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Abstract: A coal-rock dynamic disaster is a rapid instability and failure process with dynamic effects
and huge disastrous consequences that occurs in coal-rock mass under mining disturbance. Disasters
lead to catastrophic consequences, such as mine collapse, equipment damage, and casualties. Early
detection can prevent the occurrence of disasters. However, due to the low accuracy of anomaly
detection, disasters still occur frequently. In order to improve the accuracy of anomaly detection for
coal-rock dynamic disasters, this paper proposes an anomaly detection method based on a dynamic
threshold and a deep self-encoded Gaussian mixture model. First, pre-mining data were used as
the initial threshold, and the subsequent continuously arriving flow data were used to dynamically
update the threshold to solve the impact of artificially setting the threshold on the detection accuracy.
Second, feature dimensionality reduction and reorganization of the data were carried out, and low-
dimensional feature representation and feature reconstruction error modeling were used to solve the
difficulty of extracting features from high-dimensional data in real time. Finally, through the end-to-
end optimization calculation of the energy probability distribution between different categories for
anomaly detection, the problem that key abnormal information may be lost due to dimensionality
reduction was solved and accurate detection of monitoring data was realized. Experimental results
showed that this method has better performance than other methods.

Keywords: coal-rock dynamic hazard; depth self-coding Gaussian mixture model; dynamic threshold;
anomaly detection algorithm

1. Introduction

As the basic energy source of the national economy, coal has made great contributions
to the economic development of all countries in the world in the recent 100 years. With
the coming of the carbon emission reduction era, the use of coal will gradually reduce, but
until 2050, coal is still the most economic main energy source. As shallow coal is close
to depletion after long-term mining, deep mining has become the norm, and with the
increasing depth and intensity of coal mining, coal-rock power disasters are increasing,
which creates a substantial threat to the safety of enterprise property and personnel life.

Many coal mines adopt different mining techniques according to the different forms
of coal seams. Take upward mining as an example; upward mining is generally affected by
multiple factors, including but not limited to the complex integrity of the interlayer rock
strata affected by the disturbance of the mining of the lower coal seam, the accumulation of
gas and harmful gases in the underlying goaf, and the occurrence of abnormal mine pres-
sure in the upward mining face. Coal and rock dynamic disasters occur due to downward
mining. Therefore, early and timely detection of abnormal changes in the coal and rock
mass can prevent the occurrence of disasters. Thus, improving the accuracy of coal-rock
dynamic disaster abnormality detection has become a key research direction and a hot spot
for the majority of scholars. Yuan proposed the theory of intelligent discrimination of coal-
rock dynamic disaster multiparameter precursor information and an early warning model
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and developed a precursor information acquisition sensing equipment and supporting
technology with fault self-diagnosis and high sensitivity [1]. Wang made a study of the
recent years of disaster monitoring research. The current status of coal-rock power disaster
monitoring and early warning research was summarized, and the commonly used methods
are mainly conventional static prediction, index prediction, geophysical monitoring, and
mathematical model prediction [2]. Li proposed a rock failure early warning method by
introducing the Hurst exponent into the geotechnical field to reflect the long memory
and fractal structure of the time series; the improved R/S method proposed overlapping
subsequences, so the calculation of the Hurst index is better. At the same time, using the
Hurst index supplemented by acoustic emission/microseismic activity monitoring can
predict early warning points and improve disaster prevention [3].

Pang summarized the application of deep learning in anomaly detection and divided
deep anomaly detection methods into three conceptual paradigms from a modeling perspec-
tive: deep feature extraction, mean feature learning, and end-to-end anomaly scoring [4].
Bulusu provided a comprehensive comparison of the relative advantages and disadvan-
tages of supervised, semi-supervised, and unsupervised and some other anomaly detection
methods, arguing that the unsupervised technique, due to its lack of dependence on labeled
data, is more suitable for anomaly detection applications [5]. Hojjati summarized the
self-supervised anomaly detection methods [6] and tested them against the widely used
deep shallow and generative models. Self-supervised anomaly detection algorithms (SSL)
significantly outperformed other algorithms, and this advantage makes self-supervised
algorithms a key branch of anomaly detection. Zhao developed a reliability-based design
optimization (RBDO) method to determine engineering design parameters by combining
the method of moments and high-dimensional model representation (HDMR) and to re-
alize the complex, high-dimensional, and nonlinear response of engineering structures
for the surrounding. It is a simple and feasible method to consider uncertainties in rock
engineering design, stability analysis, and production [7].

Although research on anomaly detection has touched upon various perspectives, due
to the complexity of the geological environment and the high level of difficulty of data
processing, this worldwide problem remains unsolved so far. One of the issues of anomaly
detection is that it is difficult to distinguish the boundary between normal and abnormal
states; the second difficulty is that the threshold value for disaster occurrence varies across
mining environments, and the traditional detection method uses historical data as the
threshold value, which often results in disasters not occurring beyond the threshold value
but occurring within the threshold value. The third difficulty is that the monitoring data
arrive in a stream, which can only be read once and require real-time extraction of abnormal
features, otherwise the arrival of subsequent data causes the previously processed data to
lose their value due to obsolescence.

To address the aforementioned problems, this paper analyzes the anomaly detection
processes one by one and finds that the threshold setting method and the anomaly infor-
mation mining method are the key factors affecting detection accuracy; accordingly, a new
anomaly detection algorithm DT-DAGMM is proposed. The DT-DAGMM uses dynamic
threshold and deep autoencoding Gaussian mixture model techniques, which not only can
better handle high-dimensional data but also can solve the uncertainty of manually set
thresholds. It has excellent ability to continuously detect input stream data in real time in
the unsupervised state. Specifically, the main contributions are the following three points:

1. The proposed dynamic threshold setting method solves the problem of manual deter-
mination of thresholds, affecting the accuracy of anomaly detection.

2. The application of a dynamic threshold fused with the depth self-coding Gaussian
mixture model improves the data processing speed and detection accuracy.

3. The coal-rock dynamic disaster monitoring and early warning system is improved.
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2. Related Work

Over the past decades, anomaly detection techniques have evolved and many research
results have been achieved. Among them, unsupervised anomaly detection methods based
on deep learning are prominent in many fields, which provide many easy-to-use network
structure frameworks that can handle any data type, learn complex structural relationships
from different types of data, and improve data usage and detection performance through
end-to-end optimization. The four main types of unsupervised deep anomaly detection
commonly used today are feature reconstruction, clustering, density-based methods, and
single classification methods.

The methods based on feature reconstruction mainly include principal component
analysis (PCA) [8], robust principal component analysis (ROBPCA) [9], structured sparse
learning [10], and a Deep Auto-encoder [11]. Among them, principal component analysis
transforms component-related original variables into component-unrelated new composite
variables with the help of orthogonal transformation, revealing as much as possible the
original inter-data relationships. Liu et al. tried to combine PCA and the DAGMM and
proposed the PCA–DAGMM unsupervised anomaly data detection method [12]. However,
principal component analysis is sensitive to outliers and noisy data, so robust PCA was
introduced to solve the problem of anomalous noise points. Structured sparse learning, in
contrast, modifies the penalty term based on the standard sparse algorithm to force the
features to be arranged according to rules, while a deep autoencoder uses the input data
themselves as supervision to guide the neural network to learn the mapping relationship to
obtain the reconstructed output, and the original time series is considered anomalous when
the difference between the reconstructed output and the original input exceeds a specified
threshold. Zou et al. used a hybrid autoencoder to replace the single deep autoencoder
to generate tandem low-dimensional representations to improve the accuracy of anomaly
detection for high-dimensional data [13].

The principle of the density-based anomaly detection method is to partition the data
space, and the class cluster density of the region where the anomalous sample points are
located is lower than the class cluster density where the normal sample points are located.
Li et al. proposed a density-based anomaly data detection algorithm [14], which introduces
a sliding time window to prune and filter the data using a grid and then uses outlier factors
to make a final judgment on the remaining data, which can improve detection accuracy
and data efficiency.

Clustered anomaly detection methods use neural networks to encode the input data
into different clusters, and the anomalous data do not belong to any of the clusters. DB-
SCAN divides high-density regions into clusters and finds clusters of arbitrary shapes in
the noise space. DAE-DBC uses an autoencoder for dimensionality reduction and then
identifies outliers by clustering. The cluster function adds L2 normalization as well as
k-means to the autoencoder. The gmm function fits arbitrarily shaped data distributions
by finding mixed representations of multidimensional Gaussian model probability dis-
tributions. The clustering-based approach reduces the dimensionality before clustering,
which tends to lose key information in the process of dimensionality reduction. Wang et al.
introduced an unsupervised deep clustering framework to better model the representation
distribution by adjusting the Gaussian components and improve the intra-cluster com-
pactness and inter-cluster separability through training [15]. Based on the non-dominated
sorting genetic algorithm, the multi-objective optimization of the sound transmission of a
multilayer composite cylindrical shell lined with a porous core was measured to obtain
the internal conditions of the material by measuring the changes generated by the lined
porous material receiving plane acoustic waves [16]. Talebitooti et al. also studied the
effect of porous material properties on the acoustic transmission of the sandwich aerospace
composite hyperbolic shell diffusion field [17].

The goal of the single classification algorithm [18] is to determine whether a query
object belongs to the class observed during training. After years of evolution, recent trends
in single classification methods have focused on the development of deep-learning-based
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approaches. The Old Gold Net (OGN) algorithm [19] developed by Zaheer et al. consists
of a generator network and a discriminator, using the generator to generate two images
to simulate normal and abnormal inputs and the discriminator to distinguish abnormal
from normal. The progressive knowledge refinement method [20] proposed by Zhang et al.
trains two networks on a given class of training data, initialized to the same architecture
and then trained using reconstruction loss.

Deep learning anomaly detection methods are also well applied in processing sen-
sor data. A comprehensive analysis of the applications by Mohammadi et al. [21] con-
cluded that the main methods applicable to IoT sensing systems are the deep autoencoder
(DAE) [22], the deep belief network (DBN) [23], and the long short-term memory (LSTM)
network [24]. Among them, the DAE is a data compression algorithm that improves the ef-
ficiency of feature extraction by compressing and reducing the dimensionality of unlabeled
datasets. The disadvantage is the long training time layer by layer. The component of the
DBN is the restricted Boltzmann machine (RBM), which consists of explicit and hidden
layer neurons; the explicit layer is used to receive input, and the hidden layer is used
to extract features. The layer-by-layer training method is used to solve the optimization
problem of deep neural networks, which gives better initial weights to the whole network
using layer-by-layer training, but there is still the problem of a long training time layer by
layer. The LSTM network adopts the gate structure control mode of a forgetting gate, an
input gate, and an output gate to process sequence data and judge whether the informa-
tion is useful or not, with the drawback that the model structure is complex and has the
disadvantages of parallel processing and time-consuming computation.

For different application areas, different detection methods need to be used and the
choice of models needs to be determined using the nature of the input data. The data
collected by sensors for monitoring coal-rock dynamic hazards are time-series stream data
and have different characteristics than general data: A wide variety of data collection
devices are deployed in various regions and continuously generate a large number of data
streams; various sensing devices collect different information that leads to the complexity
of heterogeneous data from multiple sources; and the data collected by sensing devices
are spatiotemporally correlated, so each data item has a spatial location and a time stamp.
Traditional detection techniques are not capable of processing data with temporal stream
characteristics, so methods with the ability to process high-speed data streams in real time
are needed.

Summarizing the advantages and disadvantages of the aforementioned types of
algorithms, all of them suffer from the shortcomings of manual setting of thresholds
and a complex and time-consuming training process, which cannot meet the real-time
requirements of coal-rock dynamic hazard anomaly detection. Inspired by these research
results, we propose a dynamic threshold deep autoencoding Gaussian mixture model (DT-
DAGMM), which is different from the existing models: the model uses adaptive dynamic
thresholding instead of manual setting to improve the accuracy and detection speed of
anomaly detection and uses an evaluation network to train the reconstruction error and
feature extraction together to reduce the loss of information from dimensionality reduction
and make the model more effective.

3. DT-DAGMM Anomaly Detection Method

The DT-DAGMM anomaly detection method proposed in this paper is implemented
through models and algorithms, and the design goal is to be able to detect anomalous
dynamics in real time and accurately, so the design of the models and algorithms needs to
meet the following requirements:

1. Adaptive dynamic thresholds are set using streaming data processing methods.
2. The entire data must be read in one stream.
3. The current tx must be identified as normal or abnormal before receiving subsequent

tx + 1 data.
4. There is no need to use labeled data and manual parameter adjustment.
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The DT-DAGMM constructed according to the research objectives and requirements
of this paper comprehensively represents the process and functions of each link of anomaly
detection.

3.1. DT-DAGMM

The objective of the construction of the DT-DAGMM is to enable the streaming process-
ing of sensing monitoring data and the real-time detection of disaster anomalies. As shown
in Figure 1, the DT-DAGMM consists of three modules: dynamic threshold determination,
data compression, and depth anomaly detection. It works as follows: (1) The dynamic
threshold module uses the stream data collected in the unexploited state as the initial
threshold and dynamically updates the threshold using the stream data that arrive later
to eliminate the dependence on subjective determination of the threshold; (2) the data
compression module performs downscaling and feature reconstruction of the input data
through a depth autoencoder to discover more representative features of the disaster; and
(3) the depth anomaly detection module combines the low-dimensional feature represen-
tation and reconstruction error input from the data compression module for modeling
and performs dynamic detection of coal-rock dynamic disaster anomalies by calculating
the energy probability distribution among different categories within a Gaussian mixture
framework.
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Figure 1. DT-DAGMM coal-rock dynamic disaster real-time anomaly detection method.

The DT-DAGMM has three advantages: The first is that it does not require manual
setting of thresholds and can dynamically update the threshold adaptively, which reduces
subjectivity and uncertainty and makes the anomaly detection results more accurate. The
second is that it can process high-dimensional data in real time, and finally, it can adapt
to different data types and scenarios through different feature representations and hybrid
model parameters, which has good generality and adaptability.

3.2. Dynamic Threshold Determination

The dynamic threshold is a threshold algorithm that can be dynamically updated and
adaptively adjusted. The threshold value, as the demarcation standard between normal
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and abnormal, is directly related to the accuracy of abnormality detection. A high threshold
value will make normal and abnormal indistinguishable, and a low threshold value will
cause a false alarm. It is a common practice to use manually determined thresholds for
coal-rock dynamic hazard anomaly detection. This method ignores the tectonic variability
of different geological environments, and the set thresholds are often too high or too low,
which directly affects the accuracy of anomaly detection. An ideal real-time anomaly
detection algorithm should be able to determine whether new arrivals are anomalous,
without relying on pre-set thresholds. The basic principle of dynamic threshold design
is that tx data must be identified as normal or abnormal before receiving subsequent tx
+1 data. In this paper, the initial data before mining are used as the threshold benchmark
and the threshold is dynamically updated using subsequent successive arrivals of stream
data, which not only improves the accuracy of the threshold but also adapts to different
monitoring environments. The dynamic threshold is determined using the following
equation:

θ = tx0, {(TX = tx0, tx1, · · · , txn), (X = 0, 1)}, (1)

where θ is the threshold value, based on the intermediate data tx0 in the zero-start state with
the time index loaded; TX is the streamed data over time; X is the sum of data, consisting
of 0 and 1; x0 represents normal data; and x1 represents abnormal data.

3.3. Feature Reduction and Restructuring

The purpose of feature downscaling and reorganization is to reduce the amount of
data computation and extract more typical and representative features.

Two types of anomalies generally occur in monitoring data: One is anomalies not
related to catastrophes, such as insufficient battery capacity and equipment failure. The
other type is disaster anomalies. The data from a single sensor cannot truly reflect which
kind of abnormality the monitoring object belongs to, and only through comprehensive
continuity analysis of multi-sensor data can an accurate judgment be made. At present,
the three-step method of data acquisition, data pre-processing, and data classification is
commonly used for feature extraction; the three-step method of statistical, format, and
topological features is also used for feature extraction. All these methods have many pain
points: One is that it is difficult to distinguish two kinds of anomalies, and the other is that
the processing is tedious and far beyond the time limit requirement of monitoring data
processing.

A deep autoencoder can automatically learn features from unlabeled data and give
better feature descriptions than the original data and is therefore applied in this paper
for feature dimensionality reduction and reorganization. The architecture of a DAE con-
sists of two core components: an encoder and a decoder. The encoder encodes the high-
dimensional input into a low-dimensional hidden variable that allows the neural network
to learn the most typical features, and the decoder reduces the hidden variable in the
hidden layer to dimensionality at the time of input, i.e., input ≈ output. The feature
downscaling restructuring consists of two elements: first, the recoding and nonlinear
downscaling of high-dimensional data using the DAE, and second, the reconstruction of
feature elements to obtain a more typical description and interpretation of the monitoring
target. The specific algorithm is as follows: The input high-dimensional data x are com-
pressed and downscaled by the encoder several times to obtain a more comprehensive and
representative low-dimensional feature set zc, zc is reconstructed by the decoder to obtain
the reconstructed feature x′, the reconstructed error zr is formed between x and x′, and
the combination of the low-dimensional representation zc and the reconstructed error zr
constitutes z, which provides low-dimensional feature representation and reconstructed
error information for subsequent modeling and detection. The feature dimensionality
reduction and reconfiguration equations are shown below:

zc = h(x; θe), x′ = g(zc; θd), (2)
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zr = f
(

x, x′
)
, (3)

z = [zc, zr], (4)

where zc is the low-dimensional representation, zr is the reconstruction error, θe and θd are
parameters, x’ is the reconstruction of x, h(·) is the encoding function, g(·) is the decoding
function, f (·) is the function that calculates the reconstruction error characteristics, and z is
the combination of the low-dimensional representation zr and the reconstruction error zr.

3.4. Deep Anomaly Detection

Since the key anomalous information may be lost during downscaled feature extrac-
tion, further low-dimensional spatial density estimation of the feature combination in the
Gaussian mixture model is required. As shown in Figure 1, the input z of the estima-
tion network comes from the low-dimensional representation synthesized by the depth
self-encoder zc and zr. The number of classes is assumed to be k in the Gaussian mixture
model, and the output p is obtained by the classifier as the probability that the samples
belong to k classes, and then the probability is used to estimate the GMM mean, variance,
and covariance matrix parameters to obtain the sample energy in the DAGMM objective
function. The samples are judged to be anomalous according to the energy probability
values. Given the low-dimensional representation z and the integer K as the number of
mixed components, the affiliation prediction formula is as follows:

P = MLN(Z; θm),γ̂ = softmax(P), (5)

where P is the output of the multilayer network parameterized by θm. γ̂ is the k-
dimensional vector used for the soft mixture component affiliation prediction. Given
the sample and its affiliation prediction, ∀ ≤ k ≤ K, we further estimate the parameters in
the GMM as follows:

φ̂k = ∑N
i=1

γ̂ik
N

, µ̂k
∑̂

N
i=1γ̂ikzi

∑N
i=1 γ̂ik

, ∑̂k =
∑N

i=1 γ̂ik(zi−µ̂k)(zi−µ̂k)
T

∑N
i=1 γ̂ik

, (6)

where γ̂ is the predicted affiliation of the low-dimensional representation zi, ∅̂k is the
mixture probability of the k-component, µ̂k is the mean, and ∑̂k is the covariance. The
estimated parameters are used to further infer the energy function:

E(z) = − log

∑K
k=1 φ̂k

(
− 1

2 (z− µ̂k)T∑̂−1
K (Z− µ̂K)

)
√
|2π ∑̂K

∣∣∣
, (7)

where |·| denotes the determinant of the matrix.
Compared with the commonly used coal-rock dynamic hazard anomaly detection

algorithm, this method can better handle high-dimensional data and solve the uncertainty
of manually set thresholds.

4. Experiment and Analysis
4.1. Experimental Setup

The experiments were based on Windows 10 OS, the Intel(R) Core(TM) i7-10700F CPU
@ 2.90 GHz processor, 64.0 GB RAM, and the TensorFlow deep learning framework [25].

1. Dataset: The UCI machine learning library KDDCUP [26] and the KDDCUP-Rev
dataset were used.

2. Evaluation metrics: The average precision, recall, and F1-measure were used as
evaluation metrics.
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3. Baseline comparison models: The OC-SVM [27] is a commonly used classical anomaly
detection method using the radial basis function (RBF) kernel technique. DSEBM-
e [28] is a state-of-the-art unsupervised anomaly detection deep learning method
based on the DSEBM (deep structural energy model); DSEBM-r is the same as the
DSEBM-e core technology, but DSEBM-r uses the reconstruction error as the criterion
for anomaly detection. The deep clustering network (DCN) [29] is a state-of-the-
art clustering algorithm that regulates the self-encoder performance using k-means
and uses the distance between the instance and the cluster center as the criterion
for anomaly detection; the more the distance is from the center, the more likely the
instance is anomalous.

4. Parameter setting: See Table 1 for details.

Table 1. Parameter settings for the experimental dataset.

Dataset Sample Size Data Dimension λ1 λ2 Anomaly Ratio

KDDCUP 494.021 120 0.1 0.005 0.2
KDDCUP-Rev 121.597 120 0.1 0.005 0.2

The KDDCUP compression network provides 1 low-dimensional and 2 reconstruction
error inputs for the estimation network, using FC(120, 60, tanh)-FC(60, 30, tanh)-FC(30, 10,
tanh)-FC(10, 1, none)-FC(1, 10, tanh)-FC(10, 30, + tanh)-FC(30, 60, tanh)-FC(60, 120, none)
runs; the estimation network provides 1 GMM containing 4 mixed components, using FC(3,
10, tanh)-Drop(0.5)-FC(10, 4, softmax) runs.

The KDDCUP-Rev compression network also provides 1 low-dimensional and 2
reconstruction error inputs, using FC(120, 60, tanh)-FC(60, 30, tanh)-FC(30, 10, tanh)-FC(10,
1, none)-FC(1, 10, tanh)-FC(10, 30, tanh)-FC(30, 60, tanh)-FC(60, 120, none) runs, and
the estimated network provides GMMs containing 2 mixed components, using FC(3, 10,
tanh)-Drop(0.5)-FC(10, 2, softmax) runs.

Here, FC(a, b, f) denotes a fully connected layer with a input neurons and b output
neurons activated by function f, none denotes no activation function is used, and Drop(p)
denotes an exit layer with probability p maintained during training.

The experiments were performed using only normal class data instances for model
training according to the settings in the DSEBM, with training periods of 200 and 400 for
KDDCUP and KDDCUP-Rev, respectively. The batch gradient descent was set to 1024. The
training set and test set were split 1:1 and randomly selected.

4.2. Performance Comparison

After 20 runs of the DT-DAGMM and the baseline model, the mean precision, recall,
and F1-measure scores of the evaluation metrics were compared visually in table format
(Table 2).

Table 2. Experimental results.

Method KDDCUP KDDCUP-Rev

Precision Recall F1-Measure Precision Recall F1-Measure

OC-SVM 0.7457 0.8523 0.7954 0.7148 0.9940 0.8316
DSEBM-e 0.8619 0.6446 0.7399 0.7863 0.7884 0.7874
DSEBM-r 0.8521 0.6472 0.7328 0.7003 0.7013 0.7008

DT-DAGMM 0.9597 0.9646 0.9621 0.9568 0.9631 0.9599

Table 2 shows the average precision, recall, and F1-measure of the DTOC-SVM,
DSEBM-e, DSEBM-r, and DT-DAGMM after 20 runs. The OC-SVM had a high recall
of 99.4% at KDDCUP-Rev, but overall, the DT-DAGMM had better performance than the
baseline method. The average precision improved by 13.98% and 21.31% for KDDCUP and
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KDDCUP-Rev, respectively, and recall improved by 24.32% for KDDCUP and KDDCUP
-Rev by 14% and 16% for the F1-measure, respectively.

The experimental results show that the anomaly detection algorithm proposed in this
paper has better detection accuracy compared to traditional methods and deep learning
methods.

5. Case Analysis

The coal mine has a mining depth of 400 m, has adopted mechanized comprehensive
coal mining technology, and has completed the construction of some automatic monitoring
systems, such as video monitoring, electromagnetic radiation, microseismic stress and
temperature multi-field sensor monitoring, and personnel positioning. The coal mine has
also improved the disaster monitoring system and data platform construction; realized the
monitoring, collection, analysis, and alarm functions of disaster data and uploaded them
in real time; and built a coal dynamic hazard early warning platform. Its system function
architecture is shown in Figure 2.
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also improved the disaster monitoring system and data platform construction; realized 
the monitoring, collection, analysis, and alarm functions of disaster data and uploaded 
them in real time; and built a coal dynamic hazard early warning platform. Its system 
function architecture is shown in Figure 2. 

 
Figure 2. Prototype system functional architecture. 

  

Figure 2. Prototype system functional architecture.

6. Conclusions

In order to improve the accuracy of coal-rock dynamic hazard anomaly detection, this
paper proposed an anomaly detection method based on a dynamic threshold and a depth
self-coding Gaussian hybrid model, which can quickly process high-dimensional data and
solve the uncertainty of manually set thresholds. The experimental results show that the
method has better performance. The research results of this paper provide a new detection
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method based on the cross-disciplinary theory for coal-rock dynamic hazards, which is an
important contribution to improving the reliability and accuracy of detection.
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