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Abstract: The acceleration of coastal processes is manifested in the form of coastal erosion, average
sea level rise, drastic changes in coastlines, and more turbulent ocean waters. In this study, the coasts
of Kerala and Tamil Nadu, India, were selected to identify the effects of increasing coastal processes.
Therefore, it is necessary to identify and map vulnerable areas by taking into account the key
parameters, such as topographical and socio-economic factors, to relate to coastal processes. The fuzzy
Analytical Hierarchy Process (AHP) method was employed to identify the most vulnerable zones. The
key findings revealed that about 14% and 2% of the coast of Tamil Nadu and Kerala, respectively, are
classified under the physically highly vulnerable category. Similarly, ~17% and ~30% of coastal Tamil
Nadu and Kerala, respectively, are highly socially vulnerable. The overall vulnerability assessment
showed that 7–8% of both coastal areas were highly vulnerable. We concluded that the Thiruvallur,
Chennai, Kanchipuram, Cuddalore, and Nagapattinam coasts on the east coast and the Malappuram,
Thrissur, Ernakulam, Alappuzha, and Kollam coasts on the west coast were very highly vulnerable
to coastal processes. Identifying vulnerable zones helps to better understand the impacts of rapid
coastal processes and, with this prior estimation, the policymakers can take necessary actions to
mitigate the irreversible impacts of coastal processes.

Keywords: coastal processes; vulnerability; fuzzy AHP; LRR; DSAS; wave watch III

1. Introduction

Coasts are always dynamic and are areas where land, water, and atmosphere interact
with each other [1,2]. These interactions between the ecosystems lead to various processes
occurring that affect every other coast differently. It is influenced by both topographic and
hydro-dynamic changes occurring in the coastal and nearshore regions of the ocean where
mass and energy are continuously being exchanged, resulting in the creation of a unique
ecosystem [3]. These processes primarily affect the coastal geomorphology and geology
and change that region by eroding, depositing, and inundating mass along the shore in the
due course of action.

In the coastal process, all the participating factors can be divided into two different
sets: coastal forcing/forces, which include waves, tides, sea level, surges, and currents that
originate from different hydro-physical phenomena, such as sea level change, significant
wave height, and tide range. These forces affect the second set, namely, coastal factors that
comprise coastal geomorphology, geology, and elevation [4]. Coastal forces act on coastal
factors, which result in coastal erosion and flooding, and may sometimes be severely
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affected by catastrophic surges and tsunamis [5–7]. Evaluating the impact of coastal
processes on coastal areas requires continuous monitoring of processes and the retention
of adequate records of events to analyze them all for research purposes. Real-time in situ
monitoring from rider buoys and satellite data with good temporal coverage was found
to be helpful in demarcating the changing land-water boundaries over time, from which
many other indicators, such as the rate of change and the reason behind the change, can
be obtained [8–10].

Coastal processes are changing a lot in these times as a consequence of global climate
change [11]. The erosion of coasts, rise in mean sea level, and increased storminess of the
ocean waters enhance coastal processes that lead to ecological changes along the coasts [12].
These enhanced coastal processes produce a list of coastal changes, including shore erosion,
strong storm surges, an increase in significant wave height, an increase in sea level rise,
and cyclonic activity, impacting the coast both geographically and economically [3,13,14].
Coastal systems are increasingly threatened by the potential impacts of climate change,
according to a series of assessments by the Intergovernmental Panel on Climate Change
(IPCC). On a global scale, climate change is causing sea levels to rise at higher annual rates
as an impact of melting glaciers and ice caps on the Earth, which is happening due to a
rise in pollution and global warming [15]. According to the measurements recorded at tide
stations installed globally, a rise in sea level can be observed from 1 mm to 2 mm annually
over the past century, which can be attributed to global warming [16]. Unfortunately, these
areas are also exposed to natural disasters, such as coastal erosion, storm surge attacks, and
coastal flooding. As a result of global warming, coastal cities are becoming increasingly
susceptible to flooding [4].

Coastal vulnerability, which has been studied for a long time [17], refers to the condi-
tion of a selected area prone to the impact of increased coastal processes [18]. Specifically,
the Coastal Vulnerability Index (CVI) has been widely used by combining physical and
socio-economic variables for different coastal areas worldwide, viz., the U.S. coast, Aus-
tralian coast, African coast, Indian coast, and European coast [19]. Typically, geological (e.g.,
geomorphology, shoreline erosion/accretion rates, coastal slope, emerged beach width,
artificial protection structures, and dunes), hydro-physical processes (i.e., river discharge,
sea level change, mean significant wave height, and mean tide range), and vegetation
(e.g., land use and land cover types) variables are mostly used to derive CVI [19]. In
India, the National Centre for Ocean Information Services (INCOIS) has assessed coastal
vulnerability for the entire Indian coast, and the corresponding CVI atlas was available
at 1:1,00,000 scale that used parameters such as tidal range, wave height, coastal slope,
coastal elevation, shoreline change rate, geomorphology, and historical rate of relative sea
level change [20]. Studies have also used physical and socio-economic (e.g., gender, age,
income, population density, and tourist density) variables to estimate CVI and the Social
Vulnerability Index (SVI) over coastal areas for coastal disaster management and building
resilient coastal communities [21]. Researchers have developed different approaches to
estimate and identify vulnerable zones in coastal regions impacted by different coastal
forces [22]. The InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) coastal
vulnerability model has been applied to estimate the degree of coastal vulnerability based
on several variables [23,24]. The Multi-Dimensional Coastal Vulnerability Index (MDim-
CVI) combines a composite set of physical, environmental, and socio-economic indicators
to deduce coastal vulnerabilities and changes in the environmental and socio-economic
systems in the Italian coasts [25]. Multi-Criteria Decision Making (MCDM) models, such as
the Analytical Hierarchy Process (AHP), Fuzzy AHP, fuzzy logic, and Technique for Order
Performance by Similarity to Ideal Solution (TOPSIS) are widely used to deduce coastal vul-
nerabilities, each of which has its advantages and disadvantages [5,8,26]. Decision-making
models such as AHP are used when the decision maker is sure about the phenomena and
the phenomena are not about to change for a long or considerable period. Among these
techniques, the results of the fuzzy AHP method are reported to be accurate and reliable,
which is due to its computing process. In computing the fuzzy AHP, the decision maker
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has a wide range of options to choose the possible outcome of the phenomena. The fuzzy
logic-based geospatial normalization technique has been applied based on several factors
(i.e., coastal characteristics, coastal forcing, and socio-economic) for coastal vulnerability
analysis of the Bangladesh coast [27–32].

The Indian coast can be divided into two major parts, i.e., the east coast and the west
coast [15]. The difference between the east and west coasts of India can be seen based
on the geology of the coasts and shores on either side [16]. The east coast is sandy and
the west coast is more or less rocky, which further indicates that the east coast of India is
more vulnerable to coastal processes, whereas the western coastal regions are somewhere
still rigid to coastal forcing [17]. Apart from different geological settings, the west coast
and the Western Ghats are home to many endangered species of flora and fauna [33,34].
At the same time, the east coast of the study area has heavy commercial and economic
activities because of the presence of ports and large cities along and near the coast [35].
Several anthropogenic activities occur in coastal areas, and climate change increases the
intensity of coastal hazards [1,10,36]; therefore, this study aims to estimate the coastal
vulnerability in different geological settings to climate change impacts and to provide a
comparative assessment of both coasts. Very few studies have dealt with the applicability
of the fuzzy AHP to estimate coastal vulnerability, such as physical, social, and overall
vulnerabilities. Hence, the objective of the present study was to develop a comparative
vulnerability assessment between two different coasts by studying and identifying the
responsible coastal processes posing threats to the area selected by incorporating fuzzy
AHP for the estimation of coastal vulnerability. In this paper, Section 2 describes the study
area, Section 3 discusses materials and methods (i.e., coastal vulnerability assessment),
Sections 4 and 5 describe the results and discussion, respectively, followed by the conclusion
in Section 6.

2. Study Area

For this study, two coasts with different characteristics were selected, which are the
southern margins of India, i.e., the coasts of Kerala and Tamil Nadu, surrounded by the
Arabian Sea in the west and the Bay of Bengal in the east. Both coastlines lie between 8◦ N
to 13◦ N, and 75◦ E to 80◦ E, sharing boundaries with the Indian Ocean in three different
directions and as a part of the subcontinent from the northern side (Figure 1). In this study,
it was noticed that political district boundaries were not suitable for considering them as
the study area due to the irregularity of their shape. At the same time, coastal processes
have no impact on many parts, as they are continuing their extent towards the mainland
rather than running parallel to the shoreline. To resolve this issue, only the seaward sides
of the coastal districts were considered.

The study area map is shown in Figure 1 where a 40 km buffer was created from the
Tamil Nadu shoreline and a 35 km buffer was created from the Kerala shoreline towards
the mainland using the buffer tool. We considered these two polygons as the primary
study area. Upon observing the satellite images, the hilly topography is observable on both
coasts, but the Eastern Ghats are slightly discontinuous and far from the shore, whereas the
Western Ghats are continuous and comparatively near the shore. Hence, a 40 km buffer on
the east and a 35 km buffer on the west were created. These two polygons were merged,
and their area statistics are mentioned. The 40 km wide region along the Tamil Nadu
shoreline has an area of 31,842.3 km2, whilst the 35 km wide region parallel to the Kerala
shoreline has an area of 19,405.3 km2. The total area is 51,247.6 km2, which includes both
the Tamil Nadu and Kerala coasts. The detailed statistics for each coastal district are given
in Table 1.
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Figure 1. Study region is highlighted in the India map (left) and the buffer of the average coast is 
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Figure 1. Study region is highlighted in the India map (left) and the buffer of the average coast is
shown on the right side.

Table 1. Study area statistics such as state name, district name, east–west extent, and coastal extent.

State SL. NO Coastal District East West
Extent (km)

Coastal Extent
(East/West) (km)

TAMIL
NADU

1 THIRUVALLUR 118 E 59
2 CHENNAI 18 E 9
3 CHENGALPATTU 50 E 25
4 VILLUPURAM 90 E 45
5 CUDDALORE 100 E 50
6 MAYILDATURAI 36 E 18
7 NAGAPATTNAM 65 E 32.5
8 THANJAVUR 90 E 45
9 PADUKOTTAI 108 E 54

10 RAMANATHAPURAM 140 E 70
11 THOOTHUKUDI 98 E 49
12 THIRUNELVELI 96 E 48
13 KANYAKUMARI 59 E 29.5

AVERAGE 82.15 41.08

KERALA

14 KASARAGOD 38 W 19
15 KANNUR 80 W 40
16 KOZHIKODE 56 W 28
17 MALLAPPURAM 88 W 44
18 THRISSUR 98 W 49
19 ERNAKULAM 98 W 49
20 ALAPPUZAH 30 W 15
21 KOLLAM 75 W 37.5
22 THIRUVANANTHAPURAM 72 W 36

AVERAGE 70.56 35.28

3. Materials and Methods

The datasets used in this study are described in Table 2, which includes satellite data
and various parameters used to deduce coastal vulnerability. The parameters used for
coastal vulnerability include geological (e.g., geomorphology, shoreline erosion/accretion
rates, and coastal slope) and hydro-physical processes (i.e., sea level change, mean signifi-
cant wave height, and mean tide range), and socio-economic factors (e.g., urban density,
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rural density, and population density). Landsat is a multispectral open-source satellite
series operating under the United States Geological Survey (USGS) [37,38]. Its Level 2
(Collection 1) surface reflectance data were downloaded to help identify coastal landforms
and shorelines easily. In this study, bands 4, 3, 2, and 1 of Landsat-5, and bands 5, 4, 3,
and 2 of both Landsat-8 and 9 were used for the years 1990–2022 with 5 years intervals. The
Shuttle Radar for Topographic Mission (SRTM) [39,40] uses the C and X bands, where C is
for space-borne imaging and X is used for its Synthetic Aperture Radar (SAR) to make it an
interferometric radar. It compares two different radar signals and forms one single image.
Out of its three products, SRTM 1 arcsec global data were used because of its resolution,
which is similar to that of Landsat data.

Table 2. Data used to assess the coastal vulnerability.

Dataset Source Type Resolution Year Month

Landsat 5, 8, and 9 USGS MSS Raster 30 m 1990–2022 Nov–Dec
Geomorphology 1:250 K Bhukosh GSI Shapefile 250 m 2015 -

SRTM Earthdata Geo tiff 30 m 2000 -
WAVE WATCH III APDRC NetCDF 3 h 1997–2019 Annual

GLOSS–PSMSL PSMSL Text - 1990–2020 Annual
Population SEDAC Raster 1 km 2011 -

Built-up SEDAC Shapefile 250 m 2011 -

The Geological Survey of India (GSI) provides different types of processed geospatial
data on its official portal (bhukosh.gsi.gov.in) [41]. Wave Watch III is an open-source dataset
that is freely available from the Asia Pacific Data Research Centre. It has six products, [42,43]
out of which the surface significant wave height data were downloaded and processed
for mapping. The SRTM-based Digital Elevation Model (DEM) was used to derive the
slope. The slope was also considered as a parameter for vulnerability. The Global Sea Level
Observation System (GLOSS), established in 1985 by the Intergovernmental Oceanographic
Commission (IOC), is a high-quality on-site sea level system that supports a broad research
and operational user base [43–45]. GLOSS monitors and provides global and regional
sea level networks in support and guidance of the oceanography and climate research
communities. These data are openly accessible, and, in this study, the data from five tide
stations were used to map the rising sea levels.

The Socio-Economic Data and Application Centre (SEDAC) is an open-access socio-
economic and demographic database that provides the population of India, with a res-
olution of 1 km based on the 2011 census [46]. A raster format of the population helps
in choosing minute or irregularly shaped study areas, and the exact number of people
falling in and becoming affected can be easily mapped and estimated. SEDAC also pro-
vides a shapefile for built-up classes, such as urban and rural built-up, based on global
standards [46]. The population density of SEDAC shows the population per pixel based on
the Census India 2011 dataset. The second parameter considered for social vulnerability
is the built-up density. Physical vulnerability is also considered as the third parameter
in order to assess its impact on different social conditions. The other and final parameter
taken into consideration was urban density to establish a connection between urban and
physical vulnerability and other social factors that affect vulnerability.

The regional elevation was obtained from SRTM, and the classification of elevation
was performed based on earlier studies in the same or similar regions. The classification
scheme used by Basheer [11,47] for regional elevation was considered as it was suitable
for the selected study area. In this case, the class intervals for elevation were ≤0, 1–10 m,
10–20 m, 20–30 m, and >30 m. Typically, various coastal processes influence the coast
up to 50 m. In the worst case, regions below 0 m are more vulnerable than regions at a
certain altitude.

Significant wave height data were obtained in NetCDF file format from the WaveWatch
III dataset. R Studio was used to compute the daily, monthly, and annual averages. The

bhukosh.gsi.gov.in
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annual averages from 1997 to 2019 were converted from raster to points using ArcMap.
Using the converted points, interpolation was performed using the kriging tool. Using
the obtained grid, a significant wave height map was made using the appropriate map
attributes. The significant wave height was classified under 4 classes, namely, classes
carrying waves of 0.9–1.2 m in the “High” class, followed by 0.6–0.9 m in the “Moderate”
class, 0.3–0.6 m in the “Low” wave height class, and less than 0.3 m in the “Very Low’ class.
In the study area, only one class of very high significant wave height was identified as per
the standard classification.

Sea level rise is a concerning issue that contributes significantly to coastal disasters,
such as storm surges, coastal flooding, seawater intrusion, and coastal erosion [11,48–51].
To understand sea level trends, mean sea level (PSMSL) data and mean sea level rider buoy
data from the GLOSS observatories were obtained. Rider buoys can be found along the
coast in key locations, such as Chennai, Thangachimadam, Nagapattinam, Kollam, and
Mangalore. All data were processed using spreadsheets to obtain data at monthly intervals.

The digitized shorelines were converted to KML (Keyhole Mark-up Language) files
and overlaid on Google Earth Pro’s high-resolution temporal satellite imagery. These
shorelines were processed and a Linear Regression Rate (LRR) was calculated among shore-
lines from 1990 to 2022 using Digital Shoreline Analysis Software (DSAS). The uncertainty
parameter was set to ±10 m. The result of the LRR was classified into 5 classes: very
high erosion, high erosion, no change, high accretion, and very high accretion. To derive
shoreline behavior, the number of transects falling in each class was noted down, and their
total distance was calculated based on the transect spacing. Here, the incorporated transect
spacing was 50 m. Based on the class-wise transect distribution, the shoreline behavior was
easily identifiable. As the LRR incorporates every shoreline, unlike End Point Rate (EPR)
or Net Shoreline Movement (NSM), the results are more appropriate and reliable.

The methodology flowchart is illustrated in Figure 2, which was used to obtain
physical vulnerability, social physical vulnerability, and overall physical vulnerability.
Geometric corrections were applied to the Landsat images and were used to digitize and
extract shorelines, as well as to identify different coastal landforms and cross-check with the
predefined geomorphology by the GSI. Using both Landsat datasets and geomorphology
at a 1:250,000 scale, a major geomorphology map was prepared with classes, namely young
and old coastal plains, deltaic and flood plains, and pediment complexes.

Coastal Vulnerability Assessment

In this study, coastal vulnerability was derived in three stages: (i) physical vulnera-
bility, (ii) social vulnerability, and (iii) overall vulnerability. For assessing physical coastal
vulnerability, physical parameters such as geomorphology, elevation, mean sea level rise,
significant wave height, tidal range, and shoreline behavior were considered. A pairwise
comparison matrix was developed using fuzzy triangular numbers ranging from 1 to 9
(Tables 3–5) with three in a set, such as either equal or an increasing order from left to right.
In the case of social vulnerability, parameters such as population density, urban and rural
densities, and built-up densities were considered and used for the fuzzy AHP calculations.
Using a pairwise comparison matrix and a normalized matrix (Appendices A and B), the
weights were calculated for each parameter. The obtained weights are said to be correct
if the consistency ratio is less than 0.10 (Appendix C), and the weights can be assigned
in the vulnerability mapping. The derived weights were validated by the calculation of
Consistency Index (CI) and Consistency Ratio (CR) values (Appendix D). To map the
physical vulnerability, all the maps of selected physical parameters were first converted to
shapefile format while keeping the same intervals as calculated in the fuzzy AHP matrixes.
The derived weights were added as attributes to the shapefiles and were further converted
into rasters. These can be termed as “weighted rasters”. All of these weighted rasters
were run through the fuzzy membership tool one by one, making rasters ready for the
fuzzy overlay. Finally, the fuzzy overlay tool was used to overlay all the weighted rasters
and derive the output as physical or social vulnerability. After obtaining the physical and
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social vulnerabilities, both were averaged using the raster calculator, and the final overall
vulnerability map was made. The process of the fuzzy AHP calculation and vulnerability
derivation is graphically shown in Figure 3.
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Table 3. Pair-wise matrix for physical vulnerability assessment.

Parameter Geomorphology
(GEO)

Regional Elevation
(RE)

Mean Sea Level Rise
(MSL)

Surface Sig’ Wave
Height (SWH) Slope

Shoreline
Movement

(SM)
Weights

GEO 1 1 1 1 1 2 2 3 4 9 9 9 7 8 9 7 8 9 0.37066
RE 0.5 1 1 1 1 1 4 5 6 4 5 6 7 8 9 7 8 9 0.33066

MSL 0.25 0.33 0.50 0.17 0.20 0.25 1 1 1 2 3 4 2 3 4 6 7 8 0.13829141
SWH 0.11 0.11 0.11 0.17 0.20 0.25 0.25 0.33 0.50 1 1 1 2 3 4 4 5 6 0.082198
Slope 0.11 0.13 0.14 0.11 0.13 0.14 0.25 0.33 0.50 0.25 0.33 0.50 1 1 1 1 1 2 0.038915
SM 0.11 0.13 0.14 0.11 0.13 0.14 0.13 0.14 0.17 0.17 0.20 0.25 0.5 1 1 1 1 1 0.030868
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Table 4. Sub-pair-wise matrix for vulnerability assessment.

Scale Very High
Vulnerability (VHV)

High Vulnerability
(HV)

Medium Vulnerability
(MV) Low Vulnerability (LV) Very Low Vulnerability

(VLV)

VHV 1 1 1 1 1 2 2 3 4 4 5 6 7 8 9
HV 0.5 1 1 1 1 1 2 3 4 4 5 6 7 8 9
MV 0.25 0.33 0.50 0.25 0.33 0.50 1 1 1 2 3 4 4 5 6
LV 0.17 0.20 0.225 0.17 0.20 0.25 0.25 0.33 0.50 1 1 1 2 3 4

VLV 0.11 0.13 0.14 0.11 0.13 0.14 0.17 0.20 0.25 0.25 0.33 0.50 1 1 1

Table 5. Classification scheme under different classes. The shoreline behavior and population density
are abbreviated as SB and PD, respectively.

Parameter VHV HV MV LV VLV

GEO Coastal plain Deltaic plain Flood plain Water bodies PPC and hills
RE <3 m 4 to 6 m 7 to 12 m 12 to 18 m >18 m

SLR >3.16 cm 2.96 to 3.16 cm 2.51 to 2.95 cm 1.81 to 2.5 <1.8 cm
SWH
Slope

SB

>1.2 m
0–10 degrees

Very high erosion

0.9 to 1.2 m
10–20 degrees
High Erosion

0.6 to 0.9 m
20–45 degrees

High Accretion

0.3 to 0.6 m
45–60 degrees
VH Accretion

<0.3 m
60–89 degrees

No Change
PD >1000 ppl/km2 500–1000 250–500 100–250 <100

Built-up density 80–100% 40–80% 20–40% 10–20% <10%
Urban density >400 hh/km2 200–400 100–200 50–100 <50

Ak = aijk =


1 a12k · · · a1nk

a21k 1 · · · a2nk

...
...

...
...

an1k an2k · · · 1


The above formula describes the pairwise comparison matrix as a deriving method

using different experts. The pairwise comparison matrix between criterion i and criterion j
of each expert k is shown below.

Ak =
1

aijk i > j

where aij is used to derive the judgment of the decision makers. For further information,
one should refer to Tahri [5].

4. Results

In this section, we described hydro–geographic parameters (geomorphology, regional
elevation, surface significant wave height, mean sea level rise, regional slope, and shoreline
behavior using linear regression rate) and socio-economic parameters (regional population
density, regional built-up area and urban density) followed by physical vulnerability
assessment, social vulnerability assessment, overall vulnerability assessment, and finally
the comparative assessment between Tamil Nadu and Kerala coasts.

4.1. Hydro–Geographic Parameters
4.1.1. Mean Sea Level Rise

The monthly sea level rise exhibited that the study area experienced only two ranges
of sea level rise. Less than 1.8 mm changes were observed on the majority of the east coast,
whereas sea level rise between 1.81 and 2.5 mm was seen along the Kerala coast and the
northern Tamil Nadu coast (Figure 4). The above classification is adopted from a study by
Naga Kumar [47]. As shown in Figure 4, the highest sea level rise was found on the west
coast at Mangalore, followed by Kochi, Chennai (east), and further followed by Tuticorin
and Thangachimadam, respectively.
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4.1.2. Geomorphology

A large extent of the study area is situated within the geomorphology of the coastal
plains, followed by the deltaic plains and the pediment–pediplain complex (Figure 5a).
So, the area of the geomorphology will not decide the exposure to damage; rather, the
threat of exposure is dependent on the nature of the soil and geological composition. On
the east coast, the shoreline is mostly covered by coastal plains, which can be seen in the
less-developed eastern regions of Cuddalore, Nagapattinam, and Ramanathapuram. In
the west, the coastal plains, especially the younger coastal plains, occupy large areas along
with flood plains and can be seen in the regions of Alappuzha, Thrissur, Malappuram, etc.
The majority of the Kerala coast is covered by a combination of pediment complexes and
structural hills. The percentage-wise geomorphological composition showed that more
than half of the study area is covered by pediplain complex and hilly regions at 57.15%,
followed by deltaic plains at 17.78%, coastal plains at 13.14%, water bodies such as rivers,
lakes, dams, and reservoirs at 6.99%, and lastly by flood plains at 4.93%. Due to the presence
of the Western Ghats very near the coastal area with a marginal distance of 30–35 km from
the seashore, the western part of the coast is less vulnerable than the eastern coast. The
Eastern Ghats, though present, are discontinuous and a little far from the seashore, creating
sufficient space between the foothills of the Eastern Ghats and the sea to form a mixture
of landforms.

4.1.3. Regional Elevation

After the regional elevation classification, the seaward margins of regions such as
Thiruvallur, Chennai, Cuddalore, Kanchipuram, Villupuram, Nagapattinam, Ramanatha-
puram, and Thoothukudi fell under very low and low elevated areas on the east coast. The
sea sides of Alappuzha, Malappuram, and Thrissur, followed by the Kollam and Kannur
regions on the west coast, are classified as low-lying or very low-lying (Figure 5b). The
spatial extent based on classification states that more than half, i.e., 25,705.51 km2, is under
the class of more than 18 m, followed by the moderate class with 10,044.6 km2 under 7–12 m,
7372.2 km2 in the low elevated class of 4–6 m, 5429 km2 is under the 12–18 m class, and
lastly, the least area is occupied by the very low-lying area class, i.e., <3 m with 1792 km2.
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Figure 5. Displays different physical parameters such as (a) geomorphology, (b) regional elevation,
(c) surface significant wave height, and (d) regional slope.

4.1.4. Surface Significant Wave Height

Based on surface significant wave height classification (Figure 5c), it can be seen that
the Kerala coast receives comparatively low-height waves from the Tamil Nadu coast. On
this map, the entire west coast lies in very low waves, and the regions of Thoothukudi,
Ramanathapuram, Villupuram, and Cuddalore lie in low-wave regions. The Chennai and
Thiruvallur regions fall under the moderate class, and the Nagapattinam region experience
very high wave heights.

4.1.5. Regional Slope

The slope map (Figure 5d) shows that regions such as Alappuzha and Malappuram
on the west coast and Nagapattinam on the east coast have slopes of less than 20◦. The
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very high degrees of slopes, i.e., from 80 to 89◦, can be seen in the western parts of the
study area continuing until Kanyakumari of Tamil Nadu. This is because of the presence
of the Western Ghats very near the coastal areas. At the same time, the eastern coast lies
in the range of moderate slopes ranging from 40 to 60◦, as shown in yellow and orange
colors. The low slope visible on the top north of the east coast is the Pullicat Lake, sharing
a boundary with the shoreline.

4.1.6. Shoreline Behavior using Linear Regression Rate

Based on the LRR analysis of the shorelines (Figure 6), the number of transects in
each district in each class was identified. Based on the quantity, the length of the shoreline
in each class was calculated. The total number of transects on the Kerala shoreline was
1167 (at 50 m intervals), out of which 35 were under very high erosion, 177 were under
high erosion, 598 under no change, 340 under high accretion, and 17 were experiencing
very high accretion. Nearly 17.5 km of the Kerala shoreline was found under very high
accretion, which accounted for 3% of the entire shoreline. In the same way, an 8.5 km
shoreline was found under very high accretion and accounted for 1.46% of the shoreline.
As a result, Thrissur, Thiruvananthapuram, and Alappuzha districts were found to be
very highly eroded and the shores of Kozhikode district were found to have very high
accretion (Figure 7a). Similar results could be seen on the shores of Tamil Nadu. The
total number of transects was 1815 (at 50 m spacing) and formed 908 km, out of which
107 transects fell under the very high erosion class, 405 under high erosion, 983 under no
change, 273 under high accretion, and 47 under very high accretion (Figure 7b). About
5.9% (i.e., 53.5 km) of Tamil Nadu’s shoreline was under very high erosion, 23.3% under
high erosion, 54.16% under no change, 15.04% under high accretion, and 2.59% under very
high accretion. The shoreline behavior was calculated based on the classification scheme
used by Naga Kumar [35]. Notably, in Thiruvallur and Chennai, there is the presence of
manmade structures (e.g., ports, sea walls, and mitigation-related structures) that can cause
shoreline change (both erosion and accretion) in either way.
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Figure 7. Representation of the shoreline movement of the coasts as represented by LRR (1900–2022).
(a) LRR at the Kerala coast, and (b) LRR at the Tamil Nadu coast. Red and green colors represent
erosion and accretion, respectively, orange indicates moderate erosion, light green indicates moderate
accretion, and yellow indicates no change. Black circle and rectangle indicate areas with smaller and
higher changes, respectively.

4.2. Socio-Economic Parameters
4.2.1. Regional Population Density

In the population density map (Figure 8a), it can be seen that the regions of Thiruval-
lur, Chennai, and Kanyakumari on the east coast are highly populated, and the regions
remaining on the east coast are less populated. The Ramanathapuram region falls under the
lowest population density, as per the standard class intervals used for mapping population
density. The SEDAC-based shapefiles of different built-up classes were used to generate a
built-up density map. According to the map, there is a more concentrated built-up area on
the west coast, especially in Malappuram, Thrissur, and Kozhikode. Other than Kasaragod,
all of the areas are in the moderate built-up index category, whereas the Kasaragod area is
in the low-density category.

4.2.2. Regional Built-Up Area and Urban Density

According to the SEDAC data, Chennai is the densest urban area. Kanyakumari is
semi-urban, whereas the other coastal regions on the east coast are rural. On the other
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hand, the density of urban built-up was identified as moderate in the five districts of the
Kerala coast (Figure 8b). Kasaragod district is rural, whereas the other three districts,
namely, Ernakulam, Thrissur, and Kannur districts are urban. However, the density of
the built-up is moderate, which can be seen in the districts of Alappuzha, Kollam, and
Thiruvananthapuram on the West coast (Figure 8c).
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4.3. Physical Vulnerability Assessment

The physical vulnerability map (Figure 9) of the study area was obtained after the
complete fuzzy AHP process showed very highly vulnerable areas concerning physical
parameters in red, followed by orange for highly vulnerable, yellow for moderately vul-
nerable, light green for low vulnerability, and dark green for very low vulnerable areas.
The area covered under the very highly vulnerable class was about 4345.12 km2, which
accounted for 9.10% of the study area. The second most vulnerable area (i.e., highly vul-
nerable area) accounted for 8486.40 km2 occupying 17.77%. The moderately vulnerable
class occupies 27.72%, with an area of 13,237.16 km2, and the low vulnerable area occupies
43.32% of the area (i.e., 20,685 km2). The least vulnerable area is covered under the very
low vulnerable class, with an area of 2.08% (or 994.75 km2).

Table 6. Comparative assessment of coastal parameters, processes, and their impacts.

Parameter Classes Tamil Nadu
Coast (km2) % Kerala

Coast (km2) %

Geomorphology

Coastal plains 4257.29 13.51 2395.23 12.53
Deltaic plains 8509.73 27.00 494.24 2.59
Flood plains 1712.55 5.43 787.62 4.12
Waterbody 3112.13 9.87 432.03 2.26

Pediment–pediplain
complex and hills 13,928.00 44.19 15,009.70 78.51

Sea level rise
<1.8 mm 25,000.50 79.24 2874.99 14.92

1.81–2.25 mm 6548.64 20.76 16,394.00 85.08

Significant wave height
<0.3 m 9153.76 29.06 19,071.30 100.00

0.3–0.6 m 19,333.40 61.37 - 0
0.6–0.9 m 3017.09 9.58 - 0



Sustainability 2023, 15, 9543 14 of 23

Table 6. Cont.

Parameter Classes Tamil Nadu
Coast (km2) % Kerala

Coast (km2) %

Physical vulnerability

Very low 638.05 2.10 404.50 2.35
Low 6650.20 21.93 13,983.20 81.08

Moderate 10,734.20 35.40 2454.54 14.23
High 8047.80 26.54 404.46 2.35

Very high 54.07 14.03 - 0

Social vulnerability

Very low 8486.12 18.70 - 0
Low 14,078.60 31.02 2100.32 12.15

Moderate 5111.56 11.26 143.31 0.83
High 9822.65 21.65 9782.78 56.61

Very high 7881.63 17.37 5254.76 30.41

Overall vulnerability

Very low 968.88 3.22 497.42 2.90
Low 10,869.96 36.13 2015.82 11.73

Moderate 8630.94 28.69 9430.49 54.89
High 7421.68 24.67 3691.11 21.48

Very high 2194.55 7.29 1545.12 8.99

Shoreline behavior
High accretion 302.63 km 31.91 316.26 km 56.57
High erosion 591.55 km 62.38 242.82 km 43.43

Very high erosion 54.07 km 5.70 - 0
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Figure 9. Displays the physically vulnerable areas in five classes, namely, very low, low, moderate,
high, and very highly vulnerable. The details are shown in Table 6.

From the map generated (Figure 9), it can be interpreted that the east coast is more
vulnerable because of its physical terms, such as geomorphology, slope, elevation, signifi-
cant wave height, tidal range, and shoreline behavior. In the coastal belt of Tamil Nadu,
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except for Kanyakumari and some parts of Thoothukudi, the entire on-shore area is clas-
sified under very high and highly vulnerable regions. On the west coast, some parts of
southern and central Kerala, as well as some regions in northern Kerala, were under high
and moderate classes of vulnerability. This happened because on the west coast, except for
the rise in sea level, all other factors were resistant to coastal processes.

The elevation is high, and the slope is lower on the west coast than on the east coast.
The wave height is less compared to the east and, more importantly, the absence of deltaic
and flood plains all along the coast because of a smaller number of large rivers flowing
towards the Arabian Sea. The bathymetry is also stable along the west coast compared to
the east coast.

4.4. Social Vulnerability Assessment

The social vulnerability map (Figure 10) of the study area showed the very highly
vulnerable classes in red color and highly vulnerable in orange, followed by moderately vul-
nerable in yellow color, low vulnerability in light green, and very low vulnerability in dark
green colors. On the east coast, the regions of Chennai and Kanyakumari were shown to be
socially very highly vulnerable, as they have a high concentration of households and heavy
built-up density, and already there are conditions worsened due to physical vulnerability.
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Figure 10. Displays the social vulnerability along the west and east coast in five classes from very
low to very high. The highly affected regions such as Chennai, Kanyakumari, Malappuram, Thrissur,
and Ernakulam are highlighted. (A) shows the very high vulnerable areas of Kerala coast, (B) depicts
parts of highly vulnerable areas of Chennai and Puducherry and (C) shows the very highly vulnerable
coastal district of Kanyakumari.

On the east coast, the regions of Malappuram, Thrissur, and Alappuzha were classified
as very highly vulnerable, and some parts of Kollam were also under the very high class
of vulnerability. The majority of the west coast is under the classes of highly vulnerable
concerning social vulnerability, whereas the east coast is less socially vulnerable when
compared to the West.
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4.5. Overall Vulnerability Assessment

Figure 11 depicts an overall vulnerability that was obtained by averaging both the
physical and socially vulnerable outputs. The averaging method has also been applied
in previous studies [17,49,52–56]. However, a geometric mean (i.e., the square root of
the product) could be another way of combining the two scores with an average. In this
study, both methods have resulted in similar patterns in the overall vulnerability map. The
overall vulnerability map based on the average method was more accurate. It revealed
that the Thiruvallur Chennai, Kanchipuram, Cuddalore, and Nagapattinam regions on
the east coast were very highly vulnerable. On the west coast, the Malappuram, Thrissur,
Ernakulam, Alappuzha, and Kollam regions were identified as highly vulnerable. The
area-wise statistics are shown in Table 6.
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4.6. Comparative Assessment between Tamil Nadu and Kerala Coasts

This section deals with the interpretation and statistical analysis of the data interpreted
from different maps. In this present study, we compared coastal changes by including both
physical and socio-economical parameters. This study has proven the reasons behind the
variability between the east and west coasts using different techniques and considering
different parameters.

The parameters considered for the comparative assessment are as follows: (i) geomor-
phological landforms on both coasts; (ii) areas affected by sea level rise between both coasts;
(iii) sea wave height affecting the area between both coasts; (iv) shoreline behavior along
both coasts; (v) physical vulnerability area statistics of both regions; (vi) social vulnerability
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area statistics of both regions and overall vulnerability statistics. A comparison between
both coasts is shown in Table 6.

The area under the coastal plains is around 2395 km2 in Kerala and about 4257 km2

in Tamil Nadu, forming 12.5% and 13.5% of the Kerala and Tamil Nadu study regions,
respectively, as vulnerability-prone areas. Most of the highly vulnerable areas concerning
physical vulnerability are covered by coastal plains. Apart from the coastal plains, the
western part has 78.51% pediment–pediplain complex hills, 4.12% flood plains, 2.59%
deltaic plains, and 2.26% water bodies. On the other hand, in the eastern part of the study
area, 44.19% is covered by pediment–pediplain complexes and hills, followed by deltaic
plains at 27%, waterbodies at 9.87%, and flood plains at 5.4%. The coastal and deltaic plains
are more vulnerable to coastal processes [32]. Tamil Nadu has more area under these two
classes, making it more vulnerable than Kerala. The sea level rise is classified into two
classes: less than 1.8 mm and more than 1.8 mm. The class < 1.8 mm accounts for about
79% of the Tamil Nadu coast and 15% of the Kerala coast. The class ranging from 1.8 to
2.25 mm was found to be around 20.76% and 85% for the Tamil Nadu and Kerala coasts,
respectively. It can be stated that the sea level rise affects the Kerala coast more than the
Tamil Nadu coast.

The entire study area has been affected by waves up to 0.9 m in height. The Kerala
coast experienced an average wave height of less than 0.3 m. About 29% of the Tamil Nadu
coast experienced waves of below 0.3 m, 61.3% area was affected by waves of 0.3–0.6 m,
and 9.57% area was affected by larger waves ranging from 0.6 to 0.9 m in the past 30 years.
The shoreline behavior, which was estimated based on LRR by DSAS, showed that 56.5%
of Kerala’s shoreline was under high accretion, and 43.43% experienced high erosion. In
the case of Tamil Nadu, 62.3% of the shoreline exhibited high erosion, 31.9% shoreline was
under accretion, and 5.70% was very highly eroded.

Based on the physical parameters, the vulnerability map showed that 9.10% of the
study area is under the very highly vulnerable class, occupying 4345 km2. It includes both
Tamil Nadu and Kerala. On the eastern side, around 14% of the area falls under the very
highly vulnerable, followed by the highly vulnerable area at 26.54%, moderately vulnerable
at 35.40%, low vulnerability at 21.9%, and very low vulnerability at 2.10%. The western
part accounts for a negligible area under the very high vulnerability class, 2.35% in the
highly vulnerable class, 14.23% in the moderate class, 81.08% in the low vulnerability class,
and 2.35% in the very low vulnerability class. As discussed earlier, the social vulnerability
was estimated after considering population density, household, and urban densities, along
with the physical vulnerability as input parameters. Based on social vulnerability, nearly
9.5% of the entire study area was found to be very highly vulnerable, 22.5% as highly
vulnerable, 11.61% as moderate, 36.9% as low, and 19.2% as very low vulnerable areas. In
Tamil Nadu, 16.5% of the area was very highly vulnerable, 20.6% under highly vulnerable,
10.7% under the moderately vulnerable class, 29% under low vulnerability, and 17.5%
under the very low vulnerability class. In the Kerala part, the majority of the area was
found to be under high vulnerability (56.61%), followed by 30.41% area under very high
vulnerability, 12.15% under low vulnerability, and 0.83% under moderate vulnerability.
The overall vulnerability was obtained by averaging the physical and social vulnerabilities,
and the vulnerability scale ranged from 0 to 0.9. Based on the overall vulnerability map,
Thiruvallur, Chennai, Cuddalore, and Nagapattinam in the eastern region were identified
under very highly vulnerable conditions, whereas, Malappuram, Thrissur, Ernakulam,
Alappuzha, and Kollam were identified under highly vulnerable conditions.

5. Discussion

Coastal areas are always under the influence of some or other coastal forces. Con-
tinuous monitoring and improvising of the ground and remotely sensed data make the
decision-making process easy and fast. As coasts are interaction zones between different
ecosystems, various datasets are required to study specific areas. The coastal vulnerability
is usually estimated using various multi-criteria decision-making models, such as CVI,
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AHP, Fuzzy AHP, TOPSIS, etc. Among them, AHP has been widely used for estimating
coastal vulnerability across several coasts globally [57–60]. In these studies, coastal slope,
regional elevation, significant wave height, tidal range, shoreline change, geomorphology,
sea level changes, population, road network, and LULC were utilized for estimating both
physical and social vulnerability. A study by Tahri et al. [5] employed the fuzzy AHP
method and estimated coastal vulnerability on the Mohammedia coast situated in Morocco,
which divided the coastal ecosystem into three parts, namely, coastal characteristics, coastal
forcing, and socio-economic characteristics. Parameters such as LULC, geomorphology,
coastal erosion (m/year), and elevation (m) were considered coastal characteristics. The
mean wave height (m), sea level rise (mm/year), and mean tidal range (m) were taken
as coastal forcing. Distance to the urban area from the coastline (m) was considered a
socio-economic parameter. Several other studies have also used similar parameters as those
discussed above in the AHP method for deriving coastal vulnerability on different Indian
coasts [52,53,56,61]. The present study incorporated three coastal vulnerabilities (i.e., physi-
cal, socio-economic, and overall), which were determined using the fuzzy AHP approach.
It also incorporated the in situ data, such as Wave Watch III, GLOSS, and SEDAC datasets
along with remotely sensed data. Particularly for estimating physical vulnerability, we
used geomorphology, regional elevation, slope, mean sea level change, surface significant
wave height, and shoreline behavior. These are the parameters that were responsible for
changing and rapidly modifying the shorelines of the selected area. Hence, we incorporated
the same to estimate the physical vulnerability.

LULC has been used as a socio-economic parameter by Mani Murali [57] and Ma-
hapatra [58], whereas Tahri et al. [5] have considered LULC as a coastal characteristic to
estimate physical vulnerability. Moreover, in the present study, LULC was not used as the
geomorphology and elevation were already taken into account. In case LULC is weak in
geological terms (e.g., salt pans and beaches), such land covers are more vulnerable to con-
tinuous processes such as coastal forcing. At the same time, if an area is low elevated and
geologically and geomorphologically weak, irrespective of its LULC, it is highly vulnerable.
Previous studies on coastal vulnerability over the Indian coast [11,54,62–65] considered the
tidal range or spring tide range as a parameter and found large variations in tidal ranges
(0.50 m–11.6 m). During this study, it was found that the entire area experienced a similar
or equal impact from tides (~1.8 m), due to which the tidal range was not included in the
list of parameters used for estimating physical vulnerability.

In this study, a new concept of overall vulnerability has been introduced. It is an
average of both physical and social vulnerabilities. So, areas that are both physically and
socially highly vulnerable can be considered very highly vulnerable. Furthermore, areas
that are socially more and physically less, or vice versa, have been named moderately
vulnerable. The areas that fall under low physical and social vulnerability have been
automatically categorized under overall low vulnerability areas. The key findings of
this study indicate that areas such as Thiruvallur, Chennai, Cuddalore, Nagapattinam,
and Ramanathapuram on the east coast, and Malappuram, Ernakulam, Thrissur, and
Alappuzha on the west coast are highly impacted and vulnerable due to coastal processes.
The inclusion of both remotely sensed and in situ data makes these results more relevant
and reliable. In line with our above findings, Mujabar et al. [17], Priya Ranjan et al. [49],
and Sankari et al. [55] reported that Thiruvallur, Chennai, and Cuddalore on the Tamil
Nadu coast are highly vulnerable, whereas Naga Kumar et al. [47] identified Alappuzha,
Ernakulam, Thrissur on the Kerala coast as highly vulnerable due to coastal processes
in terms of physical and social perspectives. It is noteworthy to mention that the coarse
resolution of Wave Watch III and the limited tide gauge station data in GLOSS-PSMSL can
potentially influence the three derived vulnerabilities on the Indian coast. A limitation of
the present study is the field verification of the shoreline movement, which is important
for improving accuracy. Estimating the surface significant wave height, tidal range, and
sea level change with appropriate equipment in selected locations can further enhance the
obtained results. Such improvisations are helpful in decision making. Modern artificial
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intelligence, machine, and deep learning techniques analyze conditions more complex than
AHP, fuzzy AHP, and TOPSIS, and derive outputs more swiftly [66]. It is suggested to
estimate further changes using such advanced techniques, giving a geospatial outlook.

The adopted framework to estimate vulnerability can be applied over any coast on
Earth, with a minor change in selecting the parameters. As the coasts change, there will be
a change in affecting coastal forcing, and as a result, the required datasets also change. The
wave direction, velocity, wind speed, etc. are typically mapped using satellite data, which
are available at both finer and coarser spatial resolutions. In such studies, a finer resolution
should be adopted for acquiring accurate vulnerability maps.

6. Conclusions

The sea level is rising along both coasts, but the west coast is experiencing a greater
rise compared to the east coast. Although there is some variation in the wave height along
the study area, the east coast is more frequently hit by higher wave heights than the west
coast. Regions with weak geomorphology, low elevation, low slope, higher sea level rise,
wave height, and eroding shores were marked as very highly vulnerable. The east coast is
physically more vulnerable and socially less vulnerable. Based on the physical parameters,
very high vulnerability classes accounted for 9.1% (4345.12 km2) of the area. With respect to
social and overall vulnerability, the very highly vulnerable class consisted of 16.57% (7881
km2) of the area. By identifying the vulnerable coasts and their causing forces, it will be
easy to take the necessary mitigation steps by the policymakers and the administrators. The
results of this coastal vulnerability study can provide integrated coastal zone management,
adaptation planning, and building resilient coastal communities. In order to safeguard
these coasts from the continuous impact of coastal forcing and reduce the damage, dune
rehabilitation, construction of green belts, artificial reefs, and mangrove plantations can be
performed along the identified highly vulnerable shores.
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Appendix A

Defuzzified Matrix

GEO RE MSL SWH TIDAL R SM
GEO 1 1.33 3 9 8 8
RE 0.83 1 5 5 8 8

MSL 0.36 0.21 1 3 3 7
SWH 0.11 0.21 0.4 1 3 5

TIDAL R 0.13 0.13 0.4 0.36 1 1.3
SM 0.13 0.13 0.1 0.21 0.8 1

TOTALS 2.56 3 9.9 18.6 24 30
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Appendix B

Normalized Matrix

GEO RE MSL SWH SLOPE SM
GEO 0.39 0.44 0.3 0.48 0.3 0.3
RE 0.33 0.33 0.5 0.27 0.3 0.3

MSL 0.14 0.07 0.1 0.16 0.1 0.2
SWH 0.04 0.07 0 0.05 0.1 0.2

SLOPE 0.05 0.04 0 0.02 0 0
SM 0.05 0.04 0 0.01 0 0

Appendix C

Weights Weighted Sum Lambda

0.37066 2.535548 6.840637
0.339141 2.308372 6.806535
0.138219 0.921197 6.664763
0.082198 0.514093 6.254363
0.038915 0.249332 6.407104
0.030868 0.189877 6.151184

Appendix D

Validating Parameters

Lambda Max 6.520764
n 6
RI 1.24
C I (L-N/N-1) 0.104153
CR (CI/RI) 0.083994
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