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Abstract: Nitrogen (N) and phosphorus (P) nutrients have been regularly applied to improve pro-
ductivity in intensively managed and short-rotation forest plantations in subtropical China. Under
the constraint of the national policy of “carbon neutrality”, it is necessary to determine the rational
fertilization options by considering both forest productivity and soil CO2 emissions. Past worldwide
studies have shown varied responses of forest soil heterotrophic respiration and CO2 emissions to N
and P additions. This study designed six treatments with N additions (high level: 15 g N/m2, HN), P
(low: 5 g P/m2, LP; high: 15 g P/m2, HP), and their interactions (HNLP and HNHP) to explore the
effects of N and P additions on soil CO2 emissions in a P-limited and N-rich Chinese fir plantation
(Cunninghamia lanceolata), and we identified the underlying controls using the structural equation
model (SEM). The results indicated that LP, HNLP, and HNHP treatments significantly increased
soil CO2 emissions in the first four months after treatment and the effects leveled since then. The
balance between N and P inputs affected the responses of soil CO2 emissions to P additions. A low P
addition significantly increased tree productivity, but the promoting effect gradually declined and
was no longer significant after 3 years. Other treatments did not significantly affect tree produc-
tivity. The SEM analysis revealed that the promoting effects of P additions on CO2 emission were
mainly due to their effects on increasing soil water-soluble organic carbon content and reducing
microbial biomass nitrogen content. Considering both soil respiration and tree productivity, this
study suggested that LP treatment can effectively balance the N and P nutrients and, in the meantime,
maintain relatively low greenhouse gas emissions; thus a low P application level is suggested for
N-rich Chinese fir plantations.

Keywords: nitrogen addition; phosphorus addition; soil CO2 emission; tree productivity; Chinese
fir forest

1. Introduction

In recent years, global warming has become an indisputable fact, leading to more fre-
quent extreme climate events and other natural disasters. Carbon dioxide (CO2), methane,
and nitrous oxide are the three most important greenhouse gases (GHGs) that contribute
to global warming. Among them, carbon dioxide is the most important greenhouse gas
in the atmosphere [1], with a contribution rate of over 60%, while the atmospheric CO2
concentration is still increasing at a rate of 0.4% per year. About 5–20% of the CO2 in the
atmosphere comes from soil [2]. The global soil carbon storage exceeds 1500 Pg C, and the
global soil releases 75–100 Pg C per year into the atmosphere in the form of CO2 through
respiration. Therefore, any small changes in soils could cause changes in the atmospheric
CO2 concentration.
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Soil CO2 emissions are affected by many factors, including soil root respiration, soil
microbial processes, organic matter content, soil permeability, soil microbial carbon sub-
strates, soil microbial population levels, pH, and anthropogenic activities. Anthropogenic
additions of nitrogen (N) and phosphorus (P) have been reported to significantly influence
soil CO2 emission [3]. N and/or P nutrients are the major limiting elements for most
forest ecosystems, and their additions can affect soil nutrient cycles and further affect the
soil and root respiration [4]. The previous reports indicated different responses of soil
CO2 emissions to N addition, showing either promoting, prohibitive, or non-significant
effects [5–7], which are primarily due to the differences in forest types, soil conditions, fer-
tilizer types and quantity, and duration. In a meta-analysis based on 410 field observational
data, Liu et al. [8] synthesized the effects of N treatments on soil CO2 emissions and also
concluded that the effects could be promoting, prohibitive, and non-significant. In contrast,
the effects of P addition on soil CO2 emissions have been less reported. The existing few
studies also indicated varied responses of soil CO2 emission to P addition due to the same
reasons as with N addition [9,10]. In addition, the interactive effects between N and P could
also significantly affect the responses of N or P additions alone on soil CO2 emission. P
addition can redirect the N processes by increasing N uptake and N use efficiency, reducing
the substrates of soil nitrification and denitrification processes, and stimulating plant–soil
interactions [11]. However, the experiments with combined additions of N and P were even
less. The interactive effects also varied, showing stimulating [12,13], prohibitive [14,15],
or non-significant [16] effects on soil CO2 emission, which depend on the stoichiometric
balance between soil-available N and P nutrients [17]. Most of these studies for N, P, and
NP additions were located in tropical and temperate regions; more studies are needed to
enlarge the database and clarify the impact directions and extent.

In China, most of the studies for N and P addition effects on soil CO2 emissions have
focused on agricultural land. Few studies have focused on forest ecosystems, and the
results varied significantly. For example, Yu et al. [18] found that N addition significantly
increased soil CO2 emission in the typical temperate forests in China. N addition provided
N nutrients for the growth of trees and microbes, and enhanced N uptakes due to increased
root biomass and N availability in these N-poor forest ecosystems. These further increased
the microbial biomass and soil organic matter (SOM) content and thus stimulated the litter
and SOM decomposition rates. On the contrary, Yuan et al. [19] found that N addition
prohibited soil CO2 emission in the N-saturated subtropical forests in China. This is because
about 70–84% of the added N was retained in the soil organic matter in a short period under
the N-saturated condition, which cannot be utilized by plants and microbes [20]. There
are fewer studies on the N and P co-addition effects on soil CO2 emission in China. In a
long-term experiment with N and P co-addition in a Chinese fir forest in subtropical China,
Wang et al. [21] found that N and P co-addition promoted soil CO2 emission compared
with the N-alone addition treatment, but the effect was significantly lower than the low P
addition treatment. This is because N and P co-addition promoted plant N uptake, reduced
the soil NH4

+-N contents, and increased the soil pH value, thus reducing the promoting
effects of N availability on soil respiration. In a 9-year experiment, Zhang et al. [22] found
that the plots with N and P co-addition had the highest soil CO2 emissions compared with
the control and single N and P treatments. Most of these studies were conducted in an area
with a N limitation, and it is still unclear how N and P addition affect soil CO2 emissions
under N-rich or saturated soil conditions.

Subtropical forest soil has the second highest soil respiration rate after tropical forest
soil [23]. Chinese fir (Cunninghamia lanceolata) plantation is the main timber land in subtrop-
ical China, and it accounts for about 13% of China’s plantation area [24]. Chinese fir has
the advantages of fast growth and good quality. It not only has many economic benefits
but also fixes a large amount of carbon and exerts huge ecological benefits [25,26]. The
Chinese fir forests in the subtropical region generally rotate every 15–30 years, and many
reports have indicated that the continuous planting of Chinese fir trees in the same site
could significantly reduce the soil quality and thus the productivity [27,28]. To increase
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tree productivity, many secondary Chinese fir plantations are fertilized with N, P, and K
fertilizers, generally either at the planting time or at the mid-rotation age [21,29,30]. These
fertilizer applications could significantly affect soil nutrient and carbon cycling processes,
and thus influence soil CO2 emission patterns. At present, most studies have focused on
the fertilization effects on tree growth, and few studies have addressed its effects on soil
CO2 emissions [22]. To achieve the carbon neutrality target in China, it is necessary to
reduce the soil CO2 emissions from the Chinese fir plantation. Therefore, how to increase
tree productivity and in the meantime maintain low soil CO2 emissions becomes a vital
scientific and practical question. A guideline is also needed for forest managers to choose
rational fertilizer types and application quantities in the fir forests of subtropical China.

This study assumed that N and P fertilization could significantly promote soil CO2
emissions, and the effect could increase with the fertilization rates. Based on these assump-
tions, our specific objectives were to (1) uncover the relationship between soil CO2 emission
and environmental factors; (2) reveal the effects of N and P additions on soil CO2 emission
and monthly variation patterns; (3) explore the short-term response of tree productivity to
N and P addition; and (4) identify the main controlling mechanisms of N and P additions
on soil CO2 emission. The study results could help provide guides for sustainable carbon
and productivity management for Chinese fir plantations in the subtropical region.

2. Materials and Methods
2.1. Site Description

The study site is located at Wulitou forest station (119.67◦ E and 30.21◦ N), Lin’An
District, Hangzhou City, Zhejiang Province, China (Figure 1) [31]. This site has a sub-
tropical monsoon climate. The mean annual temperature and precipitation are 16.4 ◦C
and 1613.9 mm, respectively. The altitude is 175 m, and the annual sunshine hours are
1847.3 h [32]. The study plots were 10 years old (mid-rotation age) and planted with
pure Chinese fir forests. The detailed study site conditions, stand characteristics, and
plot soil physical and chemical properties have been presented in detail in our previous
study [32]. Our previous study [31] also proved that this study site is an N-rich and
P-limited ecosystem.
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2.2. Experimental Design

In a 10-year-old Chinese fir forest, we set up six 20 m × 20 m plots on 15 February 2019
(Figure 1). These plots were over 10 m away from the major roads and other ecosystems. A
5 m buffer zone was set among plots to isolate the interactive impacts among adjacent treat-
ments. The static chamber method was applied to soil CO2 flux sampling. The experimental
design for chamber deployment has been described in our previous paper [31].

The six treatments were (1) control (CK; no treatment), (2) adding 15 g N/m2 (HN
treatment), (2) adding 5 g P/m2 (LP), (3) adding 15 g P/m2 (HP), (4) adding 15 g N/m2

and 5 g P/m2 (HNLP), and (5) adding 15 g N/m2 and 15 g P/m2 (HNHP).
Urea (CO(NH2)2) and sodium hydrogen phosphate (NaH2PO4) were used as N or P

fertilizers, respectively. Four 5 m × 5 m grids within each plot were isolated. The fertilizer
amount was weighed and applied evenly into each grid. Within each chamber, the fertilizer
amount was specifically weighed and applied according to the actual area of each chamber.
On 20 March 2019, the fertilizer was applied. The observational period was from March
2019 to July 2020; when the soil CO2 emissions were observed, no significant differences
among different treatments were found.

2.3. Methods for Soil and Leaf Sampling and Chemical Analyses

The soil samplings were conducted five times on 19 March (before treatment); 20 April;
20 June; 20 September 2019; and 20 May 2020. The leaf sampling was conducted two times
(before and after experiments). In our previous study [31], we described the sampling
methods for soil, green leaf, and litter. In addition, the detailed descriptions for the chemical
analysis and environmental factors have been described in detail. These chemical analyses
include water-soluble organic C (WSOC), microbial biomass C (MBC), microbial biomass
N (MBN), leaf C and N concentrations, pH value, soil available, and total P, NO3

−-N, and
NH4

+-N. The environmental factors include soil temperature (ST) and soil moisture (SM)
(Table 1), which have been analyzed in [31].

Table 1. The soil and leaf chemical properties under different nutrient addition treatments in the
studied Chinese fir plantation. Note: the numbers in the parentheses are standard deviations; different
letters indicate statistically significant differences (p < 0.05) [31].

Variables CK LP HP HN HNLP HNHP

NH4
+ (mg/kg) 12.62 (0.76) b 11.61 (0.86) b 12.80 (1.17) b 14.22 (1.97) a 14.87 (2.08) a 12.88 (1.36) b

NO3
− (mg/kg) 3.71 (0.076) b 4.78 (0.42) ab 3.86 (0.18) b 4.46 (0.36) b 4.80 (0.33) ab 5.89 (0.30) a

MBN (mg/kg) 54.21 (9.5) a 22.23 (1.4) b 24.08 (1.2) b 54.53 (9.3) a 32.39 (4.4) b 28.55 (4.2) b
MBC (mg/kg) 137.55 (9.1) b 173.94 (18.9) a 206.76 (15.6) a 158.65 (11.4) ab 159.07 (7.7) ab 198.59 (12.7) a

WSOC (mg/kg) 46.93 (2.9) c 80.20 (3.5) ab 96.48 (5.8) a 62.69 (5.2) c 63.37 (2.0) bc 91.50 (3.8) a
Leaf N (g/kg) 7.55 (0.11) a 8.00 (0.27) a 7.05 (0.30) a 7.96 (0.81) a 8.75 (0.99) a 9.22 (0.86) a
Soil TN (g/kg) 0.86 (0.036) a 0.90 (0.04) a 0.91 (0.043) a 1.04 (0.095) a 1.00 (0.097) a 1.00 (0.082) a

SOC (%) 1.55 (0.031) ab 1.67 (0.10) ab 1.86 (0.12) a 1.47 (0.06) b 1.81 (0.11) ab 1.57 (0.048) ab
Soil TP (g/kg) 0.13 (0.014) b 0.14 (0.01) b 0.23 (0.024) a 0.13 (0.011) b 0.13 (0.008) b 0.15 (0.025) ab

2.4. Tree Growth Measurements

We measured the diameter at breast height (DBH) and height (H) of all standing living
trees three times on 15 February 2019 (before fertilization treatment); 8 December 2020; and
3 October 2022. The position for measuring DBH was recorded in 2019 and measured again
at the same position in 2020 and 2022. A diameter tape was used to measure DBH, and
ultrasonic altimeter (Vertex III) was used to measure tree height. The difference of tree DBH
and height between the two measurement times was calculated and compared. There are
many suitable biometric equations to calculate biomass of Chinese fir stands in the study
area [33]; however, due to the larger measurement errors for tree height and canopy extent,
this study chose the biomass equation only using DBH as the independent variable. The
selected equation is [33]

W = 0.1657D2.1456 (1)
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where W is the mean biomass of individual trees within a plot (kg) and D is the mean
DBH (cm). In this study, we used the increment of biomass (∆W) after treatment as the
representation of tree productivity.

2.5. Soil CO2 Emission Sample Collection and Measurements

On 20 March 2019 (before treatments), the first sampling for soil CO2 efflux was
implemented, and regular sampling of CO2 gas was implemented since then at the end
of each month. The sampling methods have been described in [31]. The CO2 flux (F) is
calculated as [34]

F = ρ · V
A

· P
Po

· To

T
· dCt

dt
(2)

where F is the net CO2 exchange (mg/m2/h), ρ is the gas density under standard conditions,
A is the chamber (m2), V is the volume of each chamber (m3), and To and T are the
standard state and chamber (◦C) during gas sampling. Po and P are the standard and actual
atmospheric pressure (kPa), respectively, during gas sampling. dCt

dt is CO2 concentration
change rates between two gas sampling times (10-min gap between two sampling times in
this study) [35].

2.6. Statistical and Analysis Methods

The R4.0.2 software (R Core Team, 2016) was used for processing the data and statistical
tests. All data were tested for normality (Kolmogorov–Smirnov’s test) and homoscedasticity
(Levene’s test) before conducting any statistical analyses. The treatment effects were
tested using ANOVA analysis [36] and Tukey’s HSD tests on soil properties, productivity
increment, and CO2 emission.

The direct and indirect effects of treatments on CO2 emissions were explained by
Structural equation model (SEM) based on different hypothetical approaches. The inde-
pendent explanatory variables included ST, SM, WSOC, NO3

−-N, NH4
+-N, MBN, and

MBC. The maximum likelihood estimation method was applied to fit the SEM model. The
model adequacy was evaluated using X2 and root square mean errors of approximation
(RMSEA). The lower RMSEA and non-significant X2 indicated that the fitted model was
adequate. The basic steps of SEM model analysis were mentioned in Li et al. [31]. Statistical
significance was determined by p < 0.05.

3. Results
3.1. Effects of Soil Temperature and Moisture on Soil CO2 Emission

N and P additions and other climatic factors could interactively affect the change in
soil CO2 efflux. The correlation analyses indicated a significant positive correlation between
soil temperature and CO2 efflux under all treatments, showing an increasing trend with
increasing soil temperature (Figure 2). Soil temperature explained 76–82% of the variations
in soil CO2 emissions, among which the HN treatment had the highest correlation, and the
HNHP treatment had the lowest interpretation rate. However, all treatments had higher
correlation coefficients than the control (69%), indicating that N and P addition increased
the sensitivity of soil CO2 emission to soil temperature. Soil CO2 emissions showed a
significant positive correlation with soil moisture under the control and all treatment plots
(Figure 3). The interpretation rates of soil moisture ranged from 63% to 74%, with the
highest interpretation rate in the HP treatment and the lowest in the HNLP treatment, but
all treatments were higher than the control.
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different treatments.

3.2. Monthly Dynamic of Soil CO2 Flux

The soil CO2 effluxes under all treatments showed similar monthly variation patterns
(Figure 4). The soil CO2 emission in the growing season is higher than that in the non-growing
season. The highest emissions occurred in July, ranging from 629.4 ± 80.4 mg/m2/h to
740.1 ± 52.3 mg/m2/h under all treatments. During the first four months after N and P
additions, soil CO2 emission increased under all treatments compared with the control. The
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soil CO2 emissions under HNLP, LP, HNHP and HP treatments were significantly (p < 0.05)
higher than the CK, while the difference was not significant (p > 0.05) under HN treatment.
This implied that the N-alone treatment had no significant impacts on the seasonal change
in soil CO2 flux, while P-related treatments significantly promoted the monthly soil CO2
emission budgets. The monthly CO2 emissions among HNLP, LP, HNHP, and HP were not
significantly different. After the first four months, soil CO2 emissions were not significantly
different among all treatments, indicating that N and P addition effects can only maintain
for about four months in the study region.
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rate of CO2 in the first four months (from April to July 2019). Each bar represents mean value of all
four months under each treatment. The different letters above bars indicate significant differences
among months, and the bar colors denote different treatments.

3.3. Effects of N and P Additions on Soil CO2 Emissions

The above analysis indicated that the four-month soil CO2 emission patterns were
different from other periods, so we further analyzed the impacts of N and P additions on the
overall soil CO2 budgets from the basis of four-month and entire study periods. The effects
of N and P additions showed great difference in the first four months and the entire period
(Table 2). For the first four months, the mean soil CO2 emissions under all treatments except
HN and HP significantly increased compared with the CK. The LP treatment increased
the most (61%), and the HN treatment increased the least (23%). We noticed that the low
P addition (LP) had a greater promotion effect on soil CO2 emission than that of the high
P addition (HP). When P addition was combined with N, the higher P addition (HNHP)
could slightly promote soil CO2 emission, compared with the lower P addition (HNLP).
This implied that the N and P interaction may greatly affect the soil carbon dynamics.
On the annual time scale, the HN, HNLP, HNHP, and HP treatments increased soil CO2
emission by 7%, 20%, 27%, 30%, and 16%, respectively, compared with the CK. However,
the difference was not significant (p > 0.05; Table 2), which is because of the high internal
variations of CO2 emissions among all replicates under each treatment. The differences in
soil CO2 emissions among treatments were not significant either. This indicated that the
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N and P additions can only stimulate the soil decomposition processes at a short period
(i.e., four months), while their effects cannot sustain for a longer period (i.e., a year). The
N and P effects were further differentiated based on the ANOVA analysis. The results
showed that N addition had no significant (p > 0.05) impact on soil CO2 emissions in both
cases, while P addition could significantly promote soil CO2 emissions. This further proved
that the study region is more P-limited. The N and P interactive effect did not significantly
change the soil CO2 emissions (p = 0.13).

Table 2. Average CO2 emissions (mg/m2/h) in the first 4 months and throughout the study period in
a subtropical Chinese fir plantation. Note: Different lowercase letters indicate significant differences
among treatments; the values within the parentheses are standard errors; F is the F-statistic and p is
the p-value in ANOVA.

Treatment
CO2 (mg/m2/h)

Treatment 4 Months All Months
4 Months All Months

CK 346 (33.0) b 318 (23.9) a N application F 1.82 0.51
HN 426 (38.1) ab 339 (24.8) a p 0.18 0.48

HNLP 514 (38.2) a 382 (27.4) a P application F 11.87 4.03
LP 555 (39.1) a 402 (29.3) a p <0.05 <0.05

HNHP 548 (21.4) a 413 (25.3) a
N*P Interaction

F 2.07 0.79
HP 478 (23.9) ab 369 (23.2) a p 0.13 0.45

3.4. Structural Equation Modeling of CO2 Emissions under N and P Additions

SEM analysis can be used to determine the indirect and direct effects of different factors
on the soil CO2 flux; therefore, it can help identify the controlling mechanisms of N and P
additions on soil CO2 emissions. The results of SEM analysis showed that about 73% of soil
CO2 changes under nitrogen and phosphorus addition treatments were explained by soil
nutrients and environmental factors (including ST, SM, NO3

−-N, NH4
+-N, MBC, MBN, and

WSOC), indicating that other factors not included in this study contributed to the remaining
27% of the change (Figure 5). Nitrogen addition significantly and positively affected
NO3

−-N, while NO3
−-N indirectly promoted CO2 emissions by increasing NH4

+-N. The
addition of P significantly increased WSOC and further increased MBC, resulting in a
significant increase in CO2 emissions (please see the attachment). Phosphorus addition
suppressed CO2 emissions by reducing MBN. Overall, P addition promoted soil CO2
emission due to a greater positive effect than negative effect. Soil temperature and humidity
promoted CO2 emission by increasing soil NH4

+-N.

3.5. Effects on Tree Productivity

We further analyzed the effects of N and P addition on the tree productivity repre-
sented by the changes in biomass. After the growing season of the experiments, the biomass
of the Chinese fir forest under all treatments increased (Figure 6a). Under the control (CK),
the biomass increment rate was 25.5%, while increment rates under LP, HP, HNLP, and
HNHP were 31%, 25%, 23%, and 24%, respectively. Among these, the increment rate under
LP treatment was significantly higher than those of under other treatments and the CK,
while the increment rates under other treatments were not significantly different from the
CK. After three growing seasons (Figure 6b), under the control (CK), the biomass increment
rate was 53%, while the increment rates under HN, LP, HP, HNLP, and HNHP were 45%,
58%, 52%, 45%, and 52%, respectively. The increment rate under LP was still greater than
the CK, but the difference was no longer significant, indicating an abating effect of LP
on tree growth after the end of LP addition. By comparing the shorter and longer effects
(Figure 6a,b), we found that LP treatment can exert a long-term promoting effect on the
biomass increment due to legacy effects. This suggests that only a lower P addition level
can maintain tree N and P nutrient balances in the N-saturated Chinese fir plantation of



Sustainability 2023, 15, 9466 9 of 15

the study region. Either high P-alone or high N addition could suppress tree growth by
causing the imbalance between N and P availability.
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4. Discussion
4.1. Effects of N and P Addition on Soil CO2 Flux
4.1.1. Effect of N-Alone Addition

Our results indicated that N addition only slightly (not significant) increased soil
CO2 emission. This may be because the study site is N-saturated due to long-term high N
deposition. The same phenomenon was observed in many previous studies (e.g., [8,37,38]).
In addition, Gao et al. [39] also found that the stimulation effects of a low-level N addition
rate (5 g N/m2/yr) on soil respiration were significantly higher than those of a high-level
N addition rate (10 g N/m2/yr) in a naturally-regenerated subtropical forest. In our study,
a higher N addition level was applied (15 g N/m2/yr), which may have caused the non-
significant responses to N addition. After N addition, most of the added N leaves the
ecosystem soon or remains in the soil in the form of inorganic N and cannot be absorbed
and utilized by plants and microorganisms, which causes non-significant effects on CO2
emission [20]. In our study, we also found that NH4

+-N and NO3
−-N contents under HN

treatment were significantly higher than those of the CK in the first three months, but MBN
and MBC were not significantly different (Table 1). This implied that the added N was
mostly unused by the microbes. Some previous studies have also found that N addition
alone has no significant effect [40–42] on MBC and MBN. We also found that the increased
WSOC after HN treatment was the main cause of the slightly increased soil CO2 emissions.

4.1.2. Effect of P-Alone Addition

Our study found that the P-alone treatment significantly promoted soil CO2 emission,
especially in the first four months after treatment. LP and HP treatments increased soil
CO2 emission by 61% and 38%, respectively. This is consistent with the report of Lin
et al. [43], who found that soil CO2 emissions significantly increased with LP addition
in a Chinese fir forest. Some previous studies have explained that the increase in CO2
emission after P addition is associated with increased heterotrophic microbial biomass
and activity, thereby promoting respiration [5,44,45]. Our study also proved that MBC
significantly increased by 26% and 50% after LP and HP treatments, respectively (Table 1).
The increased MBC has also been found by Allison et al. [46] in Alaska and Liu et al. [44]
in tropical China. In addition, we observed that MBN had been significantly reduced by
83% and 80%, respectively, implying an enhancing N limitation for microbial activities.
This is also the reason why significant simulative effects on soil CO2 emissions only last
for four months. From the SEM analysis, we found the enhanced MBC occurred through
the increased WSOC, which provides substrates for the growth of microbes. P addition
also enhanced plant root respiration and increased root exudates, which in turn leads to an
increase in WSOC [47] and ultimately promotes soil CO2 emissions [48]. Our study also
found that soil CO2 emission under HP was greatly lower (14%) than that of under LP,
suggesting that overdose P addition may suppress microbial activities or root respiration.

4.1.3. Effects of N and P Interaction

Our study found that soil CO2 emissions under N and P co-treatments were 49%
higher than those of the control in the first four months, which may be because P addition
promoted N absorption by plants [49] or the changed soil N:P ratio stimulated soil microbial
activity [50]. Deng et al. [50] found that N addition can change the ratio of ectomycorrhizal
to arbuscular mycorrhizal fungi, thus promoting the absorption of P elements to maintain
a stable N:P ratio in temperate coniferous forests. Their study further implied that N:P
balance is important for controlling soil CO2 emission rates, which is consistent with our
conclusion that LP addition had higher (8%), but not significant, soil CO2 emissions than
HNLP in the N-saturated soil condition. In a 9-year experiment on a Chinese fir plantation,
Zhang et al. [22] found that N and P co-addition had the highest soil CO2 emissions
compared with single N and P treatments, while the CK had the lowest CO2 emissions.
They argued that N and P co-addition significantly altered the soil microbial community
structure and favored more active soil microbial metabolisms. Our study also observed that
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the N and P co-addition greatly (not significant) increased soil CO2 emissions compared
with the CK and single N and P additions. Our study also found that increased MBC was
the main cause for the slightly increased CO2 emission, which is consistent with their study.

4.2. Effects of N and P Addition on Tree Growth

Our study indicated that the mean biomass increment under HN treatment was slightly
lower than that of the CK, which is consistent with the results from Alvarez-Clare et al. [15].
Their study found that N addition could reduce the relative growth rate of N-fixing tree
species in Costa Rica. Some studies indicated that the higher soil-available N caused
by N addition could stimulate plant N uptake and accumulation but could decrease
the absorption of P, which might result in nutrient imbalances between N and P and
consequently reduce dry matter production [51,52]. In addition, the excessive amount of N
could temporarily exceed the microbial demand for N, leading to enhanced nitrification and
soil acidification, and thus toxic effects on plant roots and reduced plant photosynthesis.
However, more studies have also shown that N addition can promote tree growth [53]
or has no impact [14,54]. A possible reason for the different responses may be because
of the different soil N conditions. Another possible reason may be because N addition
can influence plant growth indirectly by increasing N mineralization and availability, soil
acidification, nutritional imbalances, and the leaching of nutrients [51,55]; thus, the overall
effects depend on which function is dominant. In addition, tree growth is not only affected
by nutrient availability but also by factors such as climate, tree size, forest age, and other
soil properties [56]. Subtropical forests are generally considered to be N-rich ecosystems,
typically have older and more weathered soils, have a lower total soil P value and a higher
percentage of sequestered P, higher plant N:P, higher plant P use efficiency, and lower plant
and soil P concentrations; thus, the subtropical forests in China are mainly P-limited [57].

Our study found that LP addition significantly promoted tree productivity compared
with the control and other treatments, proving this forest plantation is P-limited. However,
we also observed that HP treatment had no significant effect on the growth of Chinese fir.
This may be because the low P addition can neutralize the excessive N nutrient and thus
maintain the soil N and P balance, while the excessive P addition broke the stoichiometric
balance between N and P nutrients and thus inhibited the growth of Chinese fir [58,59].
Therefore, we suggest that a low P addition level (<5 g P/m2/yr) is more suitable for
increasing tree productivity in N-saturated subtropical forests.

Many previous studies have indicated that N and P co-addition can significantly
increase tree growth rate [60,61]. This is because N and P co-addition can relieve the N or P
limitation conditions [14]. However, our results indicated that N and P co-addition did not
significantly affect tree growth, which is also consistent with some studies in the temperate
and tropical regions [12,62]. This is also partly due to either N-saturated conditions or
an imbalance between N and P nutrients. In addition, some studies have found that N
and P co-addition can result in reduced soil pH value, leading to toxic effects on soil
microbial communities [63].

4.3. Management Implications and Limitations

Generally, one or two instances of fertilization, either at the planting time or/and at
the mid-rotation age are implemented in most of China’s managed forests. This is why
our study adopted a one-time fertilization experiment at the mid-rotation age: to mimic
the reality of fertilization management. Our study indicated that N-alone addition did not
significantly change the soil respiration and tree productivity in the study area, suggesting
that the Chinese fir plantation is N-saturated and no more N fertilizer is needed. LP
and combined N and P additions could significantly increase soil respiration in the short
term, while the HP treatment did not significantly affect soil respiration. This suggests
there should be a balance point between N and P nutrients, and imbalanced P and N
nutrients are not conducive to soil microbial activities and organic matter decomposition.
We further observed that only LP treatment can significantly increase tree productivity
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within 3 years, which further proved that N and P balance is more important for tree growth
and soil microbes. Although soil CO2 emission increased in the short term, considering its
significant effects on promoting productivity and CH4 uptake and non-significant effects
on N2O emission [31], we suggest that an LP amount (i.e., <5 g P/m2/yr) should be applied
in the study area to maintain the balance of N and P nutrients.

We stopped further observations after one half year since we did not observe significant
differences from treatments in the soil’s chemical and physical properties, especially for
the greenhouse gas (CO2, CH4, and N2O) fluxes. However, many previous studies have
implied that the effects of N and P fertilization (especially P) will last a longer period since
the tree and litter N and P contents have been modified and need long-term observation
for their recycling and feedback effects [41]. Therefore, our short-term experiment may
underestimate the impacts of N and P addition on soil CO2 emissions. In addition, we did
not separate the soil CO2 emissions from the soil and roots, so our observed changes in soil
CO2 emissions were actually a combined emission, which limits our deep analysis from
identifying the contributions from these two sources.

5. Conclusions

To determine the best fertilization option for the Chinese fir plantation under
N-saturated conditions, this study designed six N and P addition experiments. The results
indicated that LP and combined N and P treatments can significantly increase soil CO2
emission in the first four months after treatment, while HP and HN treatments do not
significantly affect soil CO2 emission. LP treatment can significantly promote tree growth,
and the effects decline with time, while other treatments do not significantly affect tree
productivity. Our study further proved that the study site is N-saturated. How to maintain
the balance between N and P availability is the key question for forest productivity and
greenhouse gas management in the study area. Considering the overall effects on soil CO2
emission, CH4 uptake, N2O emission, and productivity, we recommend that a low-level P
addition (<5 g P/m2/yr) could be more suitable for the N-saturated Chinese fir plantations
in the study region.
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