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Abstract: The high dimensionality and uncertainty of renewable energy generation restrict the
ability of the microgrid to consume renewable energy. Therefore, it is necessary to fully consider
the renewable energy generation of each day and time period in a long dispatching period during
the deployment of energy storage in the microgrid. To this end, a typical multi-day scenario set is
used as the simulation operation scenario, and an optimal allocation method of microgrid energy
storage capacity considering the uncertainty of renewable energy generation is designed. Firstly,
the historical scenarios are clustered into K types of daily state types using the K-means algorithm,
and the corresponding probability distribution is obtained. Secondly, the Latin hypercube sampling
method is used to obtain the state type of each day in a multi-day scenario set. Then, the daily
scenario generation method based on conditional generative adversarial networks is used to generate
a multi-day scenario set, combining the day state type as a condition, and then the typical scenario
set is obtained using scenario reduction. Furthermore, a double-layer optimization allocation model
for the energy storage capacity of microgrids is constructed, in which the upper layer optimizes the
energy storage allocation capacity and the lower layer optimizes the operation plans of microgrids
in each typical scenario. Finally, the proposed model is solved using the PSO algorithm nested
with the CPLEX solver. In the microgrid example, the proposed method reduces the expected
annual total cost by 19.66% compared with the stochastic optimal allocation method that assumes
the scenic power obeys a specific distribution, proving that it can better cope with the uncertainty
of renewable energy generation. At the same time, the expected annual total cost is reduced by
6.99% compared with the optimal allocation method that generates typical daily scenarios based on
generative adversarial networks, which proves that it can better cope with the high dimensionality of
renewable energy generation.

Keywords: uncertainty; optimize allocation; Latin hypercube sampling; conditional generation
adversarial network

1. Introduction

In recent years, the permeability of distributed renewable energy power generation in
microgrids has been increasing continuously [1,2], and the uncertainty of its output has
increased the difficulty for microgrids to absorb renewable energy and operate reliably [3–6].
Appropriate allocation of energy storage equipment in microgrids is an effective means to
deal with the uncertainty of renewable energy generation.

Allocating a reasonable amount of energy storage capacity to a microgrid can improve
its operational economy and power supply reliability [7,8]. To obtain a reasonable capacity
of energy storage configuration for microgrids, the literature [9] constructed an energy stor-
age configuration model with minimizing the operation and investment cost, power loss
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cost, and CO2 emission cost of energy storage as the economic and operational objectives,
which successfully improved the economy of system operation. For the energy storage allo-
cation problem of systems containing renewable energy, an optimization method that takes
into account the uncertainty of new energy generation is necessary. A robust optimization
method is an effective way to deal with uncertainty. In order to deal with the scenario of
wind speed uncertainty, reference [10] established the distribution network operator’s wind
speed uncertainty set to represent its power generation range, so as to obtain the day-ahead
robust optimal scheduling strategy of wind power and thermal power unit systems, so that
the scheduling plan can be more flexible to deal with the uncertainty of renewable energy.
In terms of energy storage capacity allocation, the robust optimization model of energy
storage capacity allocation of distribution networks is established in reference [11]. How-
ever, the robust optimization needs to meet the adverse scenarios even under extremely
low probabilities, which makes the scheduling scheme too conservative. Therefore, refer-
ence [12] proposes a planning method involving commitment and economic scheduling
of hourly robust transmission constraint units, which can better evaluate operating costs
under specific planning decisions and reduce the conservatism of robust optimization to a
certain extent. To further reduce the conservatism of optimization results, reference [13]
generates wind power generation scenarios based on Latin Hypercube Sampling (LHS)
based on the renewable energy generation probability density distribution function, adopts
the randomly optimized energy storage capacity allocation method, and takes the expected
optimal under an uncertain environment as the goal. The flexibility and economy of the sys-
tem are taken into account, but the probability density distribution function of renewable
energy generation is often unknown in the actual planning work. In references [7,14], it is
assumed that the wind power generation in the system conforms to the Weibull distribution
and Gaussian distribution, respectively, and the wind power generation scenario set of
renewable energy is obtained by sampling the wind power at each period to improve the
adaptability of the optimal allocation results of energy storage to the uncertainties of wind
power generation. However, in reality, the probability distribution of renewable energy
generation power is often unknown, and assuming that renewable energy follows a certain
probability density function cannot accurately reflect its real output.

The method of accurately describing the uncertainty of renewable energy power gen-
eration is the key to improving the ability of microgrids to deal with the uncertainty. In this
condition, deep networks have certain application potential. Different from convolutional
neural network [15], generative adversarial networks (GAN) can generate new data by
alternating the training of generators and discriminators. For example, reference [16] uses
GAN to generate renewable energy generation scenarios and proves that the GAN-based
scenario generation method works well to restore the temporal correlation of renewable
energy power generation. In reference [17–19], the scenario generation method based on
GAN is applied to the optimization problem of power systems to improve the adaptability
under the scenario of high permeability of renewable energy. Reference [20] first uses
GAN to generate massive daily scenarios that can describe the uncertainty of renewable
energy generation and then uses a clustering algorithm to improve the solving efficiency of
optimal allocation of energy storage, obtain allocation results with stronger adaptability to
the uncertain environment, and realize the maximum utilization efficiency of renewable
energy in a grid-connected microgrid. The above references all use typical days as oper-
ation scenarios for power grid scheduling and allocation. However, with the increasing
permeability of renewable energy within the microgrid, the high-dimensional nature of
renewable energy power generation is becoming increasingly prominent, and the power
output at the source end of the microgrid is difficult to describe in typical scenarios with
daily cycles. Therefore, it is necessary to fully consider the renewable energy generation of
each day and period in the longer dispatching cycle during the energy storage allocation
stage of the microgrid.

In view of the high dimension of renewable energy generation, reference [21] integrates
the multi-day energy scheduling strategy based on arbitrage-sensing linear programming
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into the process of energy storage capacity allocation of microgrids, reducing the cost
of the whole life cycle of microgrids. Further, based on the Markov Chain Monte Carlo
(MCMC) algorithm to generate a daily state transition process and combined with the
day-day scenario generation method, reference [22] generates a multi-day net generation
power scenario set covering landscape uncertainty on a long-time scale. It improves the
economy of leasing capacity planning for microgrids. However, when MCMC is used to
generate a daily state transfer process set, a large number of transfer processes need to be
generated to reflect the real probability distribution of each daily state [23]. In the energy
storage capacity allocation problem of microgrids, in order to improve the efficiency of
solving subsequent stochastic optimization problems, in general, it is necessary to further
use scenario reduction to obtain a typical scenario set containing a small number of scenario
sets [24], which may lead to a large deviation between the occurrence frequency of each
day state in the typical scenario set and the true probability, thus affecting the accuracy of
the energy storage capacity optimization results of microgrid.

In order to comprehensively consider the high dimension and uncertainty of renewable
energy generation, this paper proposes a microgrid energy storage capacity allocation
method that takes into account the uncertainty of renewable energy generation: Firstly, by
combining the intra-day scenario generation methods of LHS and Conditional Generative
Adversarial Networks (CGAN), the typical multi-day scenario set is generated. Then, the
obtained multi-day typical scenario set is used as a simulation operation scenario and
input to the double-layer optimal allocation model of microgrid energy storage capacity,
and finally, the optimal energy storage allocation strategy is obtained by using the PSO
algorithm nested with the CPLEX solver. Compared with the existing research, the main
work and innovation of this paper include:

(1) In order to solve the problem of energy storage capacity allocation of microgrids under
the scenario of uncertain renewable energy generation, a double-layer optimization
allocation model of energy storage capacity of microgrids is constructed by taking a
multi-day typical scenario as the simulation operation scenario. The upper layer aims
to optimize the energy storage allocation capacity by minimizing the expected annual
total cost of centralized operation of the microgrid in multi-day typical scenarios, and
the lower layer aims to optimize the microgrid operation plan under each typical
scenario by minimizing the operation cost;

(2) In view of the uncertainty and high dimension of renewable energy generation, a
scenario generation method combining CGAN and LHS with a long dispatching
period was proposed. CGAN was used to excavate the output characteristics of
renewable energy under each daily state type, and LHS was used to stratify sampling
to avoid the large deviation between the occurrence frequency of each daily state
and the true probability in the typical scenario set. At the same time, intra-day and
inter-day scheduling of energy storage can be fully considered.

2. Energy Storage Capacity Allocation Model of Microgrid

As shown in Figure 1, the microgrid consists of microgas turbines, wind turbine units,
photovoltaic units, user loads, and energy storage equipment. A common AC bus exists
in the microgrid, connecting its different components, and they can be easily integrated
into a conventional AC power system, providing more controllability and flexibility [25].
Among them, the energy storage equipment is connected to the common bus through
AC-DC converters, which cause some energy loss during their charging and discharging
processes [26,27].
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Figure 1. Structure of microgrid.

In the dispatching process, the microgrid gives priority to the use of renewable energy
generation to meet its own load. The remaining net generation power is fed into the
distribution network system after being stabilized by energy storage. If the net generation
power is positive, it means that the residual power of the microgrid is transferred to the
distribution network; if it is negative, it means that the power supply from the distribution
network supports its own power balance [28].

2.1. Objective Function

The energy storage capacity allocation model of a microgrid consists of an upper layer
and a lower layer. In the upper layer, the energy capacity and power capacity of the energy
storage are configured with the minimum annual total cost CMG of the microgrid as the
target, and the objective function is:

min CMG = Cbess + 365× Cpo/Nday (1)

Cbess = (α ·QE + β ·Qp)
r(1 + r)y

(1 + r)y − 1
(2)

where Cbess is the annual cost of energy storage capacity investment; Cpo is the operation
cost expectation within the typical scenario set of a microgrid; Nday indicates the number
of days in the typical scenario. In this paper, the value is 7. α and β are unit energy capacity
and power capacity cost coefficient, respectively; r is the discount rate; y is energy storage
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life; QE and Qp are, respectively, the energy storage capacity and power capacity configured
for microgrid. Due to geographical and financial constraints, the maximum energy storage
capacity that can be configured for microgrids is limited, so the value of QE in this paper is
not more than 3000, and the value of Qp is not more than 300.

On the lower level, the output plan of each piece of equipment in the microgrid is
optimized with the goal of achieving a minimum operating cost expectation Cpo within the
typical scenario set of the microgrid, and its objective function is as follows:

min Cpo = Cbs + Cyw + Cbd + Comt (3)

Cbs = ∑
k

πk

T

∑
t=1

(ρt
s · pk,t

MG,b − ρt
b · p

k,t
MG,s) (4)

Cyw = γ∑
k

πk

T

∑
t=1

(
pk,t

MG,C + pk,t
MG,D

)
(5)

Cbd = ε∑
k

πk

T

∑
t=1

(pk,t
MG,b − pk,t

MG,s − pk
ave)

2
(6)

pk
bs,ave =

T

∑
t=1

(pk,t
MG,b − pk,t

MG,s)/T (7)

Comt = w∑
k

πk

T

∑
t=1

(
pk,t

omt

)
(8)

where, Cbs is the cost expectation of purchasing and selling electricity interactively with
the distribution network; Cyw is the cost expectation of charging and discharging energy
storage devices; Cbd is the penalty cost expectation of grid connected power fluctuation.
Comt is the fuel and pollutant emission cost expectation of the microgas turbine; w is the
cost of fuel consumption per unit power output and pollutant emission treatment; pk,t

omt
is the output power of the micro-gas turbine at time t in typical scenario k, and its value
is no less than zero. πk is the probability of occurrence in scenario k; γ is unit charge and
discharge cost coefficient; ρt

b and ρt
s respectively represent the purchasing and selling prices

of the power distribution network in time period t; pk,t
MG,b and pk,t

MG,s are respectively the
purchased and sold power of the microgrid at time t in typical scenario k, and their values
are no less than zero. pk,t

MG,C and pk,t
MG,D are the charging and discharging power of the

microgrid at the t time period in typical scenario k, and their values are no less than zero.
ε is the penalty factor for power fluctuation on grid-connected connection lines [29,30].
pk

bs,ave indicates the average power of grid-connected connection lines in a typical scenario
k; T represents the number of scheduling time periods. In this paper, each time period is
1 h, and the scheduling period is one week; that is, T = 168.

2.2. Constraint Condition

Energy storage charging and discharging power constraints of microgrid:

max
(

pk,t
MG,C, pk,t

MG,D

)
≤ Qp (9)

pk,t
MG,C · p

k,t
MG,D = 0 (10)

State of charge (SOC) constraints for energy storage of microgrid [31,32]:

0.1 ≤ Xk,t
MG,SOC ≤ 0.9 (11)

Xk,t
MG,SOC = Xk,t−1

MG,SOC + (pk,t
MG,C · η + pk,t

MG,D/η) · ∆t/QE (12)
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Xk,T
MG,SOC = Xk,0

MG,SOC (13)

where Xk,t
MG,SOC is the SOC for energy storage at the end of time t in typical scenario k of

microgrid; Xk,0
MG,SOC = 0.5 is the initial SOC for energy storage; ∆t is the time period length;

η is the charge and discharge efficiency of energy storage.
Power balance constraints of the microgrid:

pk,t
G + pk,t

MG,b + pk,t
MG,D − pk,t

MG,s − pk,t
MG,C − pk,t

loss = 0 (14)

where pk,t
G and pk,t

loss respectively represent the net generation power and total wind and
photovoltaic discard power of the microgrid at time t in typical scenario k, where the values
are not less than zero.

Constraints on purchasing and selling power of the microgrid:

max
(

pk,t
MG,b, pk,t

MG,s

)
≤ pMG,bs (15)

pk,t
MG,b · p

k,t
MG,s = 0 (16)

Output power constraints of micro-gas turbines in the microgrid:

pk,t
omt ≤ pk,t

omt,max (17)∣∣∣pk,t
omt − pk,t−1

omt

∣∣∣ ≤ R (18)

where, R is the climbing power limit of the microgas turbine.

3. Model Solving Process
3.1. Scenario Generation of Daily Net Generation Power Based on CGAN

The generation of the renewable energy unit of the microgrid gives priority to meeting
its load demand, and then the remaining net generation power pk,t

G is obtained as follows:

pk,t
G = pk,t

w + pk,t
pv − pk,t

load (19)

where, pk,t
w , pk,t

pv and pk,t
load are respectively wind power, photovoltaic power, and load power

of the microgrid at time t in a typical scenario k.
During the training of CGAN, daily state is taken as label c, and each historical net

charge and discharge power scenario is labeled, and it is taken as the real training sample
x, which is input into CGAN for training together with noise z, and output to generate
scenario x′ = G(z|c) through generating network G.

The discriminant network D of CGAN needs to measure the similarity between
the generated scenario distribution p(x′) and the historical scenario distribution p(x)
according to Wasserstein distance and judge whether the generated scenario x′ meets the
corresponding label c. The objective function of CGAN training is:

min
G

max
D

V(D, G) = Ex∼p(x)[D(x | c)]− Ex′∼p(x′)
[
D
(
x′ | c

)]
− λE[‖D( ∼)‖ − 1]2 (20)

where E is the expected value of the corresponding distribution; λ is the regular term
coefficient.

3.2. Scenario Generation of Multi-Day Net Generation Power

In order to determine the daily state of historical net generation power scenarios,
DBI [33] was used to evaluate the optimal clustering number, and the K-means algorithm
was used to cluster the scenarios in the historical scenario set into K types. According to
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the daily state and its frequency obtained by clustering, the probability density distribution
Pr of daily state types can be calculated as follows:

Pr = [pr,1 pr,2 . . . pr,K] (21)

pr,i =
ni
N

(22)

where pr,i is the probability of the occurrence of daily state i (i = 1, 2..., K), N is the
total number of days of historical data; ni is the number of times state i occurs in the
historical data.

The cumulative probability distribution Fr of daily state types is further calculated
as follows:

Fr = [ f0 f1 f2 . . . fK+1] (23)

where fi =
i

∑
j=1

pr,j and f0 = 0.

LHS divided the total sampling interval into several fixed cells and sampled only once
in each cell, so as to ensure that no daily state scenario was ignored [34]. In this paper,
M multi-day scenarios with Nday days were pre-constructed, then M times were sampled
for a Nday-dimensional vector space, and 0-1 uniform sampling was carried out for each
dimension. Each dimension in Nday-dimensional vector space was evenly divided into M
intervals, and unified processing was carried out for Nday-dimensional vector space. First,
all subintervals are traversed, Nday values are randomly selected from the ith subinterval to
form the ith column of the matrix A, and the matrix A is finally obtained as follows:

A =


p11 p12 · · · p1M
p21 p22 · · · p2M

...
...

...
pNday1 pNday2 · · · pNday M

 (24)

Then, leave the order of columns A unchanged and randomly shuffle the order of each
row to obtain the matrix B. Next, according to each element pi,j in matrix B, the daily state
scenario set matrix D is obtained as follows:

D =


D11 D12 · · · D1M
D21 D22 · · · D2M

...
...

...
DNday1 DNday2 · · · DNday M

 (25)

where Dij = k , ( fk−1 ≤ pij < fk), and Dij is the state type of the daily scenario, and each
column of matrix D represents a multi-day scenario state transition process containing
Nday days.

Finally, as shown in Figure 2, each element of D matrix is taken as label c and noise z is
taken as driver, which is input into the trained CGAN model to generate the corresponding
intra-day scenarios, and then the scenario sets of multiple multi-day net generation power
scenarios are obtained according to the label sequence.

3.3. Multi-Day Scenario Reduction

Scenario reduction improves the efficiency of solving stochastic optimization problems
but also causes the loss of uncertainty information about renewable energy generation,
which will affect the results of stochastic optimization. To retain the information that
affects the result to the maximum extent, three features, namely average power pi

ave, power
mean square error pi

σ, and peak-valley difference pi
M−m, are selected as the attributes of

scenario i. Among them, the average power reflects the surplus and deficiency degrees
of net generating power in the dispatching cycle of the microgrid, and the peak-valley



Sustainability 2023, 15, 9544 8 of 17

difference reflects the demand of the microgrid for “peak shaving and valley filling”, and
then reflects the demand of the microgrid for energy storage. Power mean square error
directly affects the power fluctuation penalty cost of microgrids and then affects the result
of energy storage allocation capacity. The calculation formula for the above three features
is as follows:

pi
ave =

T

∑
t=1

(
Pi

G,t

)
/T (26)

pi
σ =

T

∑
t=1

(
Pi

G,t

)2
/T (27)

pi
M−m = max

1≤t≤T

(
Pi

G,t

)
− min

1≤t≤T

(
Pi

G,t

)
(28)

where Pi
G,t is the net generating power at time t in scenario i. In this paper, each time

period is 1 h, and the scheduling period is one week; that is, T = 168. Then, the K-means
algorithm is used to reduce the scenarios. The distance between the ith scenario Xi and the
jth scenario Xj is calculated as follows:

dij =

√√√√√√√
(norm(pi

ave)− norm(pj
ave))

2
+

(norm(pi
σ)− norm(pj

σ))
2
+

(norm(pi
M−m)− norm(pj

M−m))
2

(29)

where norm(yi) is the calculation normalized to [0, 1], and its formula is as follows:

norm(yi) =

yi − min
1≤i≤Ns

yi

max
1≤i≤Ns

yi − min
1≤i≤Ns

yi (30)

where Ns is the number of scenarios in the scenario set; yi can be the average power pi
ave,

the power mean square error pi
σ and the peak-valley difference pi

M−m.
After the clustering algorithm is used to reduce, the probability of the occurrence of

the kth typical scenario πk is calculated as follows:

πk =
Nk
M

(31)

where Nk is the number of scenarios belonging to the k class.
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3.4. Double-Layer Optimal Allocation Model Solving

The optimal allocation model of the energy storage capacity of a microgrid can be
divided into upper and lower layers. The approach of using a heuristic algorithm as a
nested solver can solve the double-layer optimization model efficiently [35–38]. The upper
layer uses the PSO algorithm to search for the optimal capacity of energy storage (power
capacity, energy capacity) and sends the capacity information as a constraint to the lower
random optimization model. The lower layer uses the CPLEX solver to solve the output
plan of the dispatchable equipment in each typical scenario of the microgrid at each time
period and transmits the expectation of operation cost back to the upper layer. The scenario
set of net discharge power used for the lower-level operation optimization is generated
using the method proposed in Section 2. The specific process is shown in Figure 3.
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4. Example Analysis
4.1. Example Parameter

This paper adopts the one-year actual data of wind power, photovoltaic power, and
load power of a microgrid in a region of our country as the historical scenario data set and
sets the sampling interval to 1 h. CGAN is constructed by the TensorFlow framework, and
the specific setting of network parameters is referred to in reference [16]. The parameters of
the microgrid are set as shown in Table A1.

4.2. Simulation Results and Analysis
4.2.1. Comparison of Generation Methods for Typical Scenarios of Net Generating Power

In order to verify the superiority of the generation method of the typical scenario set
of net power generation proposed in this paper, 20 daily state transition processes were
generated based on MCMC and LHS, respectively, and typical scenario sets with different
numbers of scenarios were obtained. Then, the occurrence frequency of each daily state in
the generation of the typical scenario set was counted, and the expected probability pE,i of
the occurrence of daily state i was further calculated.

pE,i = ∑
k

πk pk
f,i (32)

where pk
f,i is the occurrence frequency of state k in scenario i.

The results are shown in Tables 1 and 2, in which the true occurrence probabilities
of each daily state obtained according to historical data are 26.24%, 37.43%, and 36.33%,
respectively. As can be seen from Tables 1 and 2, when the number of reserved scenarios
in the typical scenario set is small, the probability expectation of each day state obtained
based on the MCMC method has a significant deviation from the real probability, while
the probability expectation of each day state obtained based on the LHS method has little
difference. This is because LHS, as a stratified sampling algorithm, can ensure that the
sampling rate between each cell can be taken into account even when the sampling times
are small. Therefore, it shows that the generation method of the typical scenario set of net
power generation proposed in this paper can still guarantee the probability expectation of
the occurrence of each daily state and avoid ignoring individual daily state scenarios even
when the number of scenarios in the typical scenario set is small.

Table 1. Probability expectations of daily state obtained by the MCMC method under different
number of reserved scenarios.

Number of Reserved
Scenarios

Expected Probability/%

Daily State 1 Daily State 2 Daily State 3

3 42.85 33.33 23.81
5 34.28 42.86 22.85
10 28.57 38.57 32.56

Table 2. Probability expectations of daily state obtained by the LHS method under different number
of reserved scenarios.

Number of Reserved
Scenarios

Expected Probability/%

Daily State 1 Daily State 2 Daily State 3

3 28.57 38.10 33.33
5 28.57 34.29 37.14
10 25.71 38.57 35.71
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4.2.2. Energy Storage Capacity Optimization Allocation Results and Analysis

Taking M = 20 and K = 3, the typical scenario set after scenario reduction and its
autocorrelation coefficient are shown in Figure 4, where the probability of each multi-
day typical scenario is 25%, 40%, and 35%, respectively. In Figure 4, the top row is
a comparison of the typical scenario set and the scenario set. The bottom row is the
autocorrelation coefficient of the scenario. As can be seen from the upper row of Figure 4,
the typical scenario set can reflect the ups and downs of the scenario set and better depict
the uncertainty of new renewable energy power generation. As can be seen from the lower
row of Figure 4, the typical scenario well preserves the time correlation of the original
scenario because CGAN can well capture the time correlation of the renewable energy
output curve.

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 18 
 

 

scenario because CGAN can well capture the time correlation of the renewable energy 
output curve. 

0 20 40 60 80 100 120 140 160
Time/h

-1000

-500

0

500

1000

1500

Po
w

er
/k

W

0 1 2 3 4 5 6 7 8 9
-0.5

0

0.5

1

A
ut

oc
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

Lag/h

 scenario set  typical scenario set 1

 typical scenario set 2  typical scenario set 3

 
Figure 4. Collection of typical scenarios. 

Figure 5 shows the iterative process of the particle swarm optimization algorithm. 
Both the population size and the maximum number of iterations are set to 20; the inertia 
weight is set to 0.5; and the learning factors for individuals and society are set to 0.4 and 
0.6, respectively. As can be seen from the figure, the algorithm converges quickly to the 
optimal solution, i.e., it converges to the optimal fitness of −115,074.7 in the 8th generation. 
This is because the solution dimension of the upper layer optimal energy storage lease 
price problem is small (only energy capacity price and power capacity price), so the use 
of the PSO algorithm with easily set parameters is sufficient for the model solution. The 
final optimal energy capacity of the microgrid energy storage is 1804.5 kWh, the optimal 
energy capacity is 269.0 kW, and the total expected annual cost of the microgrid is CNY 
115,074.7. 

Figure 4. Collection of typical scenarios.

Figure 5 shows the iterative process of the particle swarm optimization algorithm.
Both the population size and the maximum number of iterations are set to 20; the inertia
weight is set to 0.5; and the learning factors for individuals and society are set to 0.4 and
0.6, respectively. As can be seen from the figure, the algorithm converges quickly to the
optimal solution, i.e., it converges to the optimal fitness of −115,074.7 in the 8th generation.
This is because the solution dimension of the upper layer optimal energy storage lease
price problem is small (only energy capacity price and power capacity price), so the use of
the PSO algorithm with easily set parameters is sufficient for the model solution. The final
optimal energy capacity of the microgrid energy storage is 1804.5 kWh, the optimal energy
capacity is 269.0 kW, and the total expected annual cost of the microgrid is CNY 115,074.7.
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The variation of the mean square error of contact line power before and after microgrid
suppression in each typical scenario is shown in Table 3 As can be seen from the table,
after the microgrid containing energy storage is suppressed, the mean square error of the
power of the contact line between the microgrid and the distribution network decreases to
a certain extent, which relieves the grid-connection pressure of renewable energy.

Table 3. The effect of the microgrid on suppressing fluctuations in each typical scenario.

Mean Square Error of Contact Line Power/kW2

Before Microgrid Suppression After Microgrid Suppression

Typical Scenario 1 46,276 13,066
Typical Scenario 2 137,515 26,424
Typical Scenario 3 121,507 27,816

The planned output of equipment and changes in energy storage charge state in each
period of typical multi-day scenarios are shown in Figure 6, where the first to third rows
correspond to the operation plans of the first to third typical scenarios, respectively.

In Figure 6, the first column graph shows the equipment output plan at each period
of typical scenarios: The purchase and sale of electricity in the microgrid represented by
the purple bar reflect its grid-connection pressure. The energy storage discharge power
represented by the upward blue bar exceeds the net load curve (the inverse of the net
generating power), indicating that the energy storage discharge is sold to the distribution
network; that is, the “discharging at peak” operation is implemented. The charging power
of the energy storage, represented by the downward blue bar, exceeds the net load curve,
indicating that the energy storage buys electricity from the distribution network and stores
it; that is, the “charging at off-peak” operation is implemented. If the energy storage
charging power does not reach the net load power, it means that the microgrid implements
a wind abandonment operation. If the output of the micro-gas turbine represented by
the orange bar exceeds the net load, it means that the power of the micro-gas turbine is
sold to the distribution network. The second column graph shows the SOC of energy
storage in corresponding typical scenarios, where the change in SOC of energy storage
at the final moment of each day reflects the transfer of energy during the day. From the
figure, we can see that the microgrid plays the role of “Peak Load Shifting” in each typical
scenario, relieving the distribution grid’s peak regulation pressure and gaining more profit
through “charging at off-peak and discharging at peak”. On the remaining power days,
the microgrid tends to absorb more power to cope with the possible subsequent power
shortage days, which not only relieves the pressure of new energy consumption on the
remaining power days but also reduces the power purchased by the microgrid from the
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distribution grid on the shortage days and lowers its power consumption cost. Taking
typical scenario 2 as an example, on the first day of surplus wind power and photovoltaic
power, the microgrid sells electricity to the distribution network for profit. At the same
time, the energy storage absorbs part of the surplus power to prepare for possible power
shortage days in the future and abandons the peak part of wind power and photovoltaic
power. On the second day, when wind power and photovoltaic power were insufficient,
the microgrid not only used energy storage discharge to meet its own load demand but also
sold part of the electric energy to the distribution network to assist it in peak regulation
and make profits. Finally, the interactive power fluctuation of the link line significantly
decreased compared with the net load power fluctuation before leveling off. To sum
up, energy storage planning of microgrids based on typical scenarios of multi-day net
generation power can obtain a more reasonable energy storage capacity allocation by
comprehensively considering the day-to-day energy transfer demand of the microgrid
while reducing the fluctuation of grid-connected net generation power and alleviating the
consumption pressure of renewable energy.
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4.2.3. The Ability of Microgrids to Cope with The Uncertainty of Renewable Energy
Generation under Different Algorithms

In order to prove the adaptability of the energy storage capacity optimization allo-
cation method proposed in this paper to the uncertain environment of renewable energy
generation, the optimization results of several energy storage capacity allocation methods
were compared and analyzed, and 20 real scenarios with a duration of one week were
randomly selected as test scenarios. In the test scenario, the operation economy of micro-
grids under different planning results and the ability to suppress the power fluctuation of
renewable energy were compared.

Method 1: The method of stochastic optimal allocation of energy storage capacity in
reference [14] was adopted.

Method 2: The optimization method based on typical days in reference [18] was
adopted, that is, the GAN scenario generation method was used to generate massive daily
scenarios, and then the clustering algorithm was used to reduce massive daily scenarios to
obtain typical scenarios, and typical scenarios were used as simulation operation scenarios
to optimize energy storage capacity.

Method 3: Use the energy storage optimization allocation method based on the typical
multi-day scenarios proposed in this paper.

The energy storage capacity optimization results of different methods, the average
grid-connected power of the microgrid in the test scenario, and the average total annual
cost of the test scenario are shown in Table 4.

Table 4. Comparison of the results of different methods.

Ecap /kWh Pcap /kW
Average of Mean

Square Error of Contact
Line Power/kW2

Wind and Photovoltaic
Abandonment

Power/kWh

Average Annual
Total Cost

Method 1 1168.9 217.4 2,181,846.5 110,091.6 CNY 574,050.4
Method 2 1546.4 250.0 1,896,224.6 86,019.2 CNY 513,249.3
Method 3 1804.5 269.0 1,736,419.9 72,973.4 CNY 479,736.0

Compared with Method 1, Method 2 is equipped with more energy storage capacity,
has a better power fluctuation suppression effect, reduces wind and photovoltaic abandon-
ment power by 21.87%, and reduces the average annual total cost of microgrid operation by
11.85% in the test scenario. This is because, compared with the method that assumes that
the generation of wind power and photovoltaic power conforms to the specific probability
density distribution, the scenario generation method based on GAN can not only reflect
the probability density distribution of the generation of renewable energy more accurately
but also make the generation scenario have a better time correlation. Thus, the generation
scenario of Method 2 can better describe the uncertainty of renewable energy generation,
so as to make the microgrid have better economy in the test scenario. Compared with
Method 1 and Method 2, the average annual total cost of Method 3, which has the largest
energy storage capacity, decreases by 19.66% and 6.99%, respectively, and the wind and
photovoltaic abandonment power decreases by 33.72% and 15.17%, respectively. While
reducing the annual total cost, it further improves the ability of the microgrid to suppress
power fluctuations. This is because, compared with the typical day scenario adopted in
Method 2, the multi-day typical scenario adopted in Method 3 takes into account the high
dimension of renewable energy generation, so more energy storage capacity is configured
to meet the energy scheduling requirements of surplus days and absence days. At the
same time, the multi-day scenario can better describe the uncertainty of renewable energy
in each day and time period than the daily scenario, which further improves the renew-
able energy absorption capacity and adaptability of the microgrid to the uncertainty of
renewable energy.
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5. Conclusions

In order to cope with the uncertainty of renewable energy generation at a long-time
scale and relieve the grid-connected pressure of net generation power in microgrids, a
microgrid energy storage capacity allocation method was proposed, taking into account
the uncertainty of renewable energy generation. Typical scenario sets of multi-day net
generation power were used to depict the uncertainty of renewable energy generation and
optimize the allocation of energy storage capacity in microgrids. An example analysis
verifies the proposed model and draws the following conclusions:

(1) In the process of energy storage capacity allocation in microgrids, the proposed
double-layer optimal allocation model of energy storage capacity in microgrids com-
prehensively considers the influence of daytime and intra-day scheduling strategies
on the allocation problem, which ensures the operation economy and relieves the
grid-connected pressure of net generation power;

(2) The generation method of typical scenarios of multi-day net generation power pro-
posed can still restore the real situation of daily state probability density distribution
when the number of typical scenarios is small. The time correlation and uncertainty of
renewable energy generation are explored by using CGAN to avoid the assumption
that renewable energy generation obeys a certain probability distribution.

The uncertainty of cold and heat loads in the microgrid is not considered in this
paper. In future studies, detailed modeling will be carried out for the microgrid containing
the integrated energy system of electricity, gas, heat, and cold, so as to better relieve the
renewable energy consumption pressure of the microgrid and further improve its ability to
deal with the uncertainty of source load.

Author Contributions: Conceptualization, W.W. and L.Y.; methodology, W.W. and Y.F.; software,
Y.W. and X.C.; validation, Y.W. and X.C.; resources, Z.L.; writing—original draft preparation, X.C.;
writing—review and editing, Z.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (NSFC) by the
Chinese government (grant nos. 52277012), and the Science and Technology Program of State Grid
Hubei Electric Power Co., Ltd. (B31543220914).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Microgrid parameter setting.

Parameter Value

α CNY 1000 per kWh
β CNY 3500 per kW
r 0.067
y 10 years
R 500 kW
γ CNY 0.1542 per kWh
ε 0.15
w CNY 0.142 per kWh
η 95%
pMG,bs 500 kW
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