economy must break away from its dependence on
labor-intensive and energy-intensive industries [12]. Second, the improved quality of the
labor force due to increased years of education per capita is a qualitative demographic
dividend [13]. With further upgrading the industrial structure, the innovation advantage
brought by human capital accumulation will continue to grow and eventually replace the
industrial dominance of the quantitative demographic dividend [14]. Therefore, future high-
quality growth will depend on human capital accumulation and technological innovation
capability [15,16].

Rational allocation of the labor force in quantity and quality is essential in promoting
industrial structure upgrading [17,18]. Human capital accumulation directly determines
the quality of the labor force, while the relative input quantity of capital and labor within
the industrial sectors reflects the quantitative structure of labor allocation. Population aging
may affect the labor allocation from the above two aspects [19]. The impact of population
aging on human capital is twofold: first, the increase in older people in an aging society
is bound to increase the share of social pensions, which will inevitably crowd out other
social welfare inputs, including education inputs [20], which has a negative effect on the
accumulation of human capital [21].

The aging age structure also objectively accelerates the shift from quantity to quality
of labor factor endowment [22–24]. The immediate problem caused by aging is the decline
of the young working population and the disappearance of the quantitative advantage
of labor [25]. With the extension of life expectancy, people will increase the return on
their investment in education, such as delaying their entry into the labor market to get an
education or improving their labor productivity by getting some skills training [26–28],
thus complementing total social human capital.

In terms of the quantitative structure of labor allocation, the reduction in the quantity of
the age-appropriate workforce may also lead to changes in the input structure of productive
factors within the industrial sectors [29]. To find substitutes for the labor force, firms tend
to increase their input of capital factors [30,31], the direct result of which is a decrease in
the share of traditional labor-intensive industries and an acceleration of the upgrading and
transformation to technology-intensive industries in the economy.

The moderating effect of aging on labor allocation will further have a ripple reaction
with the adjustment of industrial structure. First, the accumulation of human capital can
significantly promote green technological innovation. The innovation level of a region is
closely related to the scale of talent. The accumulation of human capital, i.e., the increase of
education per capita, is crucial for expanding talent capacity. Increasing educational attain-
ment per capita and rising workforce quality will not only promote labor productivity [32],
but also are conducive to the advanced transformation of the industrial structure [33].
When the aging of society deepens, on the one hand, the heavy pension burden will crowd
out part of the investment in education and hinder human capital accumulation. On the
other hand, the long-term work experience and knowledge accumulation of older workers
can compensate for the decline in overall social labor productivity to a certain extent [34]
and generate knowledge spillover effects to supplement human capital [35], maintaining
sustainable industrial development.
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However, it cannot be ignored that regular interprovincial population migration
also occurs during the aging process in China [36,37]. In the past two decades, China’s
interprovincial population migration has been mainly from the central and western regions
and the northeastern region to the eastern coastal region [38]. Regional development
imbalance and wage income disparity are the underlying causal factors of interprovincial
migration [38,39]. Since the willingness to migrate older people will gradually decrease
with age, the main interprovincial migration group is the working-age population [40,41].
On the one hand, for the emigrating regions, the migration of the population is usually
dominated by the outflow of labor and talent, which may inhibit the accumulation of local
human capital, resulting in a lack of basis for technological innovation [42,43].

On the other hand, the rise in the resident population in the in-migration area can
alleviate the degree of aging [44]. The continuous in-migration of the population provides
labor security for the upgrading of local industrial structure, and the concentration of talents
is more conducive to the scale effect of human capital accumulation [45], thus reducing
the marginal cost of green technology innovation [46]. Therefore, population migration
has diametrically opposite effects on human capital accumulation and green technology
innovation in and out-migration locations. Along with the impact of aging, the number of
age-appropriate labor forces decreases, and the social creativity of the aging population is
weaker, making society less economically dynamic [25]. For less developed regions, the lack
of innovation leads to a rigid industrial structure with no suitable employment positions
available for talented people, which can intensify the brain drain [47]. Developed regions
have a stronger talent attraction due to higher wages and quality of life services [38]. So,
under the dual effect of aging and population migration, the gap in human capital scale
and industrial structure among regions will be further widened.

Second, aging makes social labor factors scarce, leading to a change in the relative
quantity between capital and labor factors, and this change also facilitates the low car-
bonization of the industrial structure. Technological innovation always saves productive
factors with higher relative prices [48]. When the price per unit of employment rises
due to labor scarcity, firms expand the amount of capital investment to replace labor [49].
However, the substitution of capital for labor is limited, and when the marginal utility of
capital investment starts to diminish, firms will adopt technological innovation to increase
productivity [50]. Labor scarcity forces firms to expand their investment in innovation and
thus increase labor efficiency [51]. The experience of developed countries shows that the
negative impact caused by the lack of labor supply can be compensated by the application
of artificial intelligence and automation technologies [52,53].

Existing studies on the impact of population aging on labor allocation are sufficient,
and the population’s age structure is well documented as a non-negligible factor influ-
encing carbon emission. Shift in the age composition have contributed to rising carbon
emissions [54], mainly because of the rise in older people, leading to increased consump-
tion of natural gas and electricity, causing more CO2 emissions [55]. For carbon emission
intensity, some scholars suggest that the proportion of the elderly population may have an
inverted U-shaped effect on per capita CO2 emissions [56]. And in terms of labor allocation,
improving labor quality is proven to be conducive to technological innovation [16], reduc-
ing the carbon intensity of the production process [57]. The change in the structure of factor
inputs also contributes to carbon emission reduction by improving energy efficiency [58].
However, there is a gap in the comprehensive analysis of the transmission mechanism
among population aging, labor force allocation and carbon emission intensity. The exist-
ing mechanism analyses focus on how aging affects industrial carbon emissions through
changing labor quantity or production efficiency [59,60]. Simultaneous analysis of whether
regulating labor allocation by aging in quantitative and qualitative perspectives contributes
to reducing carbon emission intensity is lacking. Therefore, in this research, we propose
constructing an econometric model to verify whether population aging drives low-carbon
economic growth by regulating labor allocation by changing human capital accumulation
and capital-labor ratio and further enriching the connotation of carbon emission reduction.
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2. Materials and Methods
2.1. Model Setting

Since the effects of population aging and labor force allocation on carbon intensity
may yield exactly opposite conclusions in different regions and at different times, two-way
fixed-effects models (with individual fixed effects and time-fixed effects) using panel
data can effectively fix the impact of regional and temporal differences, leading to more
definitive conclusions [61]. However, there is a time-lag effect in the adjustment of economic
production activities and the implementation of policies [62], so the industrial carbon
emissions in the current period of the region may be correlated with the previous. This
study further constructs a dynamic panel model to consider this effect. To eliminate the
endogeneity issue caused by the lag term, this study uses a Systematic Generalized Method
of Moments (Systematic GMM) approach [63] to estimate the dynamic panel model. The
baseline model is designed as follows:

CEIit = α0 + α1ageit + α2hcit + α3clit + βkXit + µi + ηt + εit (1)

where CEI is carbon emission intensity, which is a region’s per capita CO2 emission. age
is population aging, hc is human capital stock, and cl is capital-labor factor endowment
structure. X represents a set of control variables, including industrial structure upgrading
index (TS), per capita gross regional product (pgdp), foreign direct investment (FDI),
technological innovation (tech), and urbanization level (urz). α0 is the constant term,
µi is the individual fixed effect of different regions; ηt is the year fixed effect, εit is the
stochastic error.

To examine whether there is a synergistic mechanism between population aging
and labor force allocation, two interaction terms, age×hc and age×cl, are added to the
benchmark model to test the influence mechanism. The form is as follows:

CEIit = α0 + α1ageit + α2hcit + α3clit + λ1ageit ∗ hcit + λ2ageit ∗ clit + βkXit + µi + ηt + εit (2)

2.2. Variable Description
2.2.1. Explained Variables

Carbon emission intensity (CEI) is the ratio of total regional CO2 emissions to year-end
population. We use the method recommended by IPCC to estimate CO2 emission from
energy consumption (except electricity):

CO2j = Ej × Gj × Aj × Bj × 44
12

(3)

where CO2j is the CO2 emission of the j energy, Ej is the consumption of the j energy (in-
cluding coal, coke, oil, crude oil, gasoline, diesel oil, kerosene, fuel oil, liquefied petroleum
gas, and natural gas), Gj is the net calorific value of the j energy, Aj is the CO2 emission
coefficient, Bj is the carbon oxidation factor.

Because electricity does not cause emissions, the CO2 emitted mainly comes from
burning coal in thermal power generation. The formula for calculating the CO2 emissions
from electric power is as follows:

CO2e = TE × R × TC × EC × KC (4)

In the formula, CO2e is the CO2 emission of electricity consumption, TE is the total
electricity consumption; R is the ratio of thermal power generation to total power; TC is the
conversion standard coal coefficient of thermal power; EC is the default emission coefficient
of coal; KC is the calorific value of coal.

As shown in Figure 1, the per capita carbon emission at China’s provincial level has
an increasing trend from 2000 to 2019. The per capita carbon emission intensity of Xinjiang,
Inner Mongolia and Qinghai is extremely high, related to the resident population and
industrial structure. Excluding these three provinces, the carbon emission intensity of
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economically developed coastal regions is significantly higher than that of inland regions,
showing a descending trend from east to middle to west.
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Figure 1. The carbon emission intensity of 30 provinces in China.

2.2.2. Core Explanatory Variables

Population aging (age): The elderly dependency ratio is chosen to measure the degree
of aging. The elderly dependency ratio is expressed as the proportion of the population
aged 65 and over to the working-age population (15–64 years). As shown in Figure 2,
China’s population aging is on an overall upward trend.
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Labor allocation: labor allocation is specifically represented by the human capital (hc)
and the capital-labor factor endowment structure (cl). Human capital (hc) is measured
by the years of schooling per capita in the region. Human capital accumulation reflects
the improvement in the overall quality of the labor force, which is the knowledge base for
promoting technological innovation in enterprises. The capital-labor factor endowment
structure (cl) is the capital labor ratio, measured by the ratio of fixed capital stock to regional
employment, where the fixed capital stock is calculated using the perpetual inventory
method [64]. The formula is as follows:

Kt = Kt−1(1 − ηt) + It
/

Pt
(5)
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Kt and Kt−1 represent the fixed capital stock of t period and t−1 period. For the base period
capital stock of provinces in 2000, we use the ratio of the actual capital formation of each
province in 2001 to the sum of the average depreciation rate and the average investment
growth rate from 1953 to 1957 to estimate [65]. ηt represents the depreciation rate of period
t, In this study, the capital depreciation rate of all regions is 10.96% [65]. It represents the
investment amount of fixed assets. Pt represents the fixed assets investment price index.
The capital-labor ratio reflects the resource allocation structure of industrial production.
Rising capital investment is likely to have both a technology-driven effect and an increase
in energy consumption.

2.2.3. Control Variables

Industrial structure upgrading index (iup): The growth rate of the tertiary industry,
mainly the information service industry, exceeds that of the secondary industry, is an
essential indicator of industrial structure upgrading. Based on this, this research adopts
the ratio of the output value of the tertiary industry to the output value of the secondary
industry as the index of industrial structure upgrading. This measure can reflect the service
orientation of the economic structure. If the iup value is on the rise, it means that the
industrial structure is upgrading.

Gross regional product per capita (pgdp): The actual GDP of each region is divided
by the total population to obtain the value of GDP per capita for that region, and the
data is obtained from the local statistical yearbooks of previous years. GDP per capita
reflects the level of the economic output of a region. On the one hand, a higher level of
output depends to a certain extent on a large amount of energy consumption, which is
not conducive to carbon emission reduction. On the other hand, economically developed
regions have stronger environmental regulations, and people have higher requirements for
environmental quality. Local governments and enterprises will invest more intensively in
improving production methods and resource utilization efficiency.

Foreign direct investment (fdi): In this paper, the total import and export of goods
by foreign-invested enterprises are selected as the proxy variable of FDI, according to the
“pollution halo” theory [66]. FDI not only has a technology spillover effect but also brings
advanced management experience to local enterprises, which is conducive to improving
the production efficiency of local enterprises, thus saving energy. However, the “pollu-
tion sanctuary” hypothesis suggests that [67], due to the more stringent environmental
regulations in developed countries, FDI often leads to the transfer of energy-intensive and
high-polluting industries to China, leading to an increase in local energy consumption and
pollution emissions.

Technological innovation (tech): measured by the number of local annual patent appli-
cations granted and data from the statistical yearbooks of previous years. The improvement
of energy use efficiency depends on the production methods and technologies, while the
increase in the level of innovation is the primary driver for the upgrading of production
technologies [68]. Technological innovation is a direct and effective way to improve the
efficiency of resource use, thus reducing carbon emissions per unit of output.

Urbanization level (urz): calculated by the proportion of the urban population to
the total population. Urbanization is considered an important social development factor
affecting the intensity of carbon emissions [69]. An increase in population urbanization
implies a deeper degree of urban socio-economic development. The scale effect of popula-
tion agglomeration within the city results in a larger local industrial structure and a more
significant environmental effect from economic production activities.

This study uses panel data from 30 Chinese provinces from 2000–2019 for the econo-
metric analysis. Raw data of all variables are obtained from the official statistical yearbooks
of China published in previous years. For CEI, the energy consumption data are from
China Energy Statistical Yearbook, and the calculation parameters are from IPCC. Data on
the year-end population are collected from China Regional Economic Statistics Yearbook.
For age, data on the elderly dependency ratio are from China Statistical Yearbook. For hc,
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Data on years of schooling per capita are collected from China Labor Statistics Yearbook.
For cl, the data for the calculation of fixed capital stock are from China Statistical Yearbook,
and labor and employment data are from the statistical yearbook of each province. All
raw data of control variables (iup, pgdp, fdi, tech, urz) are collected from China Statistical
Yearbook. The descriptive analysis of the main variables is shown in Table 1.

Table 1. Descriptive Statistics.

Variable Definition Unit Obs Mean Std. Dev. Min Max

CEI Carbon emission intensity Tons/person 600 6.889 3.720 1.278 23.26
age Elderly dependency ratio / 600 0.128 0.031 0.061 0.238
hc Human capital year 600 9.198 1.322 6.089 13.901
cl Capital labor ratio / 600 11.602 9.793 0.71 56.234

iup Industrial structure
upgrading index / 600 1.014 0.541 0.494 5.169

pgdp Gross regional product
per capita

Thousand
yuan/person 600 9.936 5.362 2.645 29.662

fdi Foreign direct investment Billion dollar 600 43.534 96.993 0.004 592.071
tech Technological innovation Thousand 600 28.024. 56.789 0.07 527.39
urz Urbanization level % 600 51.179 15.191 23.3 89.6

3. Results
3.1. Panel Stability Test

Since the number of individuals in the sample of this study is 30 (N = 30) and the
length of time is 20 (T = 20), it belongs to short panel data. The HT test is used to test the
stationarity of each variable.

As shown in Table 2, the concomitant probability of the first-order difference values of
all nine variables is 0.0000, which passes the 1% significance test, so the original hypothesis
(the series is non-stationary and panels contain unit roots) is rejected. The first-order
difference sequences of the variables are all stationary and integrated of order one I(1).
According to cointegration theory, when the variables have the same order sequence, there
may be a cointegration relationship among the variables.

Table 2. HT unit root test for panel data.

Variables Horizontal Sequence First Order Differential Sequence

CEI 0.8538 (0.4512) −0.0864 *** (0.0000)
age 0.6909 *** (0.0000) −0.2790 *** (0.0000)
hc 0.7065 *** (0.0000) −0.2532 *** (0.0000)
cl 0.9563 (0.9999) 0.4973 *** (0.0000)

iup 0.9510 (0.9997) 0.1109 *** (0.0000)
pgdp 0.9613 (0.9999) 0.1920 *** (0.0000)

fdi 0.9339 (0.9978) −0.0654 *** (0.0000)
tech 0.8481 (0.3688) 0.0407 *** (0.0000)

urz 0.9543 (0.9998) 0.2480 *** (0.0000)
Note: *** indicates the significance at the 1% level.

3.2. Cointegration Test

The previous section tested the stationarity of the panel data, and the results showed
that the variables are integrated into the order I(1). This section further tests the cointe-
gration relationship among the variables using the Kao test, and the results are shown in
Table 3.
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Table 3. Panel Cointegration Test.

Statistic p-Value

Modified Dickey-Fuller t −1.4281 0.0766
Dickey-Fuller t −2.4516 0.0071

Augmented Dickey-Fuller t −2.2304 0.0129
Unadjusted modified Dickey-Fuller t −1.4211 0.0776

Unadjusted Dickey-Fuller t −2.4476 0.0072

The p-values corresponding to the five test statistics are all less than 0.1, meaning the
original hypothesis of “no cointegration relationship” can be rejected at the 10% level. The
cointegration relationship holds, indicating a stable equilibrium relationship between CEI,
age, hc, cl, iup, pgdp, fdi, tech and urz in the long run. So, the original series can be used
for panel model regression.

3.3. Multicollinearity Test

This section judges whether there is multicollinearity among the explanatory vari-
ables by calculating the correlation coefficients and variance inflation factors among the
explanatory variables.

As shown in Table 4, the correlation coefficients among the variables are less than 0.75,
except for three groups of variables (urz and hc, urz and cl, urz and pgdp). The results of
the VIF test (see Table 5) shows that the mean value of the VIF is 5.01. Except for urz, the
VIF values of all the variables are also less than 10. So there is no multicollinearity among
the explanatory variables.

Table 4. Correlation coefficient matrix.

Variables Age hc cl iup pgdp fdi tech urz

age 1.000
hc 0.366 1.000
cl 0.415 0.708 1.000

iup 0.197 0.513 0.346 1.000
pgdp 0.295 0.763 0.626 0.377 1.000

fdi 0.526 0.592 0.455 0.176 0.738 1.000
tech 0.628 0.641 0.619 0.223 0.589 0.695 1.000
urz 0.389 0.859 0.806 0.426 0.884 0.674 0.620 1.000

Table 5. Variance inflation factors test.

Variable VIF 1/VIF

age 1.85 0.5393
hc 5.50 0.1819
cl 4.80 0.2082

iup 1.50 0.6645
pgdp 6.49 0.1540

fdi 5.22 0.1915
tech 4.45 0.2248
urz 10.22 0.0978

Mean VIF 5.01

3.4. Benchmark Results and Carbon Reduction Mechanism Verification

This research constructs a two-way fixed-effects model containing individual and
time effects and a random-effects model for regression. According to the Hausman test,
the results show that the fixed-effects model is more applicable. Considering the possible
endogeneity of the explanatory variable, we select the two-step system GMM model for
comparative analysis. The lagged term of carbon emission intensity is chosen as the
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instrumental variable, and the rest are exogenous variables. In the following section, we
mainly consider the coefficients of the system GMM model.

For the core explanatory variables, the results of model (1)–(3) in Table 6 shows that
age is negatively correlated with CEI, indicating that population aging contributes to the
reduction of regional carbon emission intensity. The coefficient of the lagged term L.CEI
is significantly positive, which proves that the carbon emission intensity of the previous
period has a positive effect on the carbon emission intensity of the current year. It is related
to the time lag of the adjustment of economic production activities and policy implementa-
tion. The coefficient of hc in the model (3) of Table 6 is significantly negative, indicating
that the accumulation of human capital contributes to the low carbon development after
eliminating the effect of the previous period CEI. The capital-labor ratio (cl) enhances CEI,
so the increase of capital input in the production process leads to more carbon emissions.

Table 6. Baseline regression results.

(1) (2) (3)

FE RE System GMM

L.CEI 0.4845 ***
(0.0404)

age −0.1803 *** −0.2290 *** −0.0314 *
(0.0590) (0.0574) (0.0186)

hc 0.4231 ** 0.4962 *** −0.1060 **
(0.1901) (0.1838) (0.0517)

cl 0.0892 * 0.1371 *** 0.2130 ***
(0.0456) (0.0443) (0.0247)

iup −0.2860 *** −0.2527 *** −0.0760 ***
(0.0304) (0.0277) (0.0158)

pgdp 0.1996 ** 0.2568 *** 0.2152 ***
(0.0782) (0.0756) (0.0411)

fdi −0.0156 −0.0178 * 0.0198 ***
(0.0096) (0.0092) (0.0050)

tech −0.0475 ** −0.0624 *** −0.0599 ***
(0.0219) (0.0197) (0.0080)

urz 0.2555 ** 0.2947 *** 0.1224
(0.1130) (0.1098) (0.0836)

_cons −2.1057 *** −2.9409 *** −1.4025 ***
(0.6764) (0.5971) (0.3908)

Hausman test p = 0.0002
AR(1)
AR(2)

0.0354
0.8765

Sargan test 0.7511

N 600 600 540
R2 0.8828 0.8819

Note: ***, **, and * indicate the significance at the 1%, 5%, and 10% levels.

For the control variables, as shown in model (3) in Table 6, the coefficients of iup,
tech are significantly negative, while the coefficients of pgdp, fdi, and urz are positive.
Industrial structure upgrading and technological innovation are essential factors for carbon
emission reduction. Because the main feature of the advanced industrial structure is
the transformation of capital-intensive industries to technology-intensive industries, the
reliance on energy inputs is greatly reduced. And technological innovation is the core
endogenous driving force for energy saving and emission reduction.

As for the verification of the mechanism by which aging affects carbon intensity by
regulating labor allocation, the coefficient of age×hc (as shown in model (3) in Table 7) is
significantly positive after eliminating the endogenous factors, i.e., the trend of population
aging weakens the inhibitory effect of human capital on carbon emission intensity. The
coefficient of age×cl is significantly negative (see Table 7), meaning that population aging
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helps to mitigate the carbon emission effect from capital substitution for labor allocation.
The possible reason is that population aging promotes the conversion of capital inputs to
low-carbon technology R&D.

Table 7. Empirical Results on the Effects of Population Aging and Labor Allocation on Carbon
Emission Intensity.

(1) (2) (3)

FE RE System GMM

L.CEI 0.4535 ***
(0.0381)

age −0.4605 *** −0.5398 *** −0.3071 ***
(0.1509) (0.1458) (0.0784)

hc 0.2570 0.2856 −0.3718 ***
(0.2173) (0.2107) (0.0820)

cl 0.1662 *** 0.1913 *** 0.2900 ***
(0.0526) (0.0522) (0.0293)

age×hc 0.2706 ** 0.2740 ** 0.2852 ***
(0.1159) (0.1130) (0.0760)

age×cl −0.0450 *** −0.0255 −0.0434 ***
(0.0168) (0.0157) (0.0112)

iup −0.2920 *** −0.2537 *** −0.0540 ***
(0.0303) (0.0278) (0.0162)

pgdp 0.1185 0.2211 *** 0.1646 ***
(0.0842) (0.0790) (0.0512)

fdi −0.0210 ** −0.0237 ** 0.0156 ***
(0.0103) (0.0098) (0.0049)

tech −0.0443 ** −0.0571 *** −0.0526 ***
(0.0219) (0.0199) (0.0078)

urz 0.0883 0.2101 * 0.0254
(0.1315) (0.1249) (0.1012)

_cons −1.2949 −2.8205 *** −0.9674 **
(0.7945) (0.6663) (0.4153)

Hausman test p = 0.0000
AR(1)
AR(2)

0.0448
0.8672

Sargan test 0.7650

N 600 600 540
R2 0.8565 0.8832

Note: ***, **, and * indicate the significance at the 1%, 5%, and 10% levels.

3.5. Robustness Test

To test the robustness of the estimation results of the baseline regression, the models
in Table 7 are re-estimated in this section by replacing the measures of the explanatory and
core explanatory variables, respectively. First, CO2 emissions per unit of economic output
are used instead of CO2 emissions per capita to represent carbon emission intensity. Then
this section chooses to replace the measure of population aging by using the ratio of the
population aged 65 years or older to the total population at the end of the year in each
province. The results of the fixed-effects model, random-effects model, and Systematic
GMM model are shown in Table 8. The estimation results of the main explanatory variables
remain consistent with the results in Table 7, where age still significantly negatively affects
CEI. After controlling for endogeneity, the coefficients of hc remained significantly negative,
and there is a significant positive relationship between cl and CEI. The results of the
mechanism test of aging on labor allocation (age×hc, age×cl) also remain stable in Table 7.
Therefore, the robustness test confirms that the results of the baseline regression and carbon
reduction mechanism are reliable.
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Table 8. Robustness test.

Replace the Interpreted Variable CEI Replace Explanatory Variable Age

FE RE System GMM FE RE System GMM

(1) (2) (3) (4) (5) (6)

L.CEI 0.8998 *** 0.4153 ***
(0.0356) (0.0401)

age −0.4605 *** −0.5398 *** −0.2785 *** −0.4894 *** −0.5815 *** −0.2430 ***
(0.1509) (0.1458) (0.1015) (0.1526) (0.1466) (0.0918)

hc 0.2570 0.2856 −0.2212 * 0.2937 0.3237 −0.3475 ***
(0.2173) (0.2107) (0.1161) (0.2141) (0.2085) (0.1225)

cl 0.1662 *** 0.1913 *** 0.2286 *** 0.1783 *** 0.2019 *** 0.2968 ***
(0.0527) (0.0522) (0.0593) (0.0524) (0.0519) (0.0311)

age×hc 0.2706 ** 0.2740 ** 0.3015 *** 0.3820 ** 0.4032 *** 0.3387 ***
(0.1159) (0.1130) (0.0874) (0.1556) (0.1522) (0.1108)

age×cl −0.0450 *** −0.0255 −0.0650 *** −0.0716 *** −0.0444 ** −0.0638 ***
(0.0168) (0.0157) (0.0155) (0.0221) (0.0207) (0.0142)

iup −0.2920 *** −0.2537 *** −0.0181 −0.2936 *** −0.2545 *** −0.0587 ***
(0.0303) (0.0278) (0.0244) (0.0302) (0.0279) (0.0152)

pgdp −0.8815 *** −0.7789 *** −0.8653 *** 0.1062 0.2192 *** 0.1910 ***
(0.0842) (0.0790) (0.0526) (0.0844) (0.0793) (0.0492)

fdi −0.0210 ** −0.0237 ** −0.0214 *** −0.0215 ** −0.0244 ** 0.0148 ***
(0.0103) (0.0098) (0.0051) (0.0104) (0.0098) (0.0056)

tech −0.0443 ** −0.0571 *** −0.0548 *** −0.0444 ** −0.0565 *** −0.0446 ***
(0.0219) (0.0199) (0.0131) (0.0219) (0.0198) (0.0092)

ur 0.0884 0.2101 * 0.3173 0.0577 0.1941 0.0470
(0.1315) (0.1249) (0.3595) (0.1319) (0.1251) (0.1018)

_cons 5.6128 *** 4.0873 *** 6.5308 *** −1.3881 * −3.1374 *** −1.2438 ***
(0.7945) (0.6663) (1.0471) (0.8288) (0.7035) (0.4494)

Hausman test p = 0.0006 p = 0.0000
AR(1) 0.0147 0.0525
AR(2) 0.7342 0.8502

Sargan test 0.9827 0.7823

N 600 600 540 600 600 540
R2 0.7672 0.7645 0.8851 0.8837

Note: ***, **, and * indicate the significance at the 1%, 5%, and 10% levels.

3.6. Regional Heterogeneity Test

To analyze whether there is regional heterogeneity in the mechanism of the influence
of population aging and labor force allocation on carbon emission intensity, this section
divides the sample provinces into three regions: eastern, central, and western regions.
Because the three subsamples are long panel data (The number of individuals N is smaller
than the number of periods T), the long-time sequence contains more information and has
intra-group solid autocorrelation [70], it is necessary to consider heteroskedasticity and
autocorrelation of error terms, so the feasible generalized least squares (FGLS) estimation
is adopted to analyze the regional influence mechanism [70]. Since the Systematic GMM
model is not applicable to long panel data [71], this study uses the Bias Corrected Least
Squares Estimation with Nonsymmetric Dependence Structure (Bias Corrected LSDV)
method to estimate the dynamic long panel model [72].

The results in Table 9 show significant regional differences in the effect of human
capital accumulation (hc) on carbon emission intensity. In model (1) and model (2), the
coefficients of hc are significantly negative, which indicates that only in the eastern region
does human capital accumulation plays a role in carbon emission reduction.

In terms of carbon reduction mechanisms, the coefficients of age×hc are positive in
all three regions (as shown in models (2), (4), and (6) in Table 9), implying that the con-
straint of aging on the carbon reduction effect of human capital accumulation is nationally
widespread. The coefficients of age×cl are significantly negative in all three subsamples
(as shown in models (2), (4) and (6) in Table 9), suggesting that aging objectively miti-
gates the carbon emission effect of the structural shift in factors of production, i.e., the
substitution of capital for labor.
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Table 9. Regional heterogeneity test results.

Eastern Region Central Region Western Region

(1) (2) (3) (4) (5) (6)

L.CEI 0.8146 *** 0.8096 *** 0.7622 ***
(0.0437) (0.0669) (0.0507)

age −0.4522 ** −0.2656 −0.0139 0.2577 −0.1058 −0.0652
(0.1927) (0.2042) (0.2688) (0.2798) (0.1460) (0.1211)

hc −0.7371 ** −0.5268 * 0.0101 0.3821 −0.0022 0.1174
(0.3377) (0.3115) (0.4226) (0.4333) (0.1799) (0.1504)

cl 0.2335 ** 0.0235 0.4558 *** 0.0804 0.3408 *** 0.0500
(0.0951) (0.0678) (0.0965) (0.0735) (0.0751) (0.0563)

age×hc 0.4111 *** 0.2127 0.0728 0.1923 0.1084 0.0092
(0.1350) (0.1404) (0.2834) (0.2452) (0.1377) (0.1088)

age×cl −0.0653 *** −0.0221 * −0.1067 *** −0.0728 *** −0.1208 *** −0.0261 *
(0.0205) (0.0128) (0.0364) (0.0243) (0.0247) (0.0155)

Control
variables Y Y Y Y Y Y

N 220 209 180 171 200 190
R2 0.9491 0.9294 0.9749

Note: ***, **, and * indicate the significance at the 1%, 5%, and 10% levels.

4. Discussion
4.1. Synergy of Population Aging Trend and Carbon Reduction Targets

Since China entered the “aging” society later than developed countries, the aging of
China is dominated by the “low elderly” [37,73]. When the population aging is at a low
level, the overall mature working-age population is still relatively large, but the increase
in the number of older workers will create a sense of crisis for enterprises to improve
productivity due to the potential increase in employment costs [34]. At the same time, with
the deepening of aging, social consumption tendency is gradually focused on the medical
technology industry and consumer service sectors [74,75], which is conducive to promoting
the optimization and upgrading of industrial structure. Thus, population aging will form a
positive effect on regional carbon emission reduction.

4.2. Differentiation of the Contribution of Changes in the Quantity and Quality of the Labor Force
Allocation to CEI

This research shows that human capital accumulation can play a role in reducing
carbon emissions intensity. Because the increase in the level of education of individuals is
more conducive to the diffusion of technological knowledge [33] and makes the productive
skills of the labor force more specialized [28]. Moreover, the mastery of professional
technology allows workers to have a higher awareness of environmental protection, and it
can help them translate the theory of sustainability into production practice [35]. That is
conducive to optimizing the allocation efficiency of production factors and promoting the
R&D and application of clean production technologies.

For the regional Heterogeneity, human capital accumulation is significantly negatively
correlated with CEI only in the eastern region (see model (2) in Table 9). This is partly since
the talent education and technology R&D capability of the eastern region is in the leading
position in China [33]. Compared with the central and western regions, the technology-
intensive industries in the eastern region are larger, and the scale effect of increasing
capital investment in technology research and development is obvious. The marginal cost
of low-carbon process innovation is relatively lower, which can motivate enterprises to
develop environmentally friendly technology rather than simply increasing energy inputs.
On the other hand, as shown in Figure 3, this result is related to the brain drain in less
developed regions in the context of the aging trend. The eastern regions are among the
major population in-migration areas [38,39], and the corresponding talent concentration
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effect is more prominent, with human capital inputs can effectively being converted into
innovative technological outputs [46].
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On the contrary, the central and western regions are generally experiencing a net
out-migration of the population, resulting in a serious brain drain [47]. Human capital
accumulation cannot be used locally, so the investment in education cannot be transformed
into a local green growth engine [43]. As human capital flows from the central and western
regions to the eastern regions, the imbalance of sustainable development between regions
is aggravated.

The structure of capital-labor endowment reflects the change in the quantity of labor,
but its rise brings an increase in CEI. This is related to the fact that producers will replace
labor with capital to reduce production costs, and the increase in capital input is usually
accompanied by a rise in energy input [76]. Currently, China’s industrial R&D level
lags behind developed countries, and most capital-intensive industries rely on energy
consumption to some extent [77]. The growth in the capital-labor ratio leads to an increase
in the energy intensity of the industrial sectors, which becomes a barrier to developing a
low-carbon economy.

4.3. Aging Limits the Emission Abatement Effect of Human Capital Accumulation

In China, the phenomenon of “aging” and “childlessness” coexist, and the number
of older people rises while the growth of the youth population slows down [78]. Human
capital accumulation is the driver of technological innovation, and the lower education
level of the elderly weakens its contribution to low-carbon economic growth. The increase
in the proportion of elderly also has a crowding-out effect on household human capital
investment [19]. Influenced by the family planning policy in the 1980s, simultaneously
taking up elderly support and child-rearing has become a major burden for young and
middle-aged families in China [79]. As the aging trend deepens, the increased burden of
elderly care will inevitably crowd out investment in education for the next generation [20],
affecting the sustainable accumulation of human capital [21].
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The advantage of the older workforce lies in the accumulated work experience and
professional skills knowledge, while our findings show that this experience accumulation
has not been effectively linked to low-carbon technological innovation. Even though aging
may force firms to exploit their technological innovation potential to mitigate the negative
impact of labor shortage, the accumulation of knowledge has not yet formed a mature scale
effect, which to some extent, slows down the positive effect of social human capital.

4.4. Aging Mitigates Carbon Emissions Caused by Changes in the Capital-Labor Ratio

The rise in the capital-labor ratio is the use of other production factor inputs by firms
to compensate for the labor gap. The gradual aging of the workforce force companies to use
capital and technology factors to replace labor factors [31]. Labour-intensive industries are
gradually transformed into capital and technology-intensive industries. Meanwhile, due
to the endogenous needs of older people, the demand for high technology-level tertiary
industries related to medical, health and life services will rise [74]. Thus, from both the
supply and demand side, the aging population will help drive capital into technology-
intensive industries to replace labor-intensive industries, decreasing the share of energy-
dependent industries and thus curbing the growth of carbon emissions.

The eastern region benefits from its developed and complete industrial system [33]. In
the context of the decline of labor-intensive industries, upgrading the demand structure of
aging consumption and the local technological advantages make enterprises more inclined
to inject capital into technology-intensive industries and consumer services. The central
region’s geographical advantages and mineral reserves make raw material processing and
equipment manufacturing the dominant local industries [80]. When the number of laborers
decreases, it is not conducive to the expansion of these labor-intensive industries. For
the Western region, it has an exceptional development orientation. The western region is
rich in natural and biodiversity resources, so the national strategy restricts industry over-
expansion. With the decline of labor-intensive industries, capital investment is concentrated
in the tertiary and high-end technology industries under the guidance of local policy [81].
This industrial transformation is conducive to low-carbon sustainable development.

4.5. Other Important Factors Affecting Carbon Emission Intensity

The advanced industrial structure is the main content of industrial upgrading. The
growth of technology-intensive industries has knowledge spillover effects, which can
feed the development of downstream industries and realize the upgrading of production
processes [82]. The tertiary industry gradually eliminates the excess capacity of the former
secondary industry, which helps to reduce unnecessary industrial pollution emissions.

The results of this study show that technological innovation is also a major factor
contributing to the reduction of CEI. While reducing the marginal cost of products, the
activities of technological innovation can stimulate more low-carbon clean technologies and
their practical application [51], decreasing the energy consumption and carbon emissions
per unit of output value in production. It can attenuate the negative impact of various
production activities on the natural environment.

The significant positive correlation between gross regional product per capita and
carbon emission intensity (see the model (3) in Table 7) means that China has not yet
been able to break away from the crude economic growth, the scale of clean production is
relatively limited, and carbon emissions from economic and social activities are still serious.
Although the economy of the developed regions is gradually shifting to intensive economic
growth driven by technological progress, the share of traditional industries that rely on
high energy consumption remains high within the broader region [58]. The characteristics
of resource endowments limit the industrial transformation of less developed regions [76],
leading to constraints on low-carbon economic development.

This study supports that the environmental impact of FDI in China is more inclined to
the “pollution sanctuary” effect. Since the intensity of environmental regulations in China
is relatively lax, developed regions tend to transfer their industries with high resource
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dependence and low technological safety to China [67], resulting in pollution migration.
Although foreign investment has a technology spillover effect, it is insufficient to compen-
sate for the increased pollution intensity caused by the industrial transfer. Our research
also shows that urbanization fails to drive carbon reduction, which is consistent with the
results of related studies [83,84].

4.6. Policy Implications

This study shows a ripple effect among population aging, labor allocation and carbon
emissions intensity. Population aging is not conducive to the carbon emission reduction
effect of human capital accumulation. Therefore, the government should encourage en-
terprises and individuals to strengthen vocational education, rehire retired workers with
high education, and fully exploit the technical potential of older workers [85]. It is also
necessary to rationally allocate educational resources to reduce the cost of raising children.
Although China has implemented the “two-child” policy, government departments still
need to complement it with subsidies to reduce the burden on young and middle-aged
families [78]. It is also urgent to raise the average income level of residents through in-
dustrial transformation and increased social welfare spending, which will help to relieve
the pressure on families to support older people and educate their children. Suppose the
accumulated knowledge and experience of older people can be reasonably combined with
the young population’s learning ability and advanced ideas. In that case, the sustainable
development of the economy will be significantly enhanced.

GDP per capita, urbanization rate and foreign direct investment are strongly posi-
tively correlated with CEI. Therefore, the government still needs to actively promote the
advanced transformation of industrial structure and promptly eliminate the backward
production capacity of secondary industry, to reduce the carbon emission intensity per
unit of output. In the process of population urbanization, the expansion of the production
scale brought by the growing consumption demand is inevitable. It is necessary to improve
the green consumption concept of residents and guide low-carbon green products into
the consumption market with preferential policies or subsidies. The current FDI is not
conducive to CEI reduction. The Chinese government needs to raise the entry threshold
for foreign investment and screen foreign enterprises by strict environmental standards to
prevent the transfer of pollution from developed countries. Local enterprises should also
learn from the advanced clean production technologies of foreign companies to reduce the
carbon emission rate of their products.

For the heterogeneity of economic development among regions, the virtuous cycle be-
tween human capital accumulation and low-carbon development exists only in developed
eastern regions. It is essential to alleviate the brain drain from less developed regions. In
central and western regions, tax breaks and subsidies for home purchase and residence are
needed to enhance the willingness of high-end talents to reside locally [86]. In addition,
there is a necessity for the government to guide the transition from labor-intensive indus-
tries to technology-intensive industries in the context of population aging. Green credit
has been proven that is an important tool to guide green economic development through
financial means [87]. Less developed regions should actively use this policy to encourage
the conversion of corporate capital inputs into low-carbon technological outputs.

4.7. Limitations and Prospects

This study does have some limitations. Firstly, due to data limitations, it is unable
to refine the gap between the number of older and younger workers within industrial
sectors. Further quantification of specific labor numbers in different age groups is needed
to clarify their impact on low-carbon growth. Secondly, this study fails to discuss the effect
of different levels of aging because of data missing. Significant differences in personal
abilities and lifestyle habits between older and younger seniors can lead to uncertainty
in their impact on economic development. Therefore, expanding the dataset to refine the
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impact of different age groups of older people on social resource allocation and sustainable
development is an important direction for future research.

5. Conclusions

This study analyzes the effects of population aging and labor force allocation on
carbon emission intensity. The main findings are: (1) Population aging negatively correlates
with regional carbon emission intensity. Human capital accumulation is an essential
favorable factor for regional carbon emission reduction, and the rise of the capital-labor ratio
intensifies energy consumption. (2) Population aging has a ripple effect on carbon emission
intensity by regulating labor force allocation. The growth in the number of elderly hinders
the carbon emission reduction effect of human capital accumulation but helps to promote
capital investment in technology-intensive industries and improve energy utilization.
(3) Human capital accumulation has a significant carbon-reducing effect only in the eastern
region. Due to the dual effect of the aging trend and population migration, the brain drain
in less developed regions is exacerbated, resulting in human capital accumulation in central
and western regions that cannot form a virtuous cycle with local, sustainable development.
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