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Abstract: Based on big data, we can build a regression model between a temperature field and a
temperature-induced deflection to provide a control group representing the service performance of
bridges, which has a positive effect on the full life cycle maintenance of bridges. However, the spatial
temperature information of a cable-stayed bridge is difficult to describe. To establish a regression
model with high precision, the improved PCA-LGBM (principal component analysis and light
gradient boosting machine) algorithm is proposed to extract the main temperature features that can
reflect the spatial temperature information as accurately and efficiently as possible. Then, in this
article, we searched for a suitable digital tool for modeling the regressive relationship between the
temperature variables and the temperature-induced deflection of a cable-stayed bridge. The multiple
linear regression model has relatively low precision. The precision of the backpropagation neural
network (BPNN) model has been improved, but it is still unsatisfactory. The nested long short-term
memory (NLSTM) model improves the nonlinear expression ability of the regression model and is
more precise than BPNN models and the classical LSTM. The architecture of the NLSTM network
is optimized for high precision and to avoid the waste of computational costs. Based on the four
main temperature features extracted via the PCA-LGBM, the NLSTM network with double hidden
layers and 256 hidden units in each hidden layer has much higher precision than the other regression
models. For the NLSTM regression model of the temperature-induced deflection of a cable-stayed
bridge, the mean absolute error is only 4.76 mm, and the mean square error is only 18.57 mm2. The
control value of the NLSTM regression model is precise and thus provides the potential for early
detection of bridge anomalies. This article can provide reference processes and a data extraction
algorithm for deflection modeling of other cable-stayed bridges.

Keywords: cable-stayed bridge; deflection model; deep learning; intelligent optimization

1. Introduction

Cable-stayed bridges are common long-span bridges that are increasingly becoming
widely used. To ensure the safety of cable-stayed bridges for the full life cycle, structural
health monitoring (SHM) systems can be installed to monitor the use status of bridges to
avert economic and safety risks caused by destructive cable-stayed bridge accidents [1,2].
We can effectively use big data to mine crucial information and detect bridge health state
through the SHM system. In the full life cycle of the structure, deflection is a control index
reflecting mechanical properties [3]. In the operation phase, the most critical factors affect-
ing the vertical deflection of the main girder are temperature and vehicle load; however, the
impact of thermal load is more significant [4,5]. Accordingly, we can establish a correlation
model between temperature and deflection induced by temperature. By inputting the real-
time temperature data from the SHM system, we can obtain the output data of deflection
induced by temperature and use the output data as control values. The normal working
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state of the bridge can then be evaluated according to the difference between its deflection
and the control value. Efficient evaluation of bridges will facilitate the prolonging life of
bridges as early as possible, and the longer bridge service life will obviously benefit the
sustainability of infrastructures. Therefore, a high-precision model that provides reliable
deflection control values is urgently required [6].

Naturally, the temperature of the girder affects its deflection [7], which is also affected
by the temperature of the bridge tower [8,9]. The spatial temperature information is very
complex; hence, efficiently and accurately extracting the temperature features required for
establishing the regression model is difficult. In the existing analytic model, even if the
composite effect of multiple temperatures is considered, large errors occur [9]. Benefiting
from the wide application of SHM systems, a large amount of environmental information
and bridge response data were collected [10]. These data have a volume of several months,
the velocity of real-time bridge information, and a variety of different sensors. Therefore, the
data obtained via the SHM system is obviously big data that contain potential information
about the service performance of the bridge [10,11].

The information contained in bridge monitoring data is very valuable; therefore, uti-
lizing big data to promote bridge engineering research has become the general trend [1,12].
If an accurate regression model can be established between temperature field and tempera-
ture deflection based on the monitoring big data of a cable-stayed bridge, the regression
value of this model can be used as the control group when the bridge works normally.
To establish the model with satisfactory precision, the main temperature features must
be extracted from the collected temperature field information for removing redundant
information, and thus the corresponding extraction algorithms should be developed. The
temperature-induced deflection of cable-stayed bridges is very complex. To ensure that
the mapping relationship between temperature and temperature-induced deflection can
be precisely expressed through regression modeling, deep learning technology should be
applied to satisfy the high-precision regression model.

Firstly, for optimal precision, the temperature feature extraction method combining
two intelligent algorithms is proposed in this paper. The principle component analysis
(PCA) algorithm is usually used for restructuring temperature field data into several main
temperature features; the restructured data features obtained via PCA can better adapt
to nonlinear modeling [13], but the redundant features must be removed. Therefore, in
this paper, light gradient boosting machine (LGBM), which belongs to machine learning
technology and is able to better explain the nonlinear connections between data features [14],
is further used to select the most useful features from the data information reconstructed
via PCA.

Then, to determine the appropriate deep learning modeling tool, this paper tested
different neural networks and the network with the best performance was selected. The
traditional backpropagation neural network (BPNN) [15] with the typical back propagation
characteristic [16] was tested; the advanced nested long short-term memory (NLSTM)
network that can express highly nonlinear temporal relationship [17] was tested; and the
classic LSTM network [18] was also tested to prove that NLSTM is more suitable for the
mapping model in this paper. Meanwhile, the paper explores the optimal architecture of
neural networks with the comprehensive consideration of effect and cost.

Finally, the digital regression model built by using the deep neural network can
achieve a very high precision, thus providing a valuable control group for bridge deflection;
therefore, the abnormal state of the bridge can be detected as early as possible, which has a
positive significance for bridge health monitoring.

In this paper, Section 2 introduces the extraction of the datasets of temperature features
and temperature-induced deflection, and the combined PCA-LGBM algorithm for extract-
ing the temperature features is described. In Section 3, the multiple linear regression model
is built to map the relationship between the temperature features and the temperature-
induced deflection. In Section 4, the BPNN is used to preliminarily improve precision of the
regression model. In Section 5, the deep learning NLSTM model is built to achieve higher
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precision and NLSTM is proved to be more precise than the classic LSTM. In Section 6,
the performances of different digital models are discussed for selecting the best modeling
scheme. Section 7 provides the summary and conclusions of this paper.

2. Extraction of Temperature Features and Temperature-Induced Deflection
2.1. Bridge and Monitoring System

This research is based on data from the SHM system of a sea-crossing bridge between
Macau and Hong Kong. As shown in Figure 1a, the bridge has a total length of 1150 m
and a main span of 456 m. The main girders are steel box beams measuring 36 m in width
and 4.6 m in height. As shown in Figure 1b, the bridge towers adopt the concrete structure
with a box section, and the two towers are 163 m high. As shown in Figure 1c, there are
twelve temperature sensors installed in the main girder and these temperature sensors
are denoted as sensor 1 to sensor 12, and there is a deflection sensor in the center of the
main girder. As shown in Figure 1d,e, there are eight temperature sensors installed in the
concrete structure of the two bridge towers, and these temperature sensors are denoted as
sensor 13 to sensor 20.
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2.2. Temperature-Induced Deflection

Figure 2 shows the deflection of the main girder on 4 January 2020. The existing
studies found that averaging the deflection data every ten minutes can properly eliminate
the effects of dynamic loads [19]. Therefore, the ten-minute time window is used to average
the original deflection data, thus obtaining the temperature-induced deflection named
D. In Figure 2, the increase in deflection indicates that the main girder is up-warped,
and the decrease in deflection represents the downward deformation of the main girder.
Around 12:00, the temperature of the bridge reaches its peak, and the temperature-induced
deflection also reaches its extreme point.
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Figure 2. Time–history curves of the original deflection and the temperature-induced deflection on
4 January 2020.

Figure 3 shows the deflection change during one year after the ten-minute average
processing. The temperature-induced deflection of the main girder is influenced by the
complex temperature field distributed in the entire bridge, and different temperature
factors have different effects on the deflection. For example, the effect of the overall
temperature change in the main girder and the vertical temperature difference of the main
girder is opposite when producing the deflection. At the same time, the spatial–temporal
distribution of the temperature field is very complex and results in temperature changes in
different parts varying greatly over a daily or longer period. Therefore, although the trend
of temperature-induced deflection in Figure 3 is generally consistent with temperature, it
has distinctive spatial–temporal characteristics rather than fully adapting to temperature
change. The complex temperature field data must be processed to achieve the optimal
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regression modeling between the temperature variables and the temperature-induced
deflection. Next, we will introduce the processing of temperature data.
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2.3. Temperature Information

To correspond to the time interval of the temperature-induced deflection, we also
averaged the data of the temperature sensor every ten minutes. Figure 4 shows the temper-
ature data of sensors 4, 7, 11, and 18 during a one year period after the ten-minute average
processing. This bridge is located between Hong Kong and Macau, so the temperature did
not fall below 0 ◦C throughout the year. Sensor 4 is located at the top plate of the main
girder and, because of the sunlight exposure, its temperature extremes and temperature
changes are more than other sensors. Both sensor 11 and sensor 12 are located at the
bottom plate of the main girder and, due to its location receiving less sunlight exposure,
the measured temperatures of these two sensors are relatively small. Sensor 18 is installed
in the concrete of the tower in order to measure the temperature of the tower. Both the
extremes and the changes in the temperature of the tower are smaller than those of the
main girder because the tower has a very sturdy cross-section.
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Figure 4. Time–history curves of the temperature measured via different sensors. (a) Data of
temperature sensor 4. (b) Data of temperature sensor 11. (c) Data of temperature sensor 12. (d) Data
of temperature sensor 18.

The temperature variables of the 20 sensors after processing are named T1~T20. Tak-
ing all the temperature variables as the input data for modeling not only wastes a lot of
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computing cost but may have a negative impact because there exists the obvious informa-
tion redundancy between the temperature measured via different sensors. The datasets
collected via these temperature sensors are similar but have independent significance.
Therefore, these data cannot be randomly selected or discarded; thus, all the temperature
data need to be restructured in order to extract the main temperature features as the input
data of the regression model.

2.4. Extraction of Temperature Features
2.4.1. Information Reconstruction via Principal Component Analysis (PCA)

PCA can recombine the multiple measured information into new variables that are
independent of each other [20]. Therefore, it can reconstruct the data according to the actual
situation. Some of the reconstructed variables will contain a lot of effective information,
while the other variables are redundant information that can be removed.

If there are n parameters, the centralized parameters can form a matrix
W = [w1, w2, w3, . . . , wn]. The wn is described by Equation (1):

wn = [wn1, wn2, wn3, . . . , wnk]
T (1)

where k is the amount of data.
The orthogonal group that forms a new mapping space is {u1, u2, u3, . . . , uk}, and the

projection of the original characteristic parameter wi in uj can be described as wi
Tuj. The

variance in the original data after the projection in uj can be described by Equation (2):

Jj =
1
n

n

∑
i=1

(wi
T · uj)

2 =
uj

T

n
W ·WTuj (2)

S is the covariance matrix of W. It is described by Equation (3):

S = W ·WT/n (3)

The solution to the projection space can be converted into Equation (4):{
maxJj = uj

TSuj
s.t.uj

Tuj = 1
(4)

According to the Lagrangri multiplier method, Equation (5) can be constructed:

F
(
uj
)
= uj

TSuj + λj(1− uj
Tuj) (5)

Taking the derivative of function F, the result is described by Equation (6):

∂F
∂uj

= 2Suj−2λjuj= 0⇒ Suj = λjuj (6)

where λj is the eigenvalue and uj is the eigenvector of S.
The eigenvectors are composed of a matrix U = [u1, u2, u3, . . . , uj]. The matrix of

reconstructed information can be described by Equation (7):

B = [b1, b2, b3, . . . , bj] = W ∗U (7)

The column vector bj is the reconstructed vector.
Based on the PCA algorithm, the principal components are orthogonal and non-

correlated. Through this method, the reconstruction of the temperature variables can be
performed efficiently and accurately. The temperature variables obtained by the recon-
struction are named T1

′~T20
′. In the regression modeling of temperature deflection, these

temperature variables reconstructed via PCA have different information abundances; there-
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fore, the relevant algorithm must be further used to analyze the information contribution
of different features in order to retain the most useful information and remove redundant
data. Subsequent work revolves around the light gradient boosting machine framework.

2.4.2. Analysis of the Reconstructed Information via Light Gradient Boosting
Machine (LGBM)

GBDT (Gradient Boosting Decision Tree) is the classical and reliable analytical method
belonging to machine learning. As the improved framework based on the GBDT algorithm,
LGBM can reduce the computational cost by parallel training and thus be widely used in
data mining [21].

Similar to the GBDT, LGBM implements the decision tree by dividing the histogram of
the original data. However, LGBM has been further optimized by replacing the traditional
level-wise algorithm by the leaf-wise algorithm with depth constraints. The leaf-wise
algorithm splits the leaf with the most profit first. Therefore, the leaf-wise algorithm can
reduce errors and improve accuracy.

Since the growth of the leaf-wise is not limited and prone to overfitting, LGBM adds the
limit of the maximum depth to prevent overfitting. Figure 5 shows the difference between
the level-wise algorithm and the leaf-wise algorithm. Therefore, the LGBM algorithm can
accurately sort the importance of different variables by the decision tree scheme.
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The reconstructed temperature variables obtained via PCA are completely uncorre-
lated. However, the information contribution of the different variables to the deflection
regression is not the same. As the number of input features to the regression model in-
creases, information redundancy also increases. The redundancy not only influences the
computational cost, but also reduces the precision of the regression model.

Through the PCA algorithm, the reconstructed temperature variables T1
′~T20

′ have
been obtained. Here LGBM is used for selecting the most effective temperature features.
The calculation process is shown as follows:

Step 1: Put the temperature variables T1
′~T20’ from PCA into the LGBM processing

module. The LGBM module will calculate Ii, which is the information gain of the tem-
perature variable Ti

′. The value of the information gain represents the importance of this
variable.

Step 2: Rank the temperature variable Ti
′ in descending order according to the Ii

obtained in Step 1.
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Step 3: Select temperature variables in order of information gain from high to low
until the sum of the information gains reaches 95%.

The selected temperature variables obtained by Step 3 contain the optimal information
abundance and are used as the input features for building the regression model.

2.4.2.2. Extraction Process of the Temperature Features via PCA-LGBM

Data from the health monitoring system between January 2020 and December 2020 are
used. T1

′~T20
′ are the restructured temperature variables via PCA. The information gains

of T1
′~T20

′ are calculated via LGBM. Figure 6 shows the ratio between the information gain
and the total information gain of T1

′~T20
′. To retain the original information as much as

possible while reducing the computational cost, T4
′, T9

′, T11
′, and T14

′, which include more
than 95% of the total information gain, are selected as the input features of the regression
model and are renamed Ta, Tb, Tc, and Td. From January to December, each temperature
feature retains 47,520 data points. Figure 7 shows the time–history curves of the four
temperature features.
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2.5. Training Set and Test Set

We could use the deflection data D and the temperature features Ta, Tb, Tc, and Td to
establish a regression model. To make the model have high precision and generalization
performance, dividing the 47,520 data points of the deflection dataset D into the training set
D1 contains 38,016 (80%) data points for the iterative training, and dividing the test set D2
contains 9504 (20%) data points for testing the regression model. Correspondingly, for the
temperature features Ta, Tb, Tc, and Td, every 38,016 data points extracted are used to form
the training sets Ta1, Tb1, Tc1, and Td1 to coordinate with the training set D1, and every
9504 data points extracted are used to form the test sets Ta2, Tb2, Tc2, and Td2 to coordinate
with the test set D2.

2.6. Constructing the Data Mode for Neural Networks

According to the above, we can form the input data as the dataset X = {x1, x2, . . . , xt}.
The xt is described by Equation (8).

xt =
[

Ta(t) Tb(t) Tc(t) Td(t)

]
(8)

According to the existing research result, when building the mapping model of tem-
perature and temperature-induced response via neural networks, using the temperature
data of the first five hours as input data and the response data of the current moment as
output data, the model will obtain the highest generalization performance [22]. Therefore,
the data flow shown in Figure 8 is constructed as the input–output mode for establishing
the regression model. As shown in Figure 8, when the deflection Dt at time t is needed to be
fitted, the thirty arrays of the current and previous moments from the dataset X are input.
With the passage of time, this mapping mode also constantly changes as shown in Figure 8.
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3. Multiple Linear Regression (MLR) Analysis

The four temperature features, Ta, Tb, Tc, and Td, together influence the temperature-
induced deflection. We used them as the input variables and used D as the output variable
for the MLR modeling. The goodness of fit R2 and mean square error (MSE) were used for
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evaluating the precision of the regression model. The calculation formula established via
multiple linear regression analysis is described by Equation (9):

D′ = −1.8850Ta + 4.0521Tb + 7.2960Tc + 11.0852Td − 30.4653 (9)

where D′ is the regression value of the temperature-induced deflection.
The goodness of fit R2 is described by Equation (10):

R2 =
∑N

n=1 (Dn
′ − D)

2

∑N
n=1 (Dn − D)

2 (10)

The mean square error (MSE) is described by Equation (11):

MSE =
∑N

n=1 (Dn
′ − D)

2

N
(11)

where Dn
′ is the nth regression value of the model, and Dn and D are the actual value and

the average of the actual values, respectively
The R2 of the training set and test set are 0.5543 and 0.5431, respectively. They are very

close, which proves that the four main temperature features extracted via the PCA-LGBM
algorithm have reliable generalization performance.

Figure 9 shows the predictive ability of the multiple linear regression model. Figure 10
is the scattered points plot with actual deflection and predicted deflection. The MSE of the
test set is 246.73 mm2. The precision of the model established via multiple linear regression
analysis is low, and it cannot satisfy the engineering needs. The neural networks with
higher fit ability are further used to establish the regression model.
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4. Backpropagation Neural Network (BPNN)

BPNN is a widely used machine learning method with excellent performance in digital
regression. A standard BPNN usually consists of an input layer, a hidden layer, and an
output layer [23]. As shown in Figure 11, the BPNN has two hidden layers and each layer
has m units as an example. In the forward propagation of the BPNN, the data features
from 1 to t are firstly input into the input layer. After the calculation using several weight
coefficients Wtm, the calculated information is transferred to the hidden layer. After the
operation via the activation function σ, the information is processed via the weighting
coefficients W1

ik in the first hidden layer. Then, the information is further input into the
next hidden layer and calculated via the activation function and the weighting coefficients
W2

k in the second hidden layer. Finally, the fully connected layer integrates the values
from the second hidden layer and thereby outputs the predicted regression value y’. In
the training process, the parameters of the BPNN are adjusted and optimized through the
backpropagation algorithm to improve the precision of the digital regression model.
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BPNN is the most classic neural network, and it is used for preliminary exploratory
modeling and serves as a benchmark for evaluating other subsequent methods. In this pa-
per, the regression models between the temperature features and the temperature-induced
deflection were established via BPNN using the s-type transfer function (logsig function)
as the activation function.

To find the optimal BPNN model parameters, the different BPNN models are trained
and tested. The BPNN models have 1 to 5 hidden layers, with each layer having 64, 128,
or 256 hidden units. In the training phase, 0.1 is set as the initial learning rate. Figure 12
shows that the root mean square error (RMSE) of the training set changes during the
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500 epochs and iterates training of the BPNN model with different architectures. The RMSE
is described by Equation (12):

RMSE =

√
∑N

n=1 (Dn
′ − D)

2

N
(12)
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The precision of the trained models was tested. After the 500 epochs iterate training,
the mean square errors (MSE) of the test are used evaluate the precision of the different
models, as shown in Figure 13. When the number of the hidden layers is one, two, or three,
the precision constantly increases. When the hidden layers are increased to four or five
layers, the precision almost no longer improves. When the hidden layer is four or five
layers, the performances of BPNN with 128 hidden units and 256 hidden units in each
hidden layer are not much different. Therefore, under 500 epochs of iteration, the network
architecture with five hidden layers and 256 hidden units in each layer is selected to build
the regression model. The MSE of the training set and test set obtained via BPNN with
different architectures are shown in Table 1.
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Table 1. MSE of train set and test set obtained via BPNN with different architectures.

Methods MSE of Training Set (mm2) MSE of Test Set (mm2)

1 layer and 64 units 389.13 390.53
1 layer and 128 units 373.66 371.98
1 layer and 256 units 381.15 384.70
2 layers and 64 units 287.38 300.98

2 layers and 128 units 272.91 306.22
2 layers and 256 units 239.56 292.11
3 layers and 64 units 218.81 239.02

3 layers and 128 units 139.25 178.77
3 layers and 256 units 114.69 161.60
4 layers and 64 units 159.21 203.32

4 layers and 128 units 104.34 155.83
4 layers and 256 units 93.96 170.20
5 layers and 64 units 156.07 198.31

5 layers and 128 units 85.01 161.10
5 layers and 256 units 84.18 154.09

Figure 14 shows the output results of the regression model established via the BPNN
with 5 hidden layers and 256 hidden units in each hidden layer. Figure 15 shows the
scattered points plot of the actual deflection and predicted deflection. The BPNN regression
model is more precise than the MLR model. The MSE of the BPNN model was reduced to
154.09 mm2, but this level of precision is obviously still insufficient.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 26 
 

Table 1. MSE of train set and test set obtained via BPNN with different architectures. 

Methods MSE of Training Set (mm2) MSE of Test Set (mm2) 
1 layer and 64 units 389.13 390.53 
1 layer and 128 units 373.66 371.98 
1 layer and 256 units 381.15 384.70 
2 layers and 64 units 287.38 300.98 

2 layers and 128 units 272.91 306.22 
2 layers and 256 units 239.56 292.11 
3 layers and 64 units 218.81 239.02 

3 layers and 128 units 139.25 178.77 
3 layers and 256 units 114.69 161.60 
4 layers and 64 units 159.21 203.32 

4 layers and 128 units 104.34 155.83 
4 layers and 256 units 93.96 170.20 
5 layers and 64 units 156.07 198.31 

5 layers and 128 units 85.01 161.10 
5 layers and 256 units 84.18 154.09 

Figure 14 shows the output results of the regression model established via the BPNN 
with 5 hidden layers and 256 hidden units in each hidden layer. Figure 15 shows the scat-
tered points plot of the actual deflection and predicted deflection. The BPNN regression 
model is more precise than the MLR model. The MSE of the BPNN model was reduced to 
154.09 mm2, but this level of precision is obviously still insufficient. 

 
Figure 14. Curves of the actual deflection and the predicted deflection via the BPNN model. Figure 14. Curves of the actual deflection and the predicted deflection via the BPNN model.



Sustainability 2023, 15, 9623 14 of 25Sustainability 2023, 15, x FOR PEER REVIEW 14 of 26 
 

 
Figure 15. Scatter plot of the actual deflection and the predicted deflection via the BPNN model. 

5. Regression Model Based on Deep Learning 
The deep learning network has deeper hidden layers and a more complex computing 

unit in the hidden layer. It usually has a stronger nonlinear fitting performance than tra-
ditional networks, resulting in higher precision in regression modeling [24,25]. Therefore, 
the deep learning networks are used to further improve the regression performance in this 
paper. 

5.1. Long-Short Term Memory Network (LSTM) 
The recurrent neural network (RNN) usually performs well in modeling the time-

varying correlation. [26]. Compared with BPNN, RNN considers the information at the 
current moment and the previous information. Therefore, in this study a time series is 
used as the input data in the RNN regression model, and then the fitted data at the current 
moment are output. 

The LSTM network is one type of the improved RNNs. LSTM can more accurately 
describe temporal nonlinear factors. It can fully mine the longer time series data by its 
specific gate functions in the unit of the hidden layer [27]. Therefore, the LSTM network 
satisfies the requirements of explaining the nonlinear time dependence between the dif-
ferent variables. Figure 16 shows the network architecture of LSTM with one LSTM hid-
den layer. 

Figure 15. Scatter plot of the actual deflection and the predicted deflection via the BPNN model.

5. Regression Model Based on Deep Learning

The deep learning network has deeper hidden layers and a more complex computing
unit in the hidden layer. It usually has a stronger nonlinear fitting performance than
traditional networks, resulting in higher precision in regression modeling [24,25]. Therefore,
the deep learning networks are used to further improve the regression performance in
this paper.

5.1. Long-Short Term Memory Network (LSTM)

The recurrent neural network (RNN) usually performs well in modeling the time-
varying correlation. [26]. Compared with BPNN, RNN considers the information at the
current moment and the previous information. Therefore, in this study a time series is
used as the input data in the RNN regression model, and then the fitted data at the current
moment are output.

The LSTM network is one type of the improved RNNs. LSTM can more accurately
describe temporal nonlinear factors. It can fully mine the longer time series data by its
specific gate functions in the unit of the hidden layer [27]. Therefore, the LSTM network sat-
isfies the requirements of explaining the nonlinear time dependence between the different
variables. Figure 16 shows the network architecture of LSTM with one LSTM hidden layer.

The data flow in the hidden units and the hidden layers of the LSTM network is
more complex than that of the RNN network. For a unit of the LSTM hidden layer, except
putting the time series data {x1, x2, . . . , xt} into the model, the input data also include the
information ht−1 transmitted from the LSTM unit at the previous moment, and includes
the long-term memory Ct−1 flowing in the cell. Several weights, biases, and activation
functions constitute the forget gate, input gate, and output gate. Among the parameters in
the LSTM network, ft is generated from the forget gate, it and C̃t are generated from the
input gate, and Ot is generated from the output gate. The gate parameters are calculated
by Equations (13) to (16):

ft = σ(W f [ht−1, xt] + b f ) (13)

it = σ(Wi[ht−1, xt] + bi) (14)

C̃t = tanh(WC[ht−1, xt] + bC) (15)

Ot = σ(WO[ht−1, xt] + bO) (16)

where WC, W f , Wi, WO are weight coefficients; bC, b f , bi, bO are biases.
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Due to the existence of the forget gate, the long-term information transmitted by the
previous cell is only partially retained. The product of the parameters ft and Ct−1, and
the product of the parameters it and C̃t, determine the update of information. Therefore,
the current Ct can be updated to achieve better computational results. The parameter Ct is
described by Equation (17):

Ct = ft · Ct−1 + it · C̃t (17)

ht is not only the output value of the network at the current moment, but also the
information passed to the next cell. ht is described by Equation (18):

ht = Ot · tanh(Ct) (18)

5.2. Nested Long Short-Term Memory Network (NLSTM)

NLSTM is an optimized LSTM architecture jointly proposed by Carnegie Mellon Uni-
versity and the University of Montreal. NLSTM can express a higher nonlinear relationship
than traditional LSTM by the more refined calculation in the hidden units.

As shown in Figure 17, the NLSTM unit has a deeper architecture than the LSTM unit.
The parameters in NLSTM can be described by Equations (19) to (29):

ft = σ(W f [ht−1, xt] + b f ) (19)

it = σ(Wi[ht−1, xt] + bi) (20)

Ot = σ(WO[ht−1, xt] + bO) (21)

x̃t = it × σ(Wc[ht−1, xt] + bc) (22)

h̃t−1 = ft · Ct−1 (23)

f̃t = σ(W̃ f [h̃t−1, x̃t] + b̃ f ) (24)
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ĩt = σ(W̃i[h̃t−1, x̃t] + b̃i) (25)

Õt = σ(W̃O[h̃t−1, x̃] + b̃O) (26)

C̃t = f̃t · C̃t−1 + ĩt · σ(W̃C[h̃t−1, x̃t] + b̃C) (27)

Ct = Õt · σ(C̃t) (28)

ht = Ot · Ct (29)

where WC, W f , Wi, WO are weight coefficients; bC, b f , bi, bO are biases.
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5.3. Optimized Architecture for NLSTM Network

The NLSTM network is established based on MATLAB. It also establishes the regres-
sion relationship between the temperature features changing over time and Dt.

Because the dataset was processed via the PCA-LGBM algorithm, the data do not
need to be normalized. In the NLSTM network, the training datasets are still X1 and D1.
The NLSTM network and its parameters were dissected as shown in Figure 17. During the
training phase, the parameters are continuously adjusted via backpropagation.

After the NLSTM network undergoes the preset iterative epochs of optimization
training, a regression model is obtained. To test the performance of this regression model,
the test set X2 is used as the input data, and the predicted values calculated by the model
are compared with the actual D2.

Due to the limited capacity of the NLSTM with only one hidden layer for handling
engineering problems, the neural networks must be organized into an optimized ar-
chitecture [28,29]. It is necessary to find the best network architecture for NLSTM to
ensure accuracy.

Considering the data scale and the computing power of our device, this paper sets
the batch size as 32, and uses the Adam optimizer in backward propagation. The training
process has 100 iterative epochs. To speed up the convergence speed, the initial learning
rate is set to 0.001, and it will reduce to 0.0002 after 50 epochs to ensure the convergence of
the NLSTM network.

The datasets X1 and D1 are utilized to, respectively, train NLSTM networks with single,
double, and triple hidden layers. The units in each hidden layer change from 64 hidden
units to 128 hidden units to 256 hidden units. Figure 18 shows the root mean square
error (RMSE) of the training set changes during 100 epochs of nine NLSTM networks with
different architectures.
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The test sets X2 and D2 were applied to test the precision of the nine models after the
training. Figure 19 shows the mean square error of the predicted results of the nine NLSTM
networks with different architectures. This picture is used to roughly observe the situation
and more detailed results are provided in Table 2.
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Table 2. MSE of the train set and the test set via the NLSTM networks with different architectures.

Methods MSE of Training Set (mm2) MSE of Test Set (mm2)

1 layer and 64 units 488.78 493.74
1 layer and 128 units 85.28 95.16
1 layer and 256 units 27.32 35.55
2 layers and 64 units 97.97 104.39

2 layers and 128 units 15.97 21.07
2 layer and 256 units 14.22 18.57
3 layers and 64 units 25.47 31.86

3 layers and 128 units 13.37 16.13
3 layers and 256 units 12.59 16.01

The MSE of the training set and test set for the NLSTM networks with different archi-
tectures are shown in Table 2. Benefiting from the excellent temperature feature extracted
via the PCA-LGBM algorithm and reasonable hyperparameter selection, even the NLSTM
network with 1 hidden layer and 64 hidden units does not show a significant difference
between the training results and testing results. This proves that there is no overfitting or
other singular phenomenon when the trained model is used for the practical test.

The root mean square error of the NLSTM network with n hidden layers and m hidden
units after 100 epochs of training is represented as Rnm . The root mean square errors of
different NLSTM networks are sorted from largest to smallest as shown below:

R164 > R264 > R1128 > R1256 > R364 > R2128 > R2256 > R3128 > R3256

In considering the training effect alone, it can be seen that all nine networks are
converged. The root mean square error of the NLSTM network with a single hidden layer
and 64 hidden units is larger than other networks. Of course, an evaluation of the ability of
a neural network must also consider the test effect.

For the test results, a similar conclusion can also be proved from the mean square
errors of the nine NLSTM networks in Figure 19 and Table 2. The root mean square error
reduces the increases in the number of hidden layers and hidden units in the NLSTM
network. The mean square error of some NLSTM networks are very similar. This illustrates
that there is no significant difference in fitting ability between the NLSTM networks, and
the networks should be further selected by considering the computational efficiency.
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We can further evaluate the performances and efficiencies of the NLSTM networks
with different architectures through the test precision and training time. After 100 epochs of
iterative training, for the nine different NLSTM networks, the training time and the mean
square error of the test set make up the two arrays as follows:{

t164 , t1128 , t1256 , t264 , t2128 , t2256 , t364 , t3128 , t3256

}
{

M164 , M1128 , M1256 , M264 , M2128 , M2256 , M364 , M3128 , M3256

}
where tnm represents the time cost in 100 epochs of training for the NLSTM network with
n hidden layers and each hidden layer with m hidden units. Mnm represents the mean
square error of the test set of the NLSTM network with n hidden layers and each layer with
m hidden units. ηnm is the product of the corresponding values in the two arrays and is
used as the indicator to evaluate the efficiency of NLSTM networks. The parameter ηnm is
described by Equation (30):

ηnm =
1

tnm

× 1
Mnm

(30)

Figure 20 shows the comparison of the ηnm of the different NLSTM networks. The NL-
STM networks with 64 hidden units per hidden layer are the most inefficient. The NLSTM
network with 2 hidden layers and each layer with 256 hidden units is the optimal choice.
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Figure 21 shows the output results of the regression model established by the NLSTM
network which has 2 hidden layers and 256 hidden units in each hidden layer. Figure 22
shows the scattered plot of the actual deflection and the predicted deflection. The mean
square error of the test set is 18.57 mm2 and it is more accurate than the BPNN regres-
sion model.
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To demonstrate that the NLSTM unit has better performance than the classical LSTM
unit, the LSTM regression model is also established with 2 hidden layers and 256 hidden
units for the test set. Figure 23 shows the RMSE changes during 100 epochs of the training
set for the LSTM network. The network, which is established by the classic LSTM, still
converges during the training phase.
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For this LSTM model, the mean square error of the test set is 66.95 mm2. Figure 24
shows the output result of the LSTM regression model. Figure 25 shows the scattered
plot with actual deflection and predicted deflection. Obviously, the precision of NLSTM
is superior to that of LSTM. The results of different models are further compared and
discussed in the next section.
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6. Evaluation of Several Models

Three indicators were selected to assess the accuracy of different models more com-
prehensively. These three indicators are, respectively, the MSE, which is described by
Equation (11), the Maximum Absolute Error (MAXAE), described by Equation (31), and the
Mean Absolute Error (MAE), described by Equation (32). The MAE evaluates the overall
error; the MSE evaluates the output stability; and the MAXAE evaluates the extreme value
of error.

MAXAE = max
∣∣Dn − Dn

′∣∣ (31)

MAE =
1
n∑

∣∣Dn − Dn
′∣∣ (32)

The above error indicators were, respectively, tested using the regression values from
the MLR, BPNN, LSTM, and NLSTM regression models which were trained using the
datasets from the combined PCA-LGBM. To demonstrate the applicability and effectiveness
of the four extracted temperature features of the combined PCA-LGBM algorithm, the same
training and testing procedures were performed by randomly selecting four temperature
features, and the above error indicators of the selected methods of the randomly selected
four temperature features are calculated again. The relevant calculation results are shown
in Table 3.

Table 3. MAE, MSE, and MAXAE of different methods.

Methods MAE (mm) MSE (mm2) MAXAE (mm)

MLR
(features of PCA-LGBM) 18.26 246.73 61.80

BPNN
(features of PCA-LGBM) 12.63 154.09 50.44

LSTM
(features of PCA-LGBM) 8.06 66.95 33.16

NLSTM
(features of PCA-LGBM) 4.76 18.57 27.37

MLR
(randomly selected features) 22.56 387.89 70.76

BPNN (PCA-LGBM)
(randomly selected features) 19.55 326.78 62.89

LSTM (PCA-LGBM)
(randomly selected features) 18.86 267.86 56.87

NLSTM (PCA-LGBM)
(randomly selected features) 17.34 250.16 47.98
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The discussion of the several calculation results is as follows:
When the MLR model is used for fitting with features via PCA-LGBM, the MAE of the

model is 18.26 mm. The MSE is 246.73 mm2, which is approximately 16.5 times the MAE,
showing poor accuracy and stability. The MAXAE of the model is 61.80 mm.

When using BPNN with 5 hidden layers and 256 hidden units per layer to establish a
regression model for fitting with features via PCA-LGBM, the model MAE is 12.63 mm. The
MSE is 154.09 mm2, which is approximately 8.5 times the MAE. The accuracy and stability
of the model have improved to a certain extent. The MAXAE of the model is reduced to
50.44 mm.

When the regression model is established using the LSTM network with 2 hidden
layers and 256 hidden units in each hidden layer, for the fitting with features via PCA-
LGBM, the MAE is reduced to 8.06 mm. The MSE is only 66.95 mm2, approximately twice
the MAE. The model accuracy and stability were significantly improved. The MAXAE was
reduced to 33.16 mm.

When the regression model is established using the NLSTM network with 2 hidden
layers and 256 hidden units in each hidden layer, for the fitting with features via PCA-
LGBM, MAE is reduced to 4.76 mm. The MSE is only 18.57 mm2, approximately twice the
MAE. The model accuracy and stability were significantly improved. The MAXAE was
reduced to 27.37 mm.

When using the randomly selected features, the errors of the calculation results ob-
tained using the selected methods are all too large for engineering application. Obviously,
if the extracted datasets obtained using the PCA-LGBM intelligent algorithm presented
in this paper are not used, the reliable model cannot be established even by using the
advanced fitting tools.

Therefore, the regression model established using the NLSTM network has superior
stability and accuracy with appropriate hyperparameters and reasonable datasets extracted
via PCA-LGBM. The model demonstrates a very high precision and can, therefore, provide
a very valuable control group for bridge maintenance. Abnormal bridge states can be
detected as early as possible; therefore, the model will play a huge role in the assessment of
bridge states.

This article is based on the data of a cable-stayed bridge in service; however, the
modeling approach and data extraction algorithm can generally be applied to other cable-
stayed bridges. Therefore, the relevant methods and schemes in this article have relevant
significance for the maintenance of other cable-stayed bridges in service. At the same time,
we are committed to continuously developing more advanced methods in the future.

7. Conclusions and Prospect

The relevant conclusions of this article are as follows:

(1) After verification, for the structural health monitoring data, the main temperature
features extracted from the complex temperature field via the PCA-LGBM algorithm
have a reliable generalization. It is impossible to build a precise model using the
randomly selected features. Thus, the algorithm plays an important role in intelligent
regression analysis.

(2) The architecture of the NLSTM network should be optimized. On the one hand, if
there are too few hidden layers and units, the requirements of prediction accuracy
and generalization performance will be difficult to satisfy. On the other hand, if the
layers and units are too numerous, a substantial computational cost will be incurred
with little improvement in model accuracy. In this regard, the NLSTM network with
2 hidden layers, each with 256 hidden units, is the best choice.

(3) The deep learning-based NLSTM network has higher stability and accuracy in regres-
sion analysis compared with traditional MLR analysis and machine learning-based
BPNN. Its MAE is only one-twelfth of that of the MLR model, and only one-fifth of
that of the BPNN regression model. The ratio of MSE to MAE (MSE/MAE) is only one-
seventh of that of the MLR model, and only one-fourth of that of the BPNN regression
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model, illustrating the strong stability of the proposed NLSTM model. Similarly, the
calculation results of NLSTM are better than those of classical LSTM, indicating that
using NLSTM to build the regression model of the temperature-induced deflection
for cable-stayed bridges is preferred.

The significance and research prospects of this article are as follows:
By using NLSTM and the features extracted via PCA-LGBM, the model can reach a

very high precision, thus providing a very valuable control group for bridge maintenance.
Therefore, the abnormal state of the bridge can be detected as early as possible. Of course,
this paper only provides one fitting tool, and using the regression value of this tool to
detect abnormal states still requires the further work consisting of numerical simulations,
experiments, and various mathematical tools. This research will continue in the future.
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