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Abstract: The mathematical modeling of reverse logistics inventory systems ignores the fact that
returned items may arrive out of sequence, i.e., with different number of remanufacturing times.
Moreover, such modeling assumes that the retuned items may retain the same quality upon recovery
regardless of how many times they have been previously remanufactured. This paper develops a
new mathematical expression of the percentage of retuned items that can be remanufactured a finite
number of times. The proposed expression is modeled as a function of the expected number of times
an item can be remanufactured in its lifecycle and the number of times an item can be technologically
(or optimally) remanufactured based on its quality upon recovery. The model developed in this
paper considers joint production and remanufacturing options. The return rate is a varying demand-
dependent rate, which is a decision variable with demand, product deterioration, manufacturing, and
remanufacturing rates being arbitrary functions of time. The model considers the initial inventory of
returned items in the mathematical formulation, which enables decision-makers to adjust all functions
and input parameters for subsequent cycles. Illustrative examples indicate that dependent purchasing
price of recovery items and the incorporation of remanufacturing investment cost significantly impact
the optimal remanufacturing policy.

Keywords: reverse logistics; number of remanufacturing times; first remanufacturing cycle;
time-varying parameters; demand dependent return rate

1. Introduction

Reverse logistics emerges as an opportunity beyond the traditional logistics role, with
the main purpose being product returns from end customers for recapturing value or
proper disposal [1]. Further, reverse logistics has been implemented to address economic
drivers, government pressure/legislation, social interests, and environmental conscious-
ness. The goal of reverse logistic is to effectively manage and control the flow of products
returned from end customers to extend their useable lives, reduce solid waste disposal, and
conserve natural resource consumption [2,3]. The importance of reverse logistics may vary
among industries due to relevant costs or due to the dynamic nature of production and
remanufacturing processes of the retuned items The reverse logistics process is a mirror
image of the traditional forward supply chain one. It comprises activities such as the collec-
tion of returned items from end users, inspection, reprocessing, disassembly, and, finally,
redistribution of returned items for recovery purposes [2,4], whereas a closed-loop supply
chain is categorized by the combination of forward and reverse supply chain activities [4,5].

Inventory management in reverse logistics has received growing attention in recent
years. Moreover, due to global competitiveness, there has been more focus among large
companies to adopt joint production and remanufacturing options in their businesses [6,7].
For example, in Germany, about 10% of engines and starter engines are remanufactured [8].
In this regard, the remanufactured products save 80% of raw materials, require 33% of the
labor force, and consume 50% of the energy and up to 50–70% less cost when compared
with the newly manufactured products [9–12]. Several companies, including BMW and
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Volkswagen, focus on accelerating the upgrading process of older cars and offer a fully
warrantied service for remanufactured engines and other parts [10,13]. Therefore, reverse
logistics can enhance productivity, reduce costs, improve profitability, satisfy demand, and
meet customer loyalty [14].

Beyond the economic benefits, there exist a plethora of factors, such as social and
environmental consciousness and government legislation, that may force manufacturers to
include such product recovery systems in their businesses [15].

2. Literature Review

The first inventory model with returned items was conducted by Schrady [16]. He
developed a deterministic economic order quantity (EOQ) model for repaired products
assuming no disposal cost with instantaneous production and return rates. Nahmias
and Rivera [17] generalized the model of Schrady [16] considering a finite repair rate.
Richter [18–20], Richter and Dobos [21], and Dobos and Richter [22] carried out several
investigations into the EOQ repair model, with the assumption that the return rate is a
decision variable. Richter [18,19] generalized the model of Schrady [16] by investigating
multiple repair and production cycles. Dobos and Richter [23] investigated a manufactur-
ing/recycling system for noninstantaneous manufacturing and recycling rates.

Richter [20] investigated the model when the recovery rate is a decision variable. He
showed that the optimal strategy occurs for no waste disposal (total repair) or for no repair
(total waste disposal). Dobos and Richter [24] extended their previous work (Dobos and
Richter [23]) assuming multiple repair and production cycles. They indicated that the case
of a pure strategy is optimal. Dobos and Richter [25] assumed that some collected returned
items are not always suitable for further recycling. There are numerous studies that relax
different assumptions made so far. Examples of these works are cited in [26]. El Saadany
and Jaber [27] considered the return rate to be dependent on the purchasing price of the
retuned items and the use proportion of these items. They replicated the work of Dobos
and Richter [23,24] and indicated that a mixed (production + remanufacturing) strategy
is optimal, but not as suggested by Dobos and Richter [23,24]. Alamri [28] developed a
general model and verified the examples given in Dobos and Richter [23,24] and in El
Saadany and Jaber [27]. He showed that a mixed strategy dominates a pure strategy.

El Saadany and Jaber [29] pointed out that previous research accounted for an infinite
planning horizon and ignored the effect of the first cycle as there are no returned items
to be remanufactured. They rectified a minor error in the work of Richter [18,19] and,
consequently, their model produces a lower cost because of the residual inventory assumed
in Richter [18,19]. Kozlovskaya et al. [30] rectified the model of El Saadany and Jaber [29]
and provided the optimal policy. They showed that the optimal policy depends on the
disposal rate. Although El Saadany and Jaber [29] provided a closed-form formula for the
first cycle, their mathematical formulation and the other studies in the literature are alike.
Alamri [31] discussed this issue in detail and addressed this limitation by incorporating the
initial inventory of returned items in the mathematical formulation. He showed that the
optimal policy implies that the cumulative inventory for returned items vary for each cycle
before the system plateaus. This is a key consideration that allows the adjustment of the
input parameters for any given cycle.

The above cited contributions are directly relevant to this paper. Other researchers
have developed models related to reverse logistics systems (see [32,33]).

3. Research Background and Contribution

Below, we specify some issues that are related to the number of times a product can be
remanufactured, as advocated in El Saadany et al. [34], followed by some discussion that
elaborates on our research contributions. Meanwhile, the work of Alamri [31] constitutes
the base model of this research.
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3.1. Theoretical Background and Motivation

El Saadany et al. [34] suggested a mathematical expression that indicates how many
times a product can be remanufactured. They attempted to relax the general assumption
that an item can be recovered for an indefinite number of times. They assumed that an
item can be remanufactured for a finite (ξ) number of times. When the system plateaus,
then for any ξ, a fraction βξ of a constant demand rate d is remanufactured and (1− βξ) is

produced, where βξ = 1− 1−β

1−βξ+1 and β(0 < β < 1) is the fraction of used items returned
for remanufacturing based on its recovery for an indefinite number of times. It is worth
noting here that the mathematical expression used to derive βξ focused on the returns of
what was produced in the previous period and ignored the rest of cumulative produced
quantities that have been left or previously being remanufactured. Interested readers are
referred to Table 1 in El Saadany et al. [34]. They stated that as ξ −→ ∞ , βξ = 1− 1−β

1−β∞ = β,
which is identical to what the existing literature suggests. In the case of a pure production,
i.e., ξ = 0, βξ = 1− 1−β

1−β0+1 = 0, though a pure production strategy implies that β = 0, i.e.,
there are no items returned for recovery purposes. Moreover, the mathematical expression
used to derive βξ assumes no waste disposal (total repair) of the proportion β upon recovery.
Then, they modified the work of Richter [20] and Teunter [35] by replacing β with βξ in
Richter’s [20] and Teunter’s [35] models.

Table 1. The actual quality level of an item that recovers ξ number of times when τ = 1, 2, . . . 8.

1 2 3 4 5 6 7 8

0.368 0.607 0.717 0.779 0.819 0.846 0.867 0.882
0.368 0.513 0.607 0.670 0.717 0.751 0.779

0.368 0.472 0.549 0.607 0.651 0.687
0.368 0.449 0.513 0.565 0.607

0.368 0.435 0.490 0.535
0.368 0.424 0.472

0.368 0.417
0.368

In their model, the produced quantity (1− βξ)d is also disposed outside the system
(e.g., Bazan et al. [36]) since they defined α as the disposal rate, where α(α = 1− βξ). More-
over, the role of β in their model is somewhat ambiguous. Therefore, we can distinguish
three cases: (1) As can be seen from Figure 1 in El Saadany et al. [34], (α + βξ)d enters the
repairable stock from which βξ d is remanufactured and αd = (1− βξ)d is disposed. This
implies that the return rate is d; however, this contradicts what the existing literature sug-
gests, i.e., the return rate is less than demand rate; (2) βξ = 1− 1−β

1−βξ+1 , which is a function
of β, and therefore, the value of β is used to compute βξ . In their examples, β is defined
as the collection of used items and βξ is the effective proportion. In this case (Case 2),
one can deduce that βd enters the repairable stock from which βξ βd is remanufactured
and (1− βξ)βd is disposed. However, β represents the fraction of returned items that are
recovered for an indefinite number of times and only βξ of β is remanufactured; (3) the
return rate is βξ d, which enters the repairable stock and flows in the serviceable stock to
be remanufactured with no waste disposal (total repair). That is, the purpose of β, which
represents the fraction of returned items that are recovered for an indefinite number of
times, is to compute βξ . In this case (Case 3), the system should collect βξ instead of β,
which is reflected in their modified version of the work of Richter [20] and Teunter [35].
Hence, we can conclude that, in all cases, β is used to compute βξ , with Case 2 being the
most appropriate scenario. However, βξ in all these cases has no relation with an item being
recovered for a limited (ξ) number of times. In fact, ξ is an arbitrary integer value, which is
implanted in βξ to minimize the total cost. Therefore, considering a fraction γ(0 ≤ γ ≤ 1)
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of the return rate that meets the acceptance quality level to be remanufactured and that
(1− γ) is disposed outside the system is more practicable [24,27,28,31].
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The difference between β and βξ represents about 50% when ξ = 1 and β = 0.9 (see
El Saadany et al. [34]). Moreover, for a fixed value of β, this difference decreases with ξ (see
El Saadany et al. [34]). This seems logical in their expression, since as ξ −→ ∞ , βξ −→ β ,
because they assumed that all returned items have been remanufactured ξ number of times.
On the contrary, however, this difference should increase, as a returned item with a greater
number of remanufacturing times recovers with inferior quality. Furthermore, implement-
ing βξ , as suggested by El Saadany et al. [34], would result in a large disposal quantity,
especially for products that are associated with relatively small number of recovery times
since βξ increases with ξ (see Figure 1). Finally, incorporating such βξ in the mathemat-
ical formulation entails that all returned items have been remanufactured ξ number of
times. However, the fact remains that returned items may arrive out of sequence, i.e., with
different number of remanufacturing times, assuming also that the previous number of
remanufacturing times is labeled. It is true to say that considering such classification of
returned items in the mathematical expression is not an easy task; however, this limitation
will be discussed in the next section.

3.2. Mathematical Formulation of the Recovery Times

The comprehensive discussion in the previous section is necessary to position our
contribution in the existing literature as well as to highlight its research impact. The aim of
this paper is to enhance this line of research by developing a new mathematical expression
that models the percentage of returns as a function of the number of times an item is
recovered, the corresponding quality for the recovery item, and the expected number of
times an item can be remanufactured in its lifecycle. In this paper, we assume that returned
items are collected at a rate of cj(t) (decision variable), where j denotes the cycle index.
Note that a pure production strategy occurs when cj(t) = 0.

Only a fraction γξ j of these retuned items can be remanufactured. Namely, γξ j = e
−ξqξ

τ ,
where qξ j(0 < qξ j < 1) denotes the quality level of an item that has been recovered ξ

number of times. We assume that qξ j = e
−ξ
τ , where q0j = 1, i.e., it refers to the quality of

a newly manufactured item. In this paper, ξ refers to the maximum number of times an
item can be technologically (or optimally) remanufactured, and τ ≥ ξ denotes the expected
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number of times an item can be remanufactured in its lifecycle. Note that qξ j decreases as ξ

increases, and it attains a minimum value as ξ −→ τ ; in this case, qξ j = qτ = qmin = e−1

(Table 1). Accordingly, a recovery item with a quality less than qmin is considered defective
and incurs a disposal cost. Note that γξ j

′ < 0 and γξ j
′′ > 0 ∀ξ > 0, i.e., γξ j is a monoton-

ically decreasing function over ξ, and as τ −→ ∞, γξ j −→ 1 . The same arguments hold
true for qξ j. This implies that γξ j is modeled as a function of the expected number of times
an item can be remanufactured in its lifecycle and the number of times an item can be
technologically remanufactured based on its quality upon recovery. Moreover, γξ j and qξ j
are free from any judgmental measurements.

In real-life settings, returned items may recover out of sequence. This can be attributed
to the random number of times these items have been remanufactured. Let us define
the returned amount for cycle j as Rj, where this amount undergoes a 100 percent in-
spection. Note that in an automated remanufacturing system, observing Rj appears to
be realistic because all returned items are inspected. Therefore, returned items that are
subjected to a 100 percent screening upon recovery to the repairable stock would imply that
Rj =

(
rξ j, rξ−1j, . . . , r0j

)
. That is, rkj is the collected used/returned items, with

k(k = ξ, ξ − 1, . . . , 0) being the number of times these items have been previously re-
manufactured. Here, r0j denotes returned items that have not yet been remanufactured,
and rξ j refers to defective (disposed) returned items that have been remanufactured ξ
number of times or items that do not meet the minimum acceptance quality level, qmin.

It is worth noting here that the abovementioned classification seams realistic because
the system can deal with items based on such classification upon recovery. Therefore, as
the number of times an item can be recovered increases, its corresponding use proportion
decreases. This finding, however, contradicts that of El Saadany et al. [34]. To justify this,
suppose that among the returned quantity that can be remanufactured, say, five times, there
exists a subquantity that arrived at the repairable stock for their first-time recovery. In this
case, implementing γξ j for this subquantity would result in disposing of an equal fraction
to that of items with a greater recovery time, though these items have not yet been remanu-
factured. Table 2 depicts the corresponding use proportion, where γij =

(
γ1j, γ2j, . . . γξ j

)
.

For instance, if there is a quantity of returned items that can be remanufactured, say,
five times, then each subquantity is associated with its corresponding accepted fraction, i.e.,
γ5j = 0.692, γ4j = 0.698, γ3j = 0.719, γ2j = 0.765, and γ1j = 0.849. That is, γij represents
the use proportion of the subquantity of the retuned items that can be remanufactured
for its ith remanufacturing time. However, considering the abovementioned classification
in the mathematical formulation emerges as a challenge in terms of the presentation of

each subquantity in modeling. Therefore, to tackle this issue, we suggest that γj =
∑ξ

i=1 γij
ξ ,

which constitutes an approximation of the average fraction (cumulative average up to ξ)
that can be remanufactured in cycle j (Figure 2).

Table 2. The actual proportion of returned items that can be remanufactured ξ number of times when
τ = 1, 2, . . . 8.

1 2 3 4 5 6 7 8

0.692 0.738 0.788 0.823 0.849 0.868 0.884 0.896
0.692 0.710 0.738 0.765 0.788 0.807 0.823

0.692 0.702 0.719 0.738 0.756 0.773
0.692 0.698 0.710 0.724 0.738

0.692 0.696 0.705 0.716
0.692 0.695 0.702

0.692 0.694
0.692
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As can be seen from Table 2, assuming γξ j to be remanufactured in cycle j implies that
the proportion

(
1− γξ j

)
cj(t) is disposed outside the system. Conversely,

(
1− γj

)
cj(t) ≤(

1− γξ j
)
cj(t), i.e., γj considers the cumulative average up to time ξ of returned items

(Table 4). This is a key consideration because it governs the behavior of returned items and
ensures reducing the disposal of unnecessary amounts. In addition, returned items are

coupled with distinct purchasing price cprj = cpme
−1
qj , where cpm denotes unit purchasing

price for new items.

3.3. Contribution and Organization of the Paper

This paper develops a new mathematical expression that specifies the number of times
a product can be remanufactured. In particular, the proposed expression is modeled as a
function of the expected number of times an item can be remanufactured in its lifecycle and
the number of times an item can be technologically (or optimally) remanufactured based
on its quality upon recovery.

In this paper, we present a general reverse-logistics inventory model with a single
manufacturing cycle and a single remanufacturing cycle. Demand, deterioration, manu-
facturing, remanufacturing, and return rates are arbitrary functions of time. Therefore, a
diverse range of time-varying forms can be disseminated from the general model. The
mathematical formulation consists of serviceable and reparable stocks for joint manufactur-
ing and remanufacturing options. New items are manufactured in the serviceable stock,
while returned items are collected in the reparable stock to be remanufactured in the ser-
viceable stock as good as new. Therefore, different holding costs and deterioration rates are
considered for manufactured, remanufactured, and returned items (e.g., [28,35,37,38]).

Only a proportion of the returned items flows in the reverse direction, which specifies
the number of times an item can be technologically (or optimally) remanufactured. In the
first remanufacturing cycle, the initial inventory of retuned items is zero since there are no
returned items to be remanufactured. Therefore, the accumulated amount of returned items
(during the time gap of nonproduction and nonremanufacturing processes) represents
the initial inventory of returns for the second cycle. This amount, indeed, should differ
from that accumulated for subsequent cycles. This is key in our formulation, and therefore
ensures that all optimal values vary for each cycle before the system plateaus. The proposed
model accounts for setup changeover costs when switching from manufacturing phase to
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remanufacturing phase. The proposed model also considers an investment cost, which is a
function of the number of times a product is remanufactured and its quality upon recovery.
We assume that returned, manufactured, and remanufactured items deteriorate while they
are effectively in stock. The return rate of the returned items is a decision variable, which
is a function of the demand rate. The purchasing price of returned items is a function of
the purchasing price of new items based on their quality upon recovery. All functions and
input parameters can be adjusted for subsequent cycles.

The remainder of this paper is structured as follows. The joint manufacturing and
remanufacturing model and the solution procedure are presented in Section 4. Illustrative
examples and special cases are offered in Section 5. Managerial insights are given in
Section 6, and the paper closes with concluding remarks provided in Section 7.

4. Mathematical Formulation of the General Model
4.1. Assumptions and Notations

The following notations are considered:

j The cycle index;

z
(z = gm, gr, r) gm denotes manufactured items, gr denotes remanufactured items
and r denotes returned items;

Pmj(t) The rate per unit time for manufactured items;
Prj(t) The rate per unit time for remanufactured items;

cj(t)
The rate per unit time for returned items (decision variable), where cj(t) = ∅jDj(t)
and 0 ≤ ∅j < 1;

Dj(t) The rate per unit time for demand items;
Izj(t) The inventory level at time t;
δzj(t) The deterioration rate per unit time;
dzj The deteriorated quantity for cycle j;
Qmj The manufactured quantity for cycle j;
Qrj The remanufactured quantity for cycle j;
Rj The returned quantity for cycle j;

∆j
The accumulated quantity of returned items (during the time gap of nonproduction
and nonremanufacturing processes);

ξ The maximum number of times an item can be remanufactured;

τ
The expected number of times an item can be remanufactured in its lifecycle, where
τ ≥ ξ;

qξ j
The actual quality level of an item that has been recovered ξ number of times in

cycle j, where qξ j = e
−ξ
τ (Table 1);

qj
The average fraction (cumulative average up to ξ) of the quality level of items that

have been recovered for their ith time in cycle j, where qj =
∑ξ

i=1 qij
ξ (Table 3);

γξ j
The actual proportion of returned items that can be remanufactured in cycle j, where

γξ j = e
−ξqξ

τ (Table 2);

γj
The average fraction (cumulative average up to ξ) of returned items that can be

remanufactured for their ith time in cycle j, where γj =
∑ξ

i=1 γij
ξ (Table 4);

cpm The unit purchasing cost for new items;

cprj The unit purchasing price for retuned items in cycle j, where cprj = cpme
−1
qj ;

cinv
The remanufacturing investment cost in the design process of an item in order to
make it remanufactured τ number of times;

cinvj
The remanufacturing investment cost in cycle j in the design process of an item in

order to make it remanufactured ξ number of times, where cinvj = cinv

(
1− e

−ξ
qj

)
;

cm The unit manufacturing cost;
cr The unit remanufacturing cost;
cs The unit screening cost;
hz The holding cost per unit per unit time;
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cw The unit cost for disposing deteriorated and defective waste items;
wm The switching cost from remanufacturing phase to manufacturing phase;
wr The switching cost from manufacturing phase to remanufacturing phase;
Sz The setup/order cost per cycle.

Table 3. The average fraction (cumulative average up to ξ) of the quality level of items that recover
for their ith time when τ = 1, 2, . . . 8.

1 2 3 4 5 6 7 8

0.368 0.607 0.717 0.779 0.819 0.846 0.867 0.882
0.487 0.615 0.693 0.745 0.782 0.809 0.831

0.533 0.619 0.679 0.723 0.757 0.783
0.556 0.622 0.671 0.709 0.739

0.571 0.624 0.665 0.698
0.581 0.625 0.660

0.588 0.626
0.593

Table 4. The average fraction (cumulative average up to ξ) of returned items that can be remanufac-
tured for their ith time when τ = 1, 2, . . . 8.

1 2 3 4 5 6 7 8

0.692 0.738 0.788 0.823 0.849 0.868 0.884 0.896
0.715 0.749 0.781 0.807 0.828 0.845 0.859

0.730 0.754 0.778 0.798 0.816 0.830
0.739 0.758 0.776 0.793 0.807

0.745 0.760 0.775 0.789
0.749 0.762 0.775

0.752 0.763
0.754

Below is a list of all assumptions used in the paper:

1. The collection of returns occurs throughout the time interval at a rate cj(t).
2. Only a proportion γj(0 ≤ γj ≤ 1) of the returned items can be remanufactured, and

the amount
(
1− γj

)
cj(t) is disposed as waste outside the system.

3. New items are manufactured at a rate Pmj(t) and the accepted returned items are
remanufactured at a rate Prj(t) as good as new.

4. Items deteriorate at a rate δzj(t) while they are effectively in stock.
5. The demand rate Dj(t) is satisfied from produced and remanufactured items.
6. The return rate is a varying demand-dependent rate, which is a decision variable.
7. The demand, product deterioration, manufacturing, and remanufacturing rates are

arbitrary functions of time.
8. The values of all functions and input parameters can be adjusted for subsequent cycles.
9. Shortages are not allowed; this implies that Pmj(t) > Dj(t), Prj(t) > γjcj(t) and

Prj(t) > Dj(t) ∀t ≥ 0.
10. There is no repair or replacement of deteriorated items.

4.2. The General Model

Figure 3 depicts a general framework of production and remanufacturing unified
system, and Figure 4 depicts the behavior of such a unified system. In our model, demand
in the first cycle is satisfied from production only (see Figure 4), as the inventory of returns
at the beginning of the first cycle is zero (there are no returned items to be remanufactured).
The process is repeated until inventory of product returns can be technologically attainable.
Then, at the beginning of each cycle j, the system starts the production prosses until time



Sustainability 2023, 15, 9517 9 of 23

T1j, by which point in time Qmj units have been produced and stored in the serviceable
stock. The inventory level of new items declines continuously and becomes zero by time
T2j. The deteriorated quantity is dgmj units, which refers to the difference between Qmj
units that have been manufactured in cycle j and the satisfied demand during production
cycle. The remanufacturing process starts at time T2j until time T3j, by which point in time
the remanufactured quantity Qrj units have been accumulated and stored in the serviceable
stock. The collection of returns occurs throughout the time interval at a rate cj(t), in
which a fraction γjcj(t) has been remanufactured and the remaining quantity

(
1− γj

)
cj(t)

is disposed as waste outside the system. The remaining quantity
(
1− γj

)
cj(t) refers to

returned items that have been remanufactured ξ number of times or items that do not
meet the minimum acceptance quality level, qmin. The inventory level of remanufacturing
items becomes zero by time T4j. The deteriorated quantity is dgrj units, which refers to the
difference between Qrj units that have been remanufactured in cycle j and the satisfied
demand during remanufacturing cycle. At time T4j(the end of cycle j), ∆j units have been
accumulated and stored in the repairable stock, which constitutes the initial inventory of
returned items for the next cycle. In our model, the term ∆j−1 governs the flow of products
returned, which in turn affects the inventory of all quantities for each cycle and at the
beginning of the first remanufacturing cycle, ∆j−1 = ∆0 = 0. That is, the initial inventory of
returns in the first remanufacturing cycle is set equal to zero. The deteriorated quantity in
the repairable stock is drj, which denotes the difference between the returned quantity that
have been accepted to be remanufactured and Qrj units that have been remanufactured in
cycle j. The process is repeated.
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The variations in the inventory levels, as shown in Figure 4, can be represented by the
following differential equations:

dIgmj(t)
dt = Pmj(t)− Dj(t)− δgmj Igmj(t), 0 ≤ t < T1j (1)

dIgmj(t)
dt = −Dj(t)− δgmj Igmj(t), T1j ≤ t ≤ T2j (2)

dIgrj(t)
dt = Prj(t)− Dj(t)− δgrj Igrj(t), T2j ≤ t < T3j (3)

dIgrj(t)
dt = −Dj(t)− δgrj Igrj(t), T3j ≤ t ≤ T4j (4)

dIrj(t)
dt = γjcj(t)− δrj Irj(t), 0 ≤ t < T2j (5)

dIrj(t)
dt = γjcj(t)− Prj(t)− δrj Irj(t), T2j ≤ t < T3j (6)

dIrj(t)
dt = γjcj(t)− δrj Irj(t), T3j ≤ t ≤ T4j (7)

with the boundary conditions

Igmj(0) = 0, Igmj
(
T2j
)
= 0, Igrj

(
T2j
)
= 0, Igrj

(
T4j
)
= 0, Irj(0) = ∆j−1 and Irj

(
T3j
)
= 0
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Taking into account the above boundary conditions, the solutions of Equations (1)–(7)
are given by

Igmj(t) = e−hgmj(t)
∫ t

0

[
Pmj(u)− Dj(u)

]
ehgmj(u)du, 0 ≤ t < T1j (8)

Igmj(t) = e−hgmj(t)
∫ T2j

t Dj(u)e
hgmj(u)du, T1j ≤ t ≤ T2j (9)

Igrj(t) = e−hgrj(t)
∫ t

T2j

[
Prj(u)− Dj(u)

]
ehgrj(u)du, T2j ≤ t < T3j (10)

Igrj(t) = e−hgrj(t)
∫ T4j

t Dj(u)e
hgrj(u)du, T3j ≤ t ≤ T4j (11)

Irj(t) = e−(hrj(t)−hrj(0))∆j−1 + e−hrj(t)
∫ t

0

[
γjcj(u)

]
ehrj(u)du, 0 ≤ t < T2j (12)

Irj(t) = e−hrj(t)
∫ T3j

t
[
Prj(u)− γjcj(u)

]
ehrj(u)du, T2j ≤ t < T3j (13)

Irj(t) = e−hrj(t)
∫ t

T3j
γjcj(u)e

hrj(u)du, T3j ≤ t ≤ T4j (14)

respectively, where

hzj(t) =
∫

δzj(t)dt. (15)

From Equations (1)–(14), we note that each function is solely modeled and, therefore,
functions may or may not be related to each other.

The total costs per cycle for the underlying inventory model are given as follows:
Purchasing price for returned items (cprj) + Inspection cost (cs) + Disposal cost for

waste and deteriorated items (cw) + Material cost for new items (cpm) + Manufacturing cost
(cm) + Remanufacturing cost (cr) + Holding costs (hz)+ Switching cost for manufacturing (wm) +
Switching costs for remanufacturing (wr) + Investment cost (cinvj) + Setup and order costs (Sz) =(

cpme
−1
qj + cs + cw(1− γj)

)∫ T4j
0 cj(u)du+ cw

(
dgmj + dgrj + drj

)
+
(
cpm + cm

)∫ T1j
0 Pmj(u)du

+ cr
∫ T3j

T2j
Prj(u)du + hz + wm + wr + cinv

(
1− e

−ξ
qj

)
+ Spm + Spr + Sr.

Now, we denote K = wm + wr + Spm + Spr + Sr, and dj = dgmj + dgrj + drj.
As can be seen, the returned, manufacturing, and remanufacturing costs involve

deteriorated items as well. Note that this is very well recognized in the literature because
items deteriorate while they are effectively in stock (e.g., [38–41]).

By integrating Equations (8)–(14), over the proper limits, the holding costs can be
obtained as follows:

Holding costs at the serviceable stock applying for both produced and remanufactured items:

hgm
[
Igmj

(
0, T1j

)
+ Igmj

(
T1j, T2j

)]
+ hgr

[
Igrj
(
T2j, T3j

)
+ Igrj

(
T3j, T4j

)]
Holding cost for returned items at the repairable stock:

hr
[
Irj
(
0, T2j

)
+ Irj

(
T2j, T3j

)
+ Irj

(
T3j, T4j

)]
Therefore, the per-unit time total cost function for the unified inventory system during

time
[
0, T4j

]
, as a function of T1j, T2j, T3j and T4j denoted by L

(
T1j, T2j, T3j, T4j

)
, is given by
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L
(
T1j, T2j, T3j, T4j

)
= 1

T4j

{(
cpme

−1
qj + cs + cw(1− γj)

)∫ T4j
0 cj(u)du +

(
cpm + cm

)∫ T1j
0 Pmj(u)du+

cr
∫ T3j

T2j
Prj(u)du + hgm

[
−
∫ T1j

0 Hgmj(u)
[
Pmj(u)− Dj(u)

]
ehgmj(u)du + Hgmj

(
T1j
) ∫ T1j

0
[
Pmj(u)−

Dj(u)
]

ehgmj(u)du +
∫ T2j

T1j

[
Hgmj(u)− Hgmj

(
T1j
)]

Dj(u)e
hgmj(u)du

]
+ hgr

[∫ T3j
T2j

[
Hgrj

(
T3j
)
− Hgrj(u)

][
Prj(u)−

Dj(u)
]

ehgrj(u)du +
∫ T4j

T3j

[
Hgrj(u)− Hgrj

(
T3j
)]

Dj(u)e
hgrj(u)du

]
+ hr

[[
Hrj
(
T2j
)
− Hrj(0)

]
ehrj(0)∆j−1+

Hrj
(
T2j
)∫ T3j

0 γjcj(u)e
hrj(u)du +

∫ T3j
T2j

[
Hrj(u)− Hrj

(
T2j
)]

Prj(u)e
hrj(u)du−

∫ T4j
0 H2j(u)γjcj(u)e

h2j(u)du+

Hrj
(
T4j
)∫ T4j

T3j
γjcj(u)e

hrj(u)du
]
+cwdj + cinv

(
1− e

−ξ
qj

)
+ K

}
,

(16)

where
Hzj(t) =

∫
e−hzj(t)dt. (17)

Note that Equation (16) is a modified version of that of Alamri [31]. Therefore, and
to avoid repetition, the existence of the solution for Equation (16), its uniqueness, and its
associated global optimality can be derived by a quite similar way. Interested readers are
referred to Alamri [28,31].

From Equations (8)–(14), it is clear that Tij, i(i = 1, 2, 3, 4) are related to each other
as follows:

T1j < T2j < T3j < T4j, (18)

∫ T1j

0
Pmj(u)e

hgmj(u)du =
∫ T2j

0
Dj(u)e

hgmj(u)du, (19)

∫ T3j

T2j

Prj(u)e
hrj(u)du = ehrj(0)∆j−1 +

∫ T3j

0
γjcj(u)e

hrj(u)du, (20)

∫ T3j

T2j

Prj(u)e
hgrj(u)du =

∫ T4j

T2j

Dj(u)e
hgrj(u)du, (21)

Rj =
∫ T4j

0
cj(u)du, (22)

∆j−1 = e−hrj−1(T4j−1)
∫ T4j−1

T3j−1

γj−1cj−1(u)e
hrj−1(u)du. (23)

For example, relations 19 and 20 guarantee that the level of inventory must have
equal values for the production and the remanufacturing phases for t = T1 and for t = T3.
Note that the term ∆j−1 is modeled as a deterministic value, i.e., it impacts the behavior of
each cycle until the system plateaus. This is a key in the mathematical formulation and,
consequently, it ensures that the model remains viable and generates optimal solution for
each cycle in case the values of the input parameters need to be adjusted [31].

It can be seen from Equation (19) that Pmj(t) > Dj(t) =⇒ Equation (19) ⇔ T1j < T2j .
In addition, from Equation (19), T1j = 0 =⇒ T2j = 0 =⇒ , a pure strategy of no manu-
facturing option. Therefore, Prj(t) > Dj(t) =⇒ Equation (21) ⇔ T3j < T4j . Conversely,
T3j = 0 =⇒ T4j = 0 . Thus, from Equations (21) and (22), T2j = T3j =⇒ T3j = T4j =⇒ T1j
< T2j =⇒ , a pure strategy of no remanufacturing option. Conversely, T1j = 0 =⇒ T2j = 0
=⇒ T3j = 0 =⇒ T4j = 0 . Thus, T1j > 0 =⇒ T1j < T2j and T2j < T3j =⇒< T3j < T4j .
Hence, Equations (19)–(22) implies constraint (18), and, therefore, constraint (18) can
be ignored. Thus, our goal is to solve the following objective function:

(Z) =


minimize L

(
T1j, T2j, T3j, T4j

)
given by Equation (16)

subject to
Equations(19–22)

0 ≤ ∅j < 1

. (24)
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Solution Procedure

As can be seen, Equations (19)–(22) can be used to obtain Tij as functions of Rj, where

Tij = fij
(

Rj
)
. (25)

Taking also into account Equations (19)–(22), the objective function (Z) is reduced to
the following function, with the variable Rj (say (Z1)) subject to 0 ≤ ∅j < 1.

L
(

Rj
)
= 1

f4j

{(
cpme

−1
qj + cs + cw(1− γj)

)∫ f4j
0 cj(u)du +

(
cpm + cm

)∫ f1j
0 Pmj(u)du + cr

∫ f3j
f2j

Prj(u)du+

hgm

[
−
∫ f1j

0 Hgmj(u)Pmj(u)e
hgmj(u)du +

∫ f2j
0 Hgmj(u)Dj(u)e

hgmj(u)du
]
+

hgr

[
−
∫ f3j

f2j
Hgrj(u)Prj(u)e

hgrj(u)du +
∫ f4j

f2j
Hgrj(u)Dj(u)e

hgrj(u)du
]
+ hr

[
−Hrj(0)e

hrj(0)∆j−1+∫ f3j
f2j

Hrj(u)Prj(u)e
hrj(u)du +

∫ f4j
f3j

Hrj
(

f4j
)
γjcj(u)e

hrj(u)du−
∫ f4j

0 Hrj(u)γjcj(u)e
hrj(u)du

]
+ cwdj+

cinv

(
1− e

−ξ
qj

)
+ K

}
,

(26)

where hzj(t) is given by Equation (15) and Hzj(t) is given by Equation (17).
Hence, if L = l

f4j
, then the necessary condition for the objective function (Z1) to have

a minimum is
l′Rj

f4j = f ′4j,Rj
l, (27)

where l′Rj
and f ′4j,Rj

represent, respectively, the derivatives of l and f4j with respect to Rj.
Now, considering Equation (26), we obtain

l′Rj
=

(
cpme

−1
qj + cs + cw(1− γj)

)
+
(
cpm + cm

)
f ′1j,Rj

Pmj
(

f1j
)
+ crPrj

(
f ′3j,Rj

(
f3j
)
− f ′2j,Rj

(
f2j
))

+

hgm

[
−Hgmj

(
f1j
)

f ′1j,Rj
Pmj
(

f1j
)
ehgmj( f1j) + Hgmj

(
f2j
)

f ′2j,Rj
Dj
(

f2j
)
ehgmj( f2j)

]
+

hgr

[
−Hgrj

(
f3j
)

f ′3j,Rj
Prj
(

f3j
)
ehgrj( f3j) + Hgrj

(
f2j
)

f ′2j,Rj
Prj
(

f2j
)
ehgrj( f2j) + Hgrj

(
f4j
)

f ′4j,Rj
Dj
(

f4j
)
ehgrj( f4j)−

Hgrj
(

f2j
)

f ′2j,Rj
Dj
(

f2j
)
ehgrj( f2j)

]
+ hr

[
∆j + f ′3j,Rj

Hrj
(

f3j
)

Prj
(

f3j
)
ehrj( f3j) − f ′2j,Rj

Hrj
(

f2j
)

Prj
(

f2j
)
ehrj( f2j)−

Hrj
(

f4j
)

f ′3j,Rj
γjcj

(
f3j
)
ehrj( f3j)

]
.

(28)

From which Equation (27)⇔

L =
l

f4j
=

l′Rj

f ′4j,Rj

. (29)

Equation (29) can now derive the optimal quantity of Rj and the per-unit time total cost.
Then Equations (19)–(22) can be used to obtain the decision variables Tij, i(i = 1, 2, 3, 4).

To find the optimal ξ for a given τ, the following steps are required:

1. In the first remanufacturing cycle, start by setting ξ = 1, cinvj = cinvξ
, cprj = cprξ , λj = λ

ξ

and ∆j−1 = ∆0 = 0 in Equation (29) and compute L1.
2. Repeat step 1 for ∆j−1(obtained from step 1) to compute L2,1.
3. Set ξ = 2, cinvj = cinvξ

, cprj = cprξ , λj = λ
ξ

and ∆j−1(obtained from step 1) in
Equation (29) and compute L2.

4. Repeat step 3 for ∆j−1(obtained from step 3) to compute L3,2.
5. Set ξ = 3, cinvj = cinvξ

, cprj = cprξ , λj = λ
ξ

and ∆j−1(obtained from step 3) in
Equation (29) and compute L3.

6. Repeat step 5 for ∆j−1(obtained from step 5) to compute L4,3.
7. Repeat steps 5 and 6 for ξ = 4, 5, . . . , τ and ∆j−1

(
obtained to find Lj−1

)
to

compute Lj,ξ .
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8. Set ξ* = ξ when
(

Lj,ξ
)

at its minimum and continue to insert ∆j−1 in Equation (29)
until the system plateaus.

Remark 1. For a mature system, applying the above steps will generate the optimal remanufacturing
policy, where ∆j−1 represents the current on-hand inventory of returned items.

5. Illustrative Examples for Different Settings

In this section, we emphasize the practical application of the proposed model by
presenting numerical examples and special cases that reflect different realistic situations.
Products that may encounter remanufacturing include tires, motor vehicle parts, electric
motors, computers, air-conditioning units, photocopiers, telecommunication equipment,
aerospace devices, aircraft parts, gaming machines, medical equipment, vending machines,
automotive parts, industrial equipment, televisions, etc. [42]. In real-life settings, manufac-
turing, remanufacturing, demand, return, and deterioration rates may vary with time or
with any other factors [43–51]. Accordingly, the proposed model allows the incorporation
of different forms of time-varying functions. Let us now consider the following functions
for time-varying rates:

Pmj(t) = πmjt + φmj, Prj(t) = πrjt + φrj, Dj(t) = αjt + rj, cj(t) = ∅jDj(t) and δzj(t) =
lzj

ϑzj−βzjt
, where φmj, φrj, rj, ∅j, ϑzj > 0, πmj, πrj, αj, lzj, βzj ≥ 0andβzjt < ϑzj. As can be seen,

the deteriorated function δzj(t) is an increasing function of time.
In real-life settings, all function or input parameters are subject to adjustment due to

external competitiveness and/or internal challenges or due to price fluctuations. Therefore,
our model is viable if all values are adjusted for subsequent cycles.

The objective function (Z1) was coded in MATLAB for the input parameters that are
presented in Table 5 below, and solutions were obtained using Equation (29) subject to
0 ≤ ∅j < 1. Note that each of the return, manufacturing, and remanufacturing rates
is solely modeled. This is so because they may or may not be considered as functions
of the demand rate. Now, let us consider the following functions for varying return,
manufacturing, and remanufacturing rates as functions of the demand rate:

cj(t) = ∅jDj(t), Pmj(t) =
Dj(t)

0.6
and Prj(t) =

Dj(t)
0.3

Table 5. Input parameters for time-varying rates.

hgm hgr hr rj αj φ1j
1.6 1.6 1.2 1000 130 1666.7

USD/unit/month USD/unit/month USD/unit/month Unit/month Unit/month Unit/month

π1j φ2j π2j lgm lgr lr
216.7 3333.3 433.3 1 1 1

Unit/month Unit/month Unit/month Unit/month Unit/month Unit/month

ϑgm ϑgr ϑr βgm βgr βr
50 50 40 0.25 0.25 0.25

Unit/month Unit/month Unit/month Unit/month Unit/month Unit/month

cinv wm wr Spm Spr Sr
4000 100 100 2400 1600 1200

USD/cycle USD/cycle USD/cycle USD/cycle USD/cycle USD/cycle

cw cm cr cpm cs
0.2 2 1.2 5 0.5

USD/unit USD/unit USD/unit USD/unit USD/unit
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5.1. Example 1

In this example, we investigate how the model would behave with respect to the pa-
rameters that are listed in Table 5. In this example, we consider τ = 5, i.e., the expected num-

ber of times an item can be remanufactured in its lifecycle is 5. In this case, cinvj = cinv(1− e
−ξ
qj )

and cprj = cpme
−1
qj . The optimal values of φ∗j , f ∗4j, Q∗mj, Q∗rj, R∗j , ∆∗j , d∗j , L∗j , and l∗j until the

system plateaus are given in Table 6. The percentage of retuned items in the first remanufactur-
ing cycle is equal to γ1 = 0.849 (recall Table 4), resulting in a total number of R∗1 = 2406 units.
This retuned quantity is accumulated by time T∗41 = 2.954 months ≈ 90 days at a return rate
of φ∗1 = 0.683 or 68.3% of the demand rate. At time T4j, ∆∗1 = 571 units, which constitutes
the initial inventory of returned items for the second cycle. The deteriorated quantity in
the serviceable stock is dg1 = 27

(
dgm1 = 16 and dgr1 = 11

)
units, and dr1 = 38 units have

deteriorated in the repairable stock, i.e., d∗1 = 16 + 11 + 38 = 65 units. This deteriorated
quantity can be sold at a salvage price or (as in this example) disposed at a charge. By
time T∗11 = 1.178 months ≈ 36 days, the optimal produced quantity is Q∗m1 = 2113 units,
which satisfies demand until time T∗21 = 1.87 months ≈ 57 days (the time by which
the remanufacturing process started). By time T∗31 = 2.21 months ≈ 67 days, the op-
timal remanufactured quantity is Q∗r1 = 1434 units, which satisfies demand until time
T∗41 = 2.954 months ≈ 90 days. The monthly cost is L∗1 = USD 11, 332 and the cost for the
first remanufacturing cycle is l∗1 = USD 33, 475.

Table 6. Optimal results for varying rates when τ = 5 and cinv = USD 4000.

j ζ*
j cinvj cprj λ*

j φ*
j f*

4j Q*
mj Q*

rj R*
j ∆*

j d*
j L*

j l*
j

1 1 2821 1.474 0.849 0.683 2.954 2113 1434 2406 571 65 11,332 33,475
2 2 3727 1.305 0.807 0.614 2.692 1624 1562 1944 530 69 11,155 30,031
3 3 3952 1.147 0.778 0.688 2.773 1663 1634 2251 598 74 11,206 31,077
4 4 3994 1.001 0.758 0.736 2.733 1547 1697 2369 646 75 11,081 30,287
5 5 3999 0.868 0.745 0.791 2.702 1442 1760 2512 707 76 10,948 29,582
6 5 3999 0.868 0.745 0.771 2.652 1378 1755 2397 688 75 10,895 28,891
7 5 3999 0.868 0.745 0.778 2.668 1399 1757 2435 694 75 10,912 29,117
8 5 3999 0.868 0.745 0.776 2.663 1392 1756 2423 692 75 10,907 29,046
9 5 3999 0.868 0.745 0.776 2.663 1392 1756 2423 692 75 10,907 29,046

Note that in the first remanufacturing cycle, the initial inventory of returned items
is zero as there are no returned items to be remanufactured. Accordingly, Q∗rj(Q

∗
mj) attain

their minimum (maximum) values in this cycle, resulting in a dramatic decrease in the
manufactured quantity in the second cycle. Note that, φ∗j , ∆∗j , and R∗j attain their mini-
mum values in the second cycle because of the effect of the first cycle. Moreover, cycles
j = 2, 3, 4, and 5 are influenced by cinvj, cprj, ∆j−1, and λj; consequently, the optimal
values vary from cycle to cycle, and φ∗j , ∆∗j , Q∗rj, and R∗j reach their maximum values in
the fifth cycle. As a result, f ∗4j, L∗j , l∗j , and Q∗mj approach their minimum values in the sixth
cycle before the system plateaus in the eighth cycle (Table 6). Therefore, when the system
plateaus, the buyback proportion is set equal to φ∗8 = 0.776 and the use proportion (that
attains its minimum value in the fifth cycle) is set equal to λ5 = 0.745. This implies that the
reusable proportion is set equal to φ∗8 λ5 = 0.776× 0.745 = 0.5781, or 57.8% of demand rate.
Figure 5 depicts the effect of cinvj, cprj, ∆j−1, and λj on the optimal values until the fifth cy-
cle and the sole effect of ∆j−1 until these values plateau. Note that in cycles j = 1, 2, . . . , 5,
all returned items have been remanufactured fewer than or equal to j− 1 number of times
upon recovery and fewer than or equal to ζ∗j − 1 when recovered for subsequent cycles.
This implies that the remanufacturing number of times for an item is tangible, definite,
tractable, and modeled. Finally, in cycles j = 1, . . . . . . , 5, cinvj, cprj, ∆j−1, and λj vary
from cycle to cycle. Unlike previous works, excluding the work of Alamri [31], this, indeed,
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provides evidence that the proposed model is viable for the case that the values of the input
parameters are distinct for any given cycle.
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Figure 5. The effect of model parameters on the optimal values when τ = 5 and cinv = USD 4000.

As illustrated in example 1, interested readers and practitioners can implement other
forms of time-varying functions in the general model to assess the consequences of dis-
tinct strategies.

5.2. Example 2

In this example, we repeat example 1 to examine the effects on the optimal values
when τ = 3. As can be seen from Table 7, the optimal values behave similarly when the
expected number of times an item can be remanufactured in its lifecycle decreases from
five to three. The only exception is that the value of R∗j in the third cycle experiences a
slight decrease by 10 units from that accumulated in the first cycle. This can be justified
by the fact that the value of ∆∗j in the second cycle is greater than that accumulated in the
first cycle (see Table 6). Note that φ∗j , ∆∗j , and Q∗rj reach their maximum values in the third
cycle and f ∗4j, L∗j , l∗j , and Q∗mj approach their minimum values in the fourth cycle before
the system plateaus in the eighth cycle (Table 7).

Table 7. Optimal results for varying rates when τ = 3 and cinv = USD 4000.

j ζ*
j cinvj cprj λ*

j φ*
j f*

4j Q*
mj Q*

rj R*
j ∆*

j d*
j L*

j l*
j

1 1 3009 1.238 0.788 0.770 2.981 2089 1498 2741 623 66 11,324 33,761
2 2 3845 0.983 0.749 0.736 2.684 1497 1679 2320 632 73 11,006 29,544
3 3 3986 0.765 0.730 0.855 2.716 1415 1806 2731 768 77 10,885 29,565
4 3 3986 0.765 0.730 0.808 2.604 1277 1793 2460 721 74 10,770 28,049
5 3 3986 0.765 0.730 0.825 2.645 1325 1798 2558 738 75 10,811 28,592
6 3 3986 0.765 0.730 0.819 2.630 1308 1796 2522 732 75 10,796 28,398
7 3 3986 0.765 0.730 0.821 2.636 1315 1797 2535 734 75 10,801 28,473
8 3 3986 0.765 0.730 0.820 2.634 1312 1797 2530 733 75 10,800 28,444
9 3 3986 0.765 0.730 0.820 2.634 1312 1797 2530 733 75 10,800 28,444

5.3. Example 3

In this example, we repeat example 2 by increasing the investment cost, cinv, from USD
4000 to USD 6000 to investigate the behavior of the optimal values. Table 8 reveals that the
optimal situation in this case is to remanufacture once (ζ = 1). Note that cinvj, cprj, and λj
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remain static until the system plateaus and, consequently, the only factor affecting the opti-
mal values is ∆j−1. As can be seen from Table 8, the model behaves similarly with respect
to φ∗j , ∆∗j , and R∗j that reach their maximum values in the first cycle, and f ∗4j, L∗j , and l∗j
attain their minimum values in the second cycle before the system plateaus in the sixth
cycle (Table 8). Note that Q∗rj(Q

∗
mj) reach their minimum (maximum) values in the first cycle

since the inventory of returned items is zero (see also Tables 6 and 7). It is worth noting
here that L∗4,3 = USD 11, 441 > L∗2,1 = USD 11, 351 (recall solution steps). However, when
the system plateaus for ζ = 3, the difference between the total minimum cost per month is
negligible, i.e., Lζ=3 = USD 11, 464 > Lζ=1 = 11, 428.

Table 8. Optimal results for varying rates when τ = 3 and cinv = USD 6000.

j ζ*
j cinvj cprj λ*

j φ*
j f*

4j Q*
mj Q*

rj R*
j ∆*

j d*
j L*

j l*
j

1 1 4514 1.238 0.788 0.754 3.224 2318 1614 2940 656 79 11,809 38,073
2 1 4514 1.238 0.788 0.615 2.768 1647 1644 2010 545 77 11,351 31,421
3 1 4514 1.238 0.788 0.645 2.859 1772 1645 2187 571 78 11,446 32,730
4 1 4514 1.238 0.788 0.638 2.838 1743 1645 2145 565 78 11,424 32,425
5 1 4514 1.238 0.788 0.640 2.843 1749 1644 2154 567 78 11,429 32,489
6 1 4514 1.238 0.788 0.639 2.843 1749 1645 2153 567 78 11,428 32,487
7 1 4514 1.238 0.788 0.639 2.843 1749 1645 2153 567 78 11,428 32,487

5.4. Special Cases
5.4.1. Case 1

In this case (Case 1), we replicate Tables 6 and 7 to investigate the work of Alamri [31]
for the set of input parameters as listed in Table 5. In Case 1, we let wr = wm = cinvj = cs = 0,
cw = 0.1, cprj = 1, ∅j = 0.231 and λj = 0.875, which are identical to those of Alamri [31].
Note that cj(t) = ∅jDj(t), and an item is recovered an indefinite number of times. Now,
considering the above values in Equation (29), the results are obtained as shown in Table 9.
Note that Table 9 is identical to Table 3 (page 529) in Alamri [31]. This, indeed, confirms
and ensures the validity and robustness of our general mathematical formulation. It is
worth noting here that Case 1 regenerates the optimal values of the general model of those
of [31], from which we are sure that all the examples and special cases provided and solved
in Alamri [31] can also represent special cases of our model (e.g., [23,24,27]).

Table 9. Optimal results for varying rates as in Alamri [31] with ∅j = 0.231 and λj = 0.875.

j f*
4j Q*

mj Q*
rj R*

j ∆*
j d*

j L*
j l*

j

1 2.454 2373 493 657 69 33 10,317 25,314
2 2.371 2223 533 632 75 34 10,220 24,231
3 2.364 2210 536 630 75 34 10,211 24,140
4 2.364 2210 536 630 75 34 10,211 24,140

5.4.2. Case 2

In this case (Case 2), we investigate the behavior of the model when the demand
rate is adjusted within cycles. In real-life settings, all function or input parameters are
subject to adjustment due to external competitiveness and/or internal challenges or due
to price fluctuations. Let us now support our finding in Example 1 and show the validity
of our model if the input parameters change their values for subsequent cycles. In Case 2,
we illustrate how the system would behave if the decision-maker wished to increase the
demand rate in the eighth cycle to evaluate the consequences of such increase. In Case 2, we
assume that Dj(t) = αjt + rj, where αj = 156 and rj = 1200. Note that row one of Table 10
represents the optimal values of the eighth cycle of example 2 (Table 7). A comparison
between Tables 7 and 10 reveals that in the first cycle of the adjustment, all optimal values
increase except f ∗4j, which encounters a slight decrease. Such increase can be justified by the
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increase of φ∗j and ∆∗j . Note that all decision variables attain their maximum (minimum)
values in the ninth (tenth) cycle, i.e., in the first (second) cycle of the adjustment of the
demand rate.

Table 10. Optimal results for varying rates when τ = 3, cinv = USD 4000, αj = 156 units, and
rj = 1200 units.

j ζ*
j cinvj cprj λ*

j φ*
j f*

4j Q*
mj Q*

rj R*
j ∆*

j d*
j L*

j l*
j

8 * 3 3986 0.765 0.730 0.820 2.634 1312 1797 2530 733 75 10,800 28,444
9 3 3986 0.765 0.730 0.936 2.488 1353 2139 3248 912 76 12,099 30,106
10 3 3986 0.765 0.730 0.884 2.340 1154 2104 2860 847 71 11,925 27,908
11 3 3986 0.765 0.730 0.905 2.396 1228 2118 3007 873 74 11,992 28,737
12 3 3986 0.765 0.730 0.897 2.375 1200 2113 2950 863 73 11,966 28,419
13 3 3986 0.765 0.730 0.900 2.383 1210 2115 2971 866 73 11,976 28,538
14 3 3986 0.765 0.730 0.899 2.380 1205 2115 2965 866 73 11,972 28,489
15 3 3986 0.765 0.730 0.899 2.380 1205 2115 2965 866 73 11,972 28,489

Cycle 8 *, which represents the steady state situation of Table 7 when αj = 130 units and rj = 1000 units.

5.4.3. Case 3

In this case (Case 3), we repeat example 2 to investigate the sensitivity analysis of the
optimal values in different settings. Row one of Table 11 shows the optimal values (base
model) of the first cycle of example 2 (Table 7). Table 11 illustrates the sensitivity analysis
of distinct model parameters for comparison purposes with the results that are derived for
example 2. Note that in all cases the model behaves as expected. For example, when the
holding costs are equal, i.e., hgm = hrm = hr = 1.2, we note from Table 11 that all optimal
values are higher than the values that are computed for row 1 (base model), except L∗j ,
which experiences a lower cost. This can be justified by the fact that the system reduces
the holding cost at the serviceable stock. Note that similar behavior is also observed for
Sgm = Sgr= Sr = 2000 except φ∗j , which is associated with a slight decrease. This can be
attributed to the increase of the order cost for returned items. Similarly, when cpm = 6,
which also affects cpr, all optimal values are higher than the values that are computed for
row 1 (base model), except f ∗4j and Q∗mj, which are associated with lower values. This can

be attributed to the fact that φ∗j increased by 7.8%
( 0.835−0.770

0.835 = 0.0778
)
. For cw = 0.3, we

note that f ∗4j, L∗j , l∗j , and Q∗mj are associated with greater values than those of the base
model, and φ∗j , ∆∗j , Q∗rj, and R∗j are associated with lower values. This can be justified by
the fact that the system reaps the benefit of not disposing of more items. Finally, when the
deterioration rates are equal, i.e., ϑgm = ϑgr = ϑr = 30, all optimal values are less than the
values that are computed for row 1 (base model), except L∗j and φ∗j , which are associated
with greater values. As expected, more items (97 units) are deteriorated and disposed of
outside the system due to the increase of the deterioration rates.

Table 11. Sensitivity analysis of the optimal results for varying rates when τ = 3 and cinv = USD 4000.

Parameters j ζ*
j cinvj cprj λ*

j φ*
j f*

4j Q*
mj Q*

rj R*
j ∆*

j d*
j L*

j l*
j

Base model * 1 1 3009 1.238 0.788 0.770 2.981 2089 1498 2741 623 66 11,324 33,761

hz = 1.2 1 1 3009 1.238 0.788 0.772 3.090 2178 1564 2866 652 72 11,139 34,420

Sz = 2000 1 1 3009 1.238 0.788 0.761 3.113 2212 1561 2849 641 73 11,586 36,072

cpm = 6 1 1 3009 1.486 0.788 0.835 2.888 1926 1530 2866 690 65 12,244 35,364

cw = 0.3 1 1 3009 1.238 0.788 0.760 2.982 2104 1484 2705 609 66 11,345 33,832

ϑz = 30 1 1 3009 1.238 0.788 0.778 2.950 2074 1486 2737 618 97 11,377 33,564

* Row one of Table 7.
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5.4.4. Case 4

In this case (Case 4), we replicate example 2 with respect to constant rates without
deterioration. As can be seen from Table 12, the model behaves in a similar way to that
observed in Table 7, in particular, the behavior of R∗j in the third cycle and ∆∗j in the second
cycle (recall the justification in example 2). Note that φ∗j attains its maximum value when
the system plateaus, i.e., it differs from that observed in Table 7. A comparison between
Tables 7 and 12 shows that for each cycle j, all optimal values are higher than those of
example 2 (Table 7), except L∗j and φ∗j , which are associated with lower values.

Table 12. Optimal results for constant rates without deterioration when τ = 3 and cinv = USD 4000.

j ζ*
j cinvj cprj λ*

j φ*
j f*

4j Q*
mj Q*

rj R*
j ∆*

j L*
j l*

j

1 1 3009 1.238 0.788 0.635 4.808 3207 1781 3051 623 9479 45,577
2 2 3845 0.983 0.749 0.736 4.257 2277 1980 2685 655 9362 39,851
3 3 3986 0.765 0.730 0.717 4.225 2128 2097 3028 768 9264 39,138
4 3 3986 0.765 0.730 0.695 4.071 1980 2091 2829 743 9218 37,532
5 3 3986 0.765 0.730 0.700 4.107 2014 2093 2875 749 9229 37,906
6 3 3986 0.765 0.730 0.699 4.099 2006 2092 2864 747 9227 37,816
7 3 3986 0.765 0.730 0.699 4.101 2008 2093 2867 748 9227 37,837
8 3 3986 0.765 0.730 0.820 4.100 2008 2093 2866 748 9227 37,832
9 3 3986 0.765 0.730 0.820 4.100 2008 2093 2866 748 9227 37,832

5.4.5. Case 5

In this case (Case 5), we replicate example 3 with respect to constant rates without
deterioration. As Table 13 shows, the model behaves similarly with respect to constant
rates without deterioration (see Table 8). As can be seen from Table 13, φ∗j , ∆∗j , and R∗j
reach their maximum values in the first cycle and f ∗4j, L∗j , and l∗j attain their minimum
values in the second cycle before the system plateaus in the fifth cycle (Table 13). Similarly,
Q∗rj (Q∗mj) reach their minimum (maximum) values in the first cycle since the inventory of
returned items is zero. A comparison between Tables 8 and 13 shows that for each cycle j,
all optimal values are higher than those of example 3 (Table 8), except L∗j and φ∗j , which are
associated with lower values. Note that this finding is also observed in Case 4. In addition,
L∗4,3 = USD 9662 > L∗2,1 = USD 9603 (recall solution steps). However, when the system
plateaus for ζ = 3, the difference between the total minimum cost per month is negligible,
i.e., Lζ=3 = USD 9667 > Lζ=1 = 9625 (see also example 3).

Table 13. Optimal results for constant rates without deterioration when τ = 3 and cinv = USD 6000.

j ζ*
j cinvj cprj λ*

j φ*
j f*

4j Q*
mj Q*

rj R*
j ∆*

j L*
j l*

j

1 1 4514 1.238 0.788 0.614 5.243 3348 1895 3219 642 9779 51,268
2 1 4514 1.238 0.788 0.534 4.476 2526 1950 2390 574 9603 42,983
3 1 4514 1.238 0.788 0.544 4.568 2620 1949 2486 585 9628 43,984
4 1 4514 1.238 0.788 0.543 4.554 2605 1949 2471 583 9624 43,828
5 1 4514 1.238 0.788 0.543 4.556 2607 1949 2474 584 9625 43,852
6 1 4514 1.238 0.788 0.543 4.556 2607 1949 2474 584 9625 43,852

6. Implications and Managerial Insights

• Considering that returned items may arrive with different number of remanufactur-
ing times reduces the total system cost as well as ensures reducing the disposal of
unnecessary amount.

• The optimal policy is either to remanufacture once or remanufacture up to the expected
number of times an item can be remanufactured in its lifecycle.

• Modeling the return rate as a decision variable not only increases the remanufactured
quantity, but also decreases the consumption of the produced quantity.
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• When the return rate is a decision variable, it increases the reusable proportion,
and subsequently impacts the economic opportunities, which in turn influence both
environmental and social interests.

• All functions may or may not be related to each other and, therefore, each is solely modeled.
• The remanufacturing number of times for an item is tangible, definite, tractable,

and modeled.
• The purchasing price of recovery items, remanufacturing investment cost, return rate,

and the percentage of returns vary until the number of cycles reaches the expected
number of times an item can be remanufactured in its lifecycle. Such variation implies
further reduction in the total cost and ensures a positive environmental impact.

• The return rate is a varying demand-dependent rate, which is a decision variable. This
consideration reduces the total cost and solid waste disposal and, consequently, the
system emphasizes sustainability because it reflects the influence of economic, social,
and environmental interests.

• The initial inventory of returns in the first remanufacturing cycle is zero and it differs
for subsequent cycles, which in turn affects the optimal values that vary until the
system plateaus. This consideration is key in that it allows for the adjustment of all
functions and input parameters for subsequent cycles.

• Incorporating the initial inventory of returns in the mathematical formulation enables
the system to reap further cost reduction until all optimal values plateau.

• The proposed model is a viable solution for different forms of time-varying functions
as well as for systems encountering periodic review applications.

• The solution quality of the special cases is identical to that of published sources,
which implies that the robustness, viability, and validity of the general mathematical
formulation are ascertained.

7. Summary and Conclusions

This paper is concerned with the number of times an item can be remanufactured.
The mathematical modeling of reverse logistics inventory systems assumes that all re-
turned items have been remanufactured an equal number of times. Nevertheless, this
assumption ignores the fact that returned items may arrive out of sequence. The present
paper developed a new mathematical expression of the percentage of returns that can be
remanufactured a finite number of times. The proposed expression was modeled as a
function of the expected number of times an item can be remanufactured in its lifecycle and
the number of times an item can be technologically (or optimally) remanufactured based
on its quality upon recovery. The mathematical expression was incorporated in a general
joint model for production and remanufacturing options.

In the proposed model, demand, product deterioration, production, and remanufac-
turing rates are arbitrary functions of time so as to reflect a diverse range of time-varying
forms. The return rate is a varying demand-dependent rate, which is a decision variable.
The model considers the initial inventory of returned items in the mathematical formu-
lation, which enables decision-makers to adjust all functions and input parameters for
subsequent cycles.

We evaluated the impact of varying rates on the optimal quantities subject to the
expected number of times an item can be remanufactured in its lifecycle. We found that
the effect of varying purchasing price of recovery items, remanufacturing investment
cost, return rate, the percentage of returns, and the initial inventory of returned items
significantly impact the behavior of the model. Consequently, the optimal policy is either
to remanufacture once or remanufacture up to the expected number of times an item can
be remanufactured in its lifecycle. We tested and observed the behavior of the optimal
values in different realistic situations and discussed some important managerial insights
for policymakers and practitioners and highlighted some implications that may interest
researchers. The versatile nature of the proposed model was emphasized by presenting
sensitivity analysis and special cases, where the solution quality was identical with that of
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published sources. This implies that the robustness, viability, and validity of the proposed
model are ascertained.

The results indicate that modeling the return rate as a decision variable not only
decreases the per-unit time cost but also decreases the consumption of produced quantity.
Such modeling also reduces solid waste disposal, which in turn has a direct impact on
environmental sustainability. In parallel, when the return rate is a decision variable, it
increases the reusable proportion and subsequently impacts the economic opportunities,
which in turn influence both environmental and social interests. The results also indicate
that incorporating the initial inventory of returns in the mathematical formulation enables
the system to reap further cost reduction until all optimal values plateau.

Further research may include extensions such as allowing for shortages and incorpo-
rating learning and forgetting curves in the manufacturing and remanufacturing rates. In
addition, the formulation of greenhouse gas (GHG) emissions for inventory models consid-
ering manufacturing, remanufacturing, and transportation options can also be addressed.
Another research option is the consideration of energy consumption during manufacturing
and remanufacturing processes. In parallel, it seems plausible to extend the general model
to multiple manufacturing and remanufacturing cycles while accounting for different
emission trading schemes.
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