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Abstract: The existing research on critical peak price (CPP) decision-making ignores the difference in
risk appetite between industries within the consumer population, resulting in a serious lag in the
enthusiasm of some users to respond to CPP, and unsatisfactory improvement of power systems and
carbon emission reduction on the supply and demand side. Firstly, the problem of consumer risk
appetite was comprehensively analyzed, and the industrial consumer population was secondarily
stratified according to the influencing factors and the enthusiasm of responding to CPP, namely:
stubborn, active and conformist, and quantitatively verified by cluster analysis. Secondly, by combing
the relevant paths of CPP decision-making, the critical-peak window determination model and CPP
multi-objective optimization model were constructed, and the calculation of relevant indicators was
introduced. Finally, taking 10 industrial enterprises in a city in Sichuan Province as an example, the
clustering method was used to verify the stratification results, and the index analysis method was
used to measure the load and carbon emission improvement of two typical enterprises after CPP
optimization. The results showed that the stubborn users insist on using electricity, the improvement
effect of load and carbon emission reduction was poor, and additional production costs will be caused.
The conformist and active users had high sensitivity to electricity price fluctuations, good load and
carbon emission reduction improvement effects, and significantly reduced electricity costs.

Keywords: critical peak pricing; consumer risk appetite; consumer stratification; carbon emission
reduction

1. Introduction

As the world’s largest carbon emitter, China accounts for 28.8% of the world’s total
energy carbon emissions, which plays a crucial role in global carbon peaking and carbon
neutrality [1]. The China Electricity Council’s “Power Industry Operation Brief from
January to August 2022” showed that by the end of August, the country’s installed power
generation capacity was 2.47 billion KW, an increase of 8.0% annually, of which coal-fired
power generation was 1.11 billion KW, an annual increase of 1.4%, accounting for 45%,
and the new installed capacity of coal-fired was 11.2 million KW. China’s coal-fired power
plants account for about 50% of the country’s total CO2 emissions [2]. It can be seen that
coal-fired power generation will continue to play a significant role in the future [3].

The power industry is a major contributor to CO2 emissions by converting primary
energy into secondary energy and generating large amounts of CO2 in terms of fuel
utilization and energy conversion. Whether the price of CO2 emissions is passed on to
the final electricity price depends on many factors. In addition to carbon emission pricing
policies, these institutional factors include electricity markets and electricity regulation
mechanisms [4]. Ding [5] found that rising carbon prices will lead to higher electricity prices,
and so, for the power sector, policies to control CO2 emissions fundamentally depend on
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electricity pricing policies. In recent years, many scholars studied the impact between the
power industry and carbon emissions. For example, Hou [6] constructed a carbon emission
model and a carbon emission data accounting model for coal-fired power plants, which is
of great significance for quantifying carbon emissions from coal-fired power plants and
achieving the dual carbon goals. Karmellos [7] studied the drivers of CO2 emissions from
the power sector in EU countries. On this basis, Mai [8] assessed CO2 emissions from the
power sector in Northwest China by analyzing six drivers: carbon intensity, energy mix,
generation efficiency, electrification, economy and population. Mousavi [9] investigated
the effects of energy consumption and fossil fuels on the intensity of CO2 production.
Xie [10] studied CO2 emissions during transmission. Liao [11] analyzed the changes in
CO2 emissions in the power sector from the perspective of electricity production and
consumption, and studied the CO2 emission characteristics of 30 provinces in China.

From the above research, it can be seen that controlling the CO2 emissions generated
by the power sector is ultimately achieved through the price of electricity. As a necessary
means for power grid companies to change users’ electricity habits through price leverage,
CPP plays a crucial role in reducing the carbon dioxide emissions of terminal electricity.

Most of the research on CPP by foreign scholars is based on a completely open
electricity market environment [12], but it is not applicable to the current electricity market
system in China with separate plants and grids [13]. Combined with the current mechanism
of China’s electricity market, Zho [14] proposed a dynamic optimization mechanism of
CPP considering the consumption psychology of users, and determined the critical-peak
day, critical-peak period and critical-peak rate according to the dynamic change of peak
load, but did not consider the preference of different power users. Lu [15] established a
non-cooperative Stackelberg model based on game theory to study the demand response
characteristics of multiple types of users, realize the comprehensive consideration of users
with different preferences, and quantify the impact of grid load fluctuation on the efficiency
and user satisfaction of power grid companies.

However, the above literature only considered the optimization of CPP electricity
prices or the load demand of multiple types of users, ignoring the differences in electricity
risk appetite between industries within industrial consumption groups, resulting in a
serious lag in the enthusiasm of some users to respond to CPP. As a result, production
costs increase, supply demand load improvement and carbon emission reduction effects
are not satisfactory [16].

Therefore, this paper comprehensively considered the internal power consumption
preference of industrial enterprises, incorporated the interests of power grid and users into
the optimization process of CPP, established a multi-objective CPP optimization model,
and studied the improvement of optimized CPP on production costs, loads and carbon
emission reduction in industrial enterprises. The specific framework is shown in Figure 1;
firstly, based on China’s current electricity market mechanism, working characteristics,
electricity price structure and other influencing factors, according to the different sensitivity
of industrial enterprise users to CPP, industrial users were qualitatively second-stratified,
and quantitative verification was carried out by cluster analysis. Secondly, the critical-peak
window determination model (critical-peak day and critical-peak period) was constructed
to determine the execution window of CPP. Then, the grid benefits and user expenses
were included in the CPP optimization model, and a multi-objective CPP optimization
model was established. Finally, using the clustering and data index analysis method,
taking an industrial enterprise in a city in Sichuan Province as an example, the load and
carbon emission indicators before and after the implementation of the unified CPP were
measured, and the response characteristics, electricity load characteristics and carbon
emissions of three types of industrial users were discussed, so as to provide opinions for
the decision-making of CPP under the background of “carbon neutrality”.
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Figure 1. Process framework.

The specific contributions of this research are summarized as follows:

• Based on the current mechanism of China’s electricity market, refine the influencing
factors such as production shift system, electricity price sensitivity factors, and electric-
ity price structure, According to the enthusiasm of industrial enterprises in responding
to electricity prices, the qualitative subdivision of industrial users into three layers:
stubborn, active and conformist. The clustering method was used to quantitatively
verify the stratified results.

• By constructing a multi-objective CPP optimization model, the load fluctuations and
carbon emission reduction indicators before and after the implementation of CPP
in the steel industry and the cement industry were compared, and the response
characteristics of layered industrial users to CPP and the effect of carbon emission
reduction were analyzed.

2. User Response Behavior Analysis
2.1. User Response Behavior Analysis

Owing to the difference in the working mode and load characteristics of different types
of consumers, the preference for CPP is different; therefore, before formulating the CPP
mechanism, the electricity consumption behavior should be analyzed according to the char-
acteristics of the electricity demand and load characteristics of users in different industries.

The user electricity consumption behavior is mainly affected by factors such as the
production shift system, electricity price sensitivity coefficient [17], installed capacity of
energy storage, electricity price structure and meteorological date [18]. The main factors
influencing user enthusiasm in response to electricity prices are shown in Figure 2.
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(1) Production shift factors: The production shift system reflects user demand for elec-
tricity continuity. Three-shift enterprises are generally heavy industries that require
continuous production, such as the steel, petroleum processing and textile industries,
for which the transfer of electricity arrangements is limited by the production pro-
cess; the one and two-shift systems are generally light industries that can produce
intermittently, such as the food industry, and the transfer of electricity arrangements
in this case is limited by the difficulty in adjusting the production arrangements
of employees.

(2) Electricity price sensitivity factors: The greater the electricity price sensitivity coef-
ficient, the higher the proportion of high user electricity costs to production costs,
the more sensitivity to electricity price fluctuations and the higher the enthusiasm
of users to respond to differential electricity prices, such as in cement production
enterprises. The proportion of electricity expenditure in industries such as food and
textile processing and electronic equipment manufacturing is low, and hence, the
degree of influence of electricity price fluctuations is low.

(3) Electricity price structure factors: The degree of user response to CPP is significantly
affected by the design of the peak and valley periods and electricity price ratios. For
example, based on time-of-use electricity price (TOU), the implementation of CPP can
further widen the electricity price difference so that users can transfer more electricity
during critical peak hours.

(4) Length of time for implementation of electricity price: In general, the difference in the
speed at which different types of electricity users expand and adjust the amount of
electricity increases with the implementation time of the electricity price.

2.2. Stratification of Consumer Populations

Affected by factors such as production characteristics and industry scale, the en-
thusiasm of industrial consumers to respond to electricity price fluctuations is different.
For example, petroleum, steel enterprises are characterized by large industry scale, long
equipment operation cycle and high demand for continuous and reliable power supply
performance of electrical equipment. Due to the above reasons, these industrial enterprises
cannot actively respond to electricity price fluctuations, resulting in an increase in produc-
tion costs caused by rising electricity prices, and such enterprises are regarded as stubborn
users, and their load curves are characterized by large fluctuations and low load ratios.
However, for cement, non-metallic mineral manufacturing and other enterprises, their
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production shift system is more flexible; a reasonable shift system can actively respond to
electricity price fluctuations, with high peak migration potential, and because the electricity
cost of such enterprises accounts for a large proportion of production costs, by responding
to electricity prices, it can effectively reduce production costs and increase corporate profits,
such enterprises are regarded as active users. Conformist users have a certain sense of
power saving, but the load adjustment ability is poor, such as transportation and ware-
housing; the load peaks and valleys are obvious, but the proportion of electricity cost to
production cost is low, such as food and textile processing industry, etc.; the degree of
response of such users to electricity price fluctuations is between stubborn and active.

The implementation of CPP in industrial users can effectively regulate the rationality
of enterprise electricity consumption, use market leverage to optimize the allocation of
power resources, improve the market share of power supply enterprises, promote energy
conservation and consumption reduction in the whole society, and alleviate the current
situation of peak power tension [19]. However, the implementation of a unified electricity
fee policy will lead to an increase in production costs for some industrial enterprises,
thereby affecting the scientificity and popularity of electricity prices. For the above reasons,
this paper second-stratified the internal consumption population of industrial enterprises
according to the sensitivity of industrial users to electricity price fluctuations, which
are active, conformist and stubborn, so as to help power grid enterprises to implement
reasonable arrangements for the electricity bills of industrial enterprises. This is shown
in Figure 3:
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3. Model Building

The traditional TOU is a static electricity price with a relatively fixed rate, this mecha-
nism does not fully reflect the relationship between the short-term load and power supply
costs. Power grid enterprises successively implemented CPP policies to optimize the
allocation of power generation resources. CPP decision-making is mainly divided into
three parts [20], namely, establishing the critical-peak time window, responding to demand
decisions and quantifying consumer responses to electricity price fluctuations, optimizing
the CPP mechanism in a targeted manner.

3.1. CPP Formulation and Critical Peak Day

China’s CPP policy is generally based on the original TOU, on which the critical peak
rate is superimposed to increase the electricity price at the critical peak time (shown in
Table 1), thereby changing the user’s electricity habits and achieving the purpose of “peak
shaving and valley filling”.
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Table 1. Comparison of TOU and CPP rate systems.

Time TOU
CPP

Off-Critical Peak Days Critical Peak Days

Valley periods Pv Pv Pv
Flat periods Pf rPf Pf
Peak periods Pp rPp Pp

Critical-Peak periods — — Pc

r is the electricity price discount rate from critical to off-critical-peak days; PC, Pp, Pf, Pv indicate the electricity
price during critical-peak, peak, flat and valley periods, respectively.

At present, there are four main types of CPP: fixed-period CPP (CPP-F), variable-
period CPP (CPP-V), variable peak pricing (VPP) and critical peak rebates (CPR), the
characteristics of which are presented in Table 2.

Table 2. Characteristics of four CPP models.

CPP Model Features

CPP-F Determine in advance the maximum allowable number of days for
critical-peak days, critical-peak periods and critical-peak rate systems

CPP-V Based on real-time load usage, determine the maximum allowable
number of days, critical-peak days and critical-peak periods

VPP CPP is linked to the wholesale electricity market

CPR Electricity users follow the original TOU but reduce the load at the critical
peak period and avail the corresponding electricity price subsidies

The duration of the peak load is short, which is significantly affected by the user’s
electricity consumption characteristics and temperature changes. Therefore, when se-
lecting critical peak dates, factors such as load characteristics and seasonality should be
comprehensively considered.

qn,Forecastmax

qmax
≥ Ω (1)

where qn,Forecastmax represents the maximum predicted load on a certain day of the critical
peak month, KWh; qmax represents the maximum forecast load for a single day of the
month, KWh; Ω is the trigger critical value, and the value range is 0.93~1.

3.2. Time Segmentation Modeling

CPP peak-valley division is to add critical peak hours to the TOU peak hours [21], i.e.,
the day is divided into four periods: critical-peak, peak, flat and valley. Existing research is
mainly based on membership function, power supply cost or user demand response for
time segmentation.

(1) Divisions based on membership function
The large (small) semi-gradient membership function is used to calculate the peak

membership and valley membership at each time point on the load curve.

uct =
qh − a
b− a

(2)

uvt =
b− qh
b− a

(3)

where uct uvt represents the peak membership degree and valley membership degree,
respectively; a is the minimum load value at the time point in the load curve, KWh; b is the
maximum load at the point in the load curve, KWh.

(2) Divisions based on power supply costs

CG = KBWB + KmWm + KpWp (4)
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where CG is the investment period of system power generation equipment; WB is the
capacity of valley load power generation equipment, KVA; Wm is the capacity of flat-load
power generation equipment, KVA; Wp is the capacity of peak-load power generation
equipment, KVA; KB is the annuity of the unit capacity of the valley load power generation
equipment, dollar; Km Annuity per unit capacity of flat load power generation equipment,
dollar; Kp is the annuity per unit capacity of peak-load power generation equipment, dollar.

As shown in Equation (4), the equation obtains the energy cost C and the load P
constructor C = f (P) of the corresponding period, and divides the peak-valley period
according to the significant difference in the cost of certain load points on the typical
daily load.

(3) Divisions based on user demand response
For a certain time point ti, by calculating the responsively attribute values vj and v of

the i user j segment and the i user at time point ti, respectively, the responsively attribute
matrix Φ of each time point of the i user can be obtained:

vj = 1000(q′ij − qij) (5)

v =
M

∑
j=1

λjvj (6)

Φ =


v11
v21

...
vn1

v12
v22

...
vn2

· · ·
· · ·

...
· · ·

v1M
v2M

...
vnM

 (7)

where qij q′ij represents the fitted load value of Class i user and Class j segment industry at
time point ti before and after the electricity price adjustment.

On the basis of the original fuzzy division of the degree of affiliation, by comparing
the changes of the structural characteristics of the proportion of the load curve of power
users at each time point, the response degree of the peak and valley electricity prices of
power users at each time point is evaluated, and the time period division is carried out.

3.3. Demand Response Modeling

At present, the demand response model is mainly based on two theories: demand
price elasticity and consumer psychology, and it formulates reasonable pricing deci-
sions by quantifying the changes in users’ electricity consumption habits after electricity
price fluctuations.

1. Demand price elasticity theory

According to economic theory, consumer demand for electricity changes with electric-
ity price [22]. A user price elasticity matrix is often constructed to quantify user response
to electricity prices (shown in Figure 4).
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Consumer sensitivity to price changes can be measured using the price elasticity
coefficient, which is most suitable for quantitative analysis. The price elasticity of electricity
demand is the ratio of the percentage of electricity change to the corresponding percentage
of price change:

e =
∆q
q

(
∆p
p

)−1
(8)

where e is the price elasticity coefficient of electricity demand; ∆q, ∆p are the increments in
electricity and electricity prices, respectively; q, p are the electricity consumption and price
before the change in electricity prices, respectively.

The self-elasticity coefficient eii and the cross-elasticity coefficient eij are defined to
quantify the user’s single-period and multi-period responses to electricity prices, respec-
tively; and the load price elasticity matrix is combined to represent the comprehensive
demand elasticity of users. However, the demand price elasticity theory does not reflect
consumer psychology, does not mention that the user’s response to the electricity price has
a feasible range and ignores the dead zone in the user’s response to the electricity price;
hence, the saturation problem and calculation are complex.

2. Modeling consumer risk appetite

According to consumer psychology, users exhibit a range of reactions to electricity
prices, and their sensitivity is linearly related to the size of the electricity price difference [23].
Electricity price fluctuation induces a minimum perceptible difference (the difference
threshold) to the user’s stimulus; when the electricity price floats within this difference
threshold range, the price stimulus is very weak, and the electricity user is basically
unresponsive or has a very small response. This electricity price floating range is called a
response dead zone (O to A in Figure 5). When the electricity price floats beyond the range
of the difference threshold, the user will respond, the load during the peak hours will be
transferred to the off-peak hours, and the user’s reaction will be related to the degree of
change in the electricity price signal, which is called the linear zone (A to B). However,
the response of electricity users to electricity price will also reach a saturation value (B
to positive infinity). When the electricity price floats more than the saturation value, the
electricity user will no longer have excess transferable load, the response ability tends to
be saturated, and the size of the electricity price is not related; this is called the saturation
zone. Differences in user industries lead to differences in load transfer; therefore, a transfer
rate curve approximated to the user’s true response curve is fitted based on historical data:
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The load transfer rate of the user at different time periods is:

λij =


0

Kij(∆Pij − Aij)
λmax

∆Pij < Aij
Aij < ∆Pij < Bij

∆Pij > Bij

(9)
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where ∆Pij represents the difference in electricity prices between periods i and j, dollar; Aij
represents the lowest price difference for the user in response to CPP, dollar; Bij represents
the saturated electricity price difference for the user in response to CPP, dollar; Kij is the
slope of the linear zone of the user response to CPP, and λij, λmax indicate the user’s load
transfer rate from period i to period j and the upper limit value that meets the transfer
rate, respectively.

As shown in Equation (9), the response curve of the user to the electricity price
is determined by three parameters: the difference threshold, slope of the linear zone
and saturation value of the user. The differences in threshold and saturation values are
directly related to the user’s own power consumption characteristics, with commercial
and residential users, air conditioning and lighting load accounting for a relatively large
proportion. The user has a strong sense of power saving, the number of users is large and
the load response potential is huge; hence, the corresponding load transfer rate will be
relatively large and so will the dead zone threshold and saturation value. The response
of large-scale enterprises with many continuous production equipment, such as steel
manufacturing, is biased toward domestic electricity consumption, accounting for a small
proportion of total electricity consumption; hence, the corresponding dead zone threshold,
saturation zone threshold and maximum load transfer value will be relatively small. For
the specific acquisition and correction of parameters such as responsively curve slope,
dead zone inflection point and saturation zone inflection point in consumer risk preference
model, refer to Ruan [24].

3.4. CPP Pricing Model Optimization

CPP pricing is mainly based on the fundamental purpose of “peak shaving and valley
filling”, and from the perspectives of power grid and consumers, consumer satisfaction,
rate restrictions and average electricity prices are taken as constraints to carry out multi-
objective optimization.

1. Objective function:

(1) From the perspective of power grid: reduce electricity costs, increase grid revenues
and maximize profits.

U1 =
24

∑
i=1

pcpp,h × qcpp,h −
24

∑
i=1

ptcpp,h × qcpp,h −
24

∑
i=1

λ(qcpp,h −
_
q)2 (10)

where Pcpp,h, Ptcpp,h are the sales price and purchase price of the power grid at h moment
after the implementation of CPP, dollar, respectively; qCPP,h is the load at h time under
critical peak day, KWh;

_
q is the average daily load after the implementation of CPP, KWh;

λ is the fluctuating cost factor.
(2) From the perspective of user: users respond to CPP by changing their original

electricity habits, in order to reduce electricity costs.

MaxU = RTOU − RCPP (11)

RTOU =
n

∑
i=1

23

∑
h=0

qTOU,h × PTOU,h (12)

(RCPP =
n

∑
i=1

23

∑
h=0

(1− xi)× qnCPP,h × PnCPP,h +
n

∑
i=1

23

∑
h=0

xi × qCPP,h × PCPP,h (13)

where RTOU , RCPP are the electricity bill of the customer when the TOU and CPP are
implemented, dollar, respectively; qTOU,h is the load at the time h of the TOU electricity
price, KWh; xi is the decision variable of whether the i day of the month is a critical peak
day: 1 represents the critical peak day, and 0 represents the non-critical peak day; n is the
total number of days in the month.
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(3) Peak shaving and valley filling: the fundamental purpose of implementing CPP
is to achieve peak shaving and valley filling in the power system, reduce the peak-valley
difference and slow down load fluctuations.

Q2 = Max{Min(qcpp,h, h = 0, 1, · · · , 23)} (14)

Q3 = Min{Max(qcpp,h, h = 0, 1, · · · , 23)} (15)

U2 = Max(Q3 −Q2) (16)

2. Constraints:

(1) Satisfaction: after the implementation of CPP, it is necessary to ensure the satisfac-
tion of users in terms of load usage and electricity expenditure.

θ1 = 1−

23
∑

h=0

∣∣qTOU,h − qCPP,h
∣∣

23
∑

h=0
qTOU,h

> δ1 (17)

θ2 = 1−

23
∑

h=0

∣∣qTOU,h × pTOU − qCPP,h × pCPP
∣∣

23
∑

h=0
qTOU,h × pTOU

> δ2 (18)

where θ1, θ2 are the satisfaction of users with load usage and electricity expenditure after
implementing CPP, respectively; δ1, δ2 is a constant, i.e., the limit value of satisfaction, and
the value range is 0.9~1.

(2) Peak drift: in order to prevent unreasonable electricity prices, it is necessary to set
a reasonable ratio of peak and valley electricity prices and reasonably restrict and control
load values and critical peak rates.

Min(qTOU ,h, h = 0, 1, · · · , 23) <qCPP,h < Max(qTOU ,h, h = 0, 1, · · · , 23) (19)

Min(qTOU ,h, h = 0, 1, · · · , 23) <qnCPP,h < Max(qTOU ,h, h = 0, 1, · · · , 23) (20)

Pf < Pc < nPf (21)

η < r < 1 (22)

where n, f is a constant.
(3) Average electricity price: it is necessary to ensure that the average electricity price

after the implementation of CPP does not exceed the average electricity price of TOU.

−
PTOU −

−
PCPP ≥ 0 (23)

−
PTOU =

n
∑

i=1

23
∑

h=0
qTOU,h × PTOU,h

n
∑

i=1

23
∑

h=0
qTOU,h

(24)

−
PCPP =

n
∑

i=1

23
∑

h=0
(1− xi)× qCPP,h × PnCPP,h +

n
∑

i=1

23
∑

h=0
xi × qCPP,h × PnCPP,h

n
∑

i=1

23
∑

h=0
qCPP,h

(25)
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where
−
PTOU ,

−
PCPP are the average electricity price of consumer expenditure under TOU

and CPP, dollar, respectively.
(4) Indicator analysis
In the index analysis in this paper, there were two main categories, namely load

indicators and carbon emission indicators. The main indicators and related calculations are
shown in Table 3:

Table 3. Indicator analysis and calculation formula.

Index Calculation Source or Purpose of the Data

Load ratio/% =Daily load average/Daily load maximum

It is used to evaluate the load change before
and after electricity price optimization, and
prove the effectiveness and scientificity of
electricity price optimization.

Power reduction rate during
critical-peak hours

=(Maximum load after price
optimization—Maximum original daily

load)/Maximum original daily load

It is a visual representation of critical-peak
load improvement and is also used as a
reference indicator for clustering.

Save standard coal/Ton =Total load × 0.43 × 0.001

According to relevant information, each kWh
of electricity saved can reduce 0.43 KG of
standard coal, which can be used to measure
the energy consumption after electricity
price optimization.

Carbon emissions/Ton CO2 =Total load × 0.997 × 0.001

According to relevant information, each kWh
of electricity saved can reduce 0.997 KGCO2,
which can be used to measure the
contribution of electricity price optimization
to carbon emission reduction.

Carbon emissions per unit of
electricity/KW·ton−1 =Total carbon emissions/Total load × 1000

It can be used to measure the contribution of
electricity price optimization to carbon
emission reduction.

Carbon emissions per unit of
electricity cost/USD·KG−1

=Total carbon emissions × 1000/(Total load
× Average daily electricity cost)

It can be used to measure the contribution of
electricity price optimization to carbon
emission reduction.

4. Case Study Analysis

Taking a city in Sichuan Province as an example, this paper used the clustering and
index analysis method to evaluate and analyze the daily load change and carbon emission
of industry in Sichuan Province before and after the implementation of CPP policy. Based
on consumer psychology theory, the demand response model was constructed, and the
values of each parameter are shown in Table 4:

Table 4. User demand response model parameters.

Periods Kij Aij Bij λMAX/%

Critical-Peak 0.015 0.109 0.913 1
Critical-Flat 0.023 0.135 1.12 3

Critical-Valley 0.023 0.21 1.204 2
Peak-Flat 0.03 0.058 0.283 6

Peak-Valley 0.05 0.11 0.513 8
Flat-Valley 0.06 0.058 0.4 4

Comprehensively considering the benefits of grid revenue and consumer satisfaction,
a target optimization model was constructed, and the NSGAII algorithm was used to finally
obtain that Pc = USD1.179/(KW·h), r = 0.9. The time period division and electricity price
before and after the implementation of CPP are shown in Table 5, and the original load
situation is shown in Figure 6:
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Table 5. TOU and CPP time periods and prices.

Peaks and Valleys
TOU CPP

Time Price/USD/(KW·h) Time Price/USD/(KW·h)

Peak 11:00–12:00
14:00–21:00 $0.13

11:00–12:00
14:00–15:00
17:00–21:00

$0.13

Flat
7:00–11:00

12:00–14:00
21:00–23:00

$0.089
7:00–11:00

12:00–14:00
21:00–23:00

$0.089

Valley 23:00–7:00 $0.048 23:00–7:00 $0.048
Critical-peak 15:00–17:00 $0.17
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Figure 6. Daily load data of steel and cement companies before the implementation of CPP.

4.1. Clustering Analysis

We selected 10 typical load measured values (TOU peak and CPP critical peak) of
different industrial users, and obtained the power reduction and reduction rate during the
critical peak period, as shown in Table 6.

Table 6. Response during critical-peak hours by industry.

Number Industry Name Amount of Power Reduction
during Critical-Peak Hours (KW)

Power Reduction Rate
during Critical-Peak Hours

1 Oil and gas 95.7 1.4%
2 Food manufacturing 154.3 8.2%
3 Textiles 680.4 10.5%
4 Metal manufacturing 183.7 3.9%
5 Transportation equipment manufacturing 83.7 13.3%
6 Chemical fiber manufacturing 108.6 6.94%
7 Tobacco manufacturing 745.6 12.34%
8 Steel 363 4.12%
9 Cement manufacturing 861 17.68%
10 General equipment manufacturing 780.7 13.8%

Amount of electricity reduction during the critical peak hour = TOU peak load—CPP critical peak load; Power
reduction rate during peak hours = (TOU peak load—CPP critical peak load)/CPP critical peak load.

Using the clustering method, the responses of various users to CPP were evaluated and
the power reduction rate during critical peak hours was divided into three; the clustering
effect was as follows (Figure 7, Tables 7 and 8):
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Table 7. Cluster members.

Number Industry Name Clustering Distance

1 Oil and gas 1 1.74
2 Food manufacturing 3 0.347
3 Textiles 3 1.953
4 Metal manufacturing 1 0.76
5 Transportation equipment manufacturing 2 0.98
6 Chemical fiber manufacturing 3 1.607
7 Tobacco manufacturing 2 1.94
8 Steel 1 0.98
9 Cement manufacturing 2 3.4

10 General equipment manufacturing 2 0.48

Table 8. Final cluster centers.

Clustering 1 2 3

Final cluster centers 3.14 14.28 8.55

Based on the aggregation of the cluster members shown in Table 7, the user category
clustering effect was derived as follows.

Table 9 shows that most stubborn users were enterprises with huge industrial scale
and fixed adjustment shifts that exhibited high demand for sustainable power supply, low
power reduction rates during critical peak hours, small fluctuations in load curves and
low responsiveness to electricity prices. Most active users were industries with flexible
adjustment shifts that exhibited a high rate of power reduction during critical peak hours,
large fluctuations in the load curve and high responsiveness to electricity prices. The
response of conformist users to electricity prices was between those of stubborn and active
users; their peak load adjustability was limited.
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Table 9. Clustering effect of electricity reduction rate during critical-peak hours.

Category Industry Name

Stubborn users Oil and gas, metal manufacturing, steel

Active users Transportation equipment manufacturing, tobacco manufacturing, cement
manufacturing, general equipment manufacturing

Conformist users Textiles, food manufacturing, chemical fiber manufacturing

4.2. Index Analysis

Taking the load data before and after the implementation of CPP in the steel industry
and the cement manufacturing industry as an example, the evaluation and analysis of the
implementation effect of CPP was carried out. According to the user load characteristics, the
steel industry, a stubborn user, was not sensitive to price fluctuations, whereas the cement
manufacturing industry, an active user, responded more obviously to such fluctuations.
Comparison charts of the typical daily load curve and electricity price for the steel and
cement manufacturing industries are presented in Figures 8 and 9, respectively.
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Figure 8. Comparison of typical daily load curve and electricity price before and after implementation
of CPP in steel industry.
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Figure 9. Comparison of typical daily load curve and electricity price before and after implementation
of CPP in cement manufacturing industry.



Sustainability 2023, 15, 9347 15 of 18

Evaluation indicators were selected to evaluate the effect of CPP implementation; the
results are listed in Table 10.

Table 10. Evaluation indicators of daily load curves of two industries.

Index
Steel Industry

Growth Rate/%
Cement Industry

Growth Rate/%
TOU CPP TOU CPP

Total load/KW 82,728 81,507 −1.48 87,973 82,998 5.66
Load ratio/% 65.9% 69.8% 3.9 63.97% 71.26% 7.29

Peak load/KW 5232 4869 −6.94 5730 4869 −15.03
Valley load/KW 1423 1695 19.11 1220 2056 68.5

Peak-to-valley difference/KW 3809 3174 −16.67 4510 2813 −37.63
Load volatility 39.68% 22.83% — 44.93% 20.25% —

Peak-to-valley difference rate
of change 72.8% 65.19% — 78.7% 51.61% —

Power reduction rate during
critical-peak hours — — −6.94 — — −15.03

Average daily electricity cost/
(USD/KW·h) 0.068 0.067 −1.47 0.068 0.062 −8.82

Gross product value/$M 1.17 1.15 −1.7 1.42 1.41 −0.7
Save standard coal/Ton 35.573 32.603 −8.35 38.356 34.859 −9.12

Carbon emissions/Ton CO2 82.480 77.676 −5.82 86.653 74.200 −14.37
Carbon emissions per unit of

electricity/KW·ton−1 0.997 0.953 −4.41 0.985 0.894 −9.24

Carbon emissions per unit of
electricity cost/USD·KG−1 14.66 14.22 −0.3 14.49 14.42 −0.48

Since the “load rate” can only reflect the concentration of the load, it cannot fully reflect the load change. Therefore,
“load volatility,” which is defined as the ratio of the standard deviation of the load to the mean load, where the
mean load reflects the degree of load concentration and the standard deviation of the load reflects the degree of
load dispersion, was adopted.

For load usage, the indicators in Table 10 showed that after the implementation
of CPP, the daily critical peak load, peak-to-valley difference and load volatility of the
cement industry significantly reduced. The critical peak load, peak-to-valley difference,
and load volatility decreased from 5730 to 4869 MW (15.03%), 4510 to 2813 MW (37.63%)
and 44.93% to 20.25%, respectively; the load curve was smooth, the average daily electricity
cost dropped by 8.82% and the investment cost of power grid enterprise unit equipment
decreased, owing to a significant reduction in power generation and peak shaving costs.
the critical peak load, peak-to-valley difference and load volatility of the steel industry
decreased from 5232 to 4869 MW (6.94%), 3809 to 3174 MW (16.67%) and 39.68% to 22.83%,
respectively; the average daily electricity cost dropped by 1.47%, and although the critical
peak load, peak-to-valley difference and load volatility decreased, the response was not as
obvious as that of the cement manufacturing industry.

For the CO2 emissions, the indicators in Table 10 and Figures 10 and 11 showed that
after the implementation of CPP, the gross production value of the steel industry and
the cement industry decreased by 1.7% and 0.7%, respectively, which was because the
increase in price of some raw materials and the cost of electricity, and because the cement
industry can actively respond to CPP, can actively adjust the work shift system according to
critical-peak hours, and effectively maintain production efficiency while reducing electricity
expenses during critical-peak hours, while the steel industry still needs to spend huge
critical-peak prices due to production performance and other characteristics. In addition,
their daily savings in standard coal and CO2 emissions decreased by 8.35%, 5.82%, 9.12%
and 14.37%, respectively, and the cement industry had twice the rate of CO2 emissions
per unit of steel industry. It can be seen that CPP had a certain effect on carbon emission
reduction for industrial users, but for stubborn users, there will be excessive electricity
costs, resulting in an increase in production costs.
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Figure 11. Gross industrial production and carbon emissions.

5. Conclusions

In this paper, we conducted further research on CPP decision making under the
background of “carbon neutrality”, comprehensively analyzed the problem of consumer
risk appetite, carried out secondary stratification of industrial consumer populations, con-
structed a critical-peak window determination model and CPP multi-objective optimization
model, quantitatively verified the stratification results of industrial users by cluster analysis,
measured the improvement effect of load and carbon emissions by index analysis method,
and analyzed the characteristics of three types of users responding to CPP. Our specific
conclusions are presented below.

Cement enterprises (active users) increased the load rate by 7.29% and decreased the
critical-peak load rate by 15.03% after the optimization of electricity prices, which greatly
improved the stability of the power system, while the total consumption of standard
coal was reduced by 9.12%, and the total carbon emissions decreased by 14.37%, and the
carbon emission reduction effect was remarkable. However, steel (stubborn users) was not
sensitive to CPP due to working characteristics and other reasons, although the load and
carbon emission reduction effect were slightly improved, it increased the production cost
caused by the increase in electricity costs. The responsiveness of conformist users to CPP
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and the improvement effect of load and carbon emission reduction were between active
and stubborn users.

This paper only focused on the consumption risk preference of industrial users. How-
ever, in the future CPP research process, factors such as the electricity consumption char-
acteristics of commercial and residential users, enterprise carbon emission index and
enterprise production cost should be comprehensively considered. In addition, the con-
sumer groups used should be classified, implement a more scientific differential CPP
policy for multiple users, and analyze the sensitivity of users to electricity price response
fluctuations. The differential CPP policy can greatly improve the stability of the power
system and improve the carbon emission reduction, which not only helps to improve the
scientific nature of the CPP policy, but also greatly reduces the operating costs of industrial
enterprises and improves corporate profits.
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