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Abstract

:

Crack detection on roads is essential nowadays because it has a significant impact on ensuring the safety and reliability of road infrastructure. Thus, it is necessary to create more effective and precise crack detection techniques. A safer road network and a better driving experience for all road users can result from the implementation of the ROAD (Robotics-Assisted Onsite Data Collecting) system for spotting road cracks using deep learning and robots. The suggested solution makes use of a robot vision system’s capabilities to gather high-quality data about the road and incorporates deep learning methods for automatically identifying cracks. Among the tested algorithms, Xception stands out as the most accurate and predictive model, with an accuracy of over 90% during the validation process and a mean square error of only 0.03. In contrast, other deep neural networks, such as DenseNet201, InceptionResNetV2, MobileNetV2, VGG16, and VGG19, result in inferior accuracy and higher losses. Xception also achieves high accuracy and recall scores, indicating its capability to accurately identify and classify different data points. The high accuracy and superior performance of Xception make it a valuable tool for various machine learning tasks, including image classification and object recognition.
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1. Introduction


Cracks may eventually form on roads as a result of exposure to adverse weather, heavy traffic, and other environmental variables. These cracks could endanger the track’s safety and worsen the situation if they are not found and repaired very soon. Moreover, crack detection on highways is also crucial because it has a big impact on ensuring the dependability and safety of the road infrastructure. Road crack detection with traditional technology is typically time-consuming, expensive, and unreliable. While traditional methods can be time-consuming and expensive, automated crack detection using deep learning and robotic vision technology can improve accuracy, speed, and efficiency. These methods involve training algorithms to recognize and classify cracks based on images or videos collected by robotic vision systems. Automated crack detection can be used in various applications, such as building and infrastructure inspection, bridge inspection, and industrial equipment maintenance. Automated crack detection methods are essential for improving structural health monitoring and assessment and preventing potential safety hazards [1].



Cracks on diverse surfaces refer to visible openings or fractures that occur on different types of materials, such as concrete, wood, metal, ceramics, or glass. Cracks can be caused by a variety of factors, including stress, temperature changes, chemical exposure, moisture, and age [2]. On concrete surfaces, for example, cracks can be caused by the expansion and contraction of the material due to temperature changes or moisture, as well as the weight and movement of heavy objects. In wood, cracks can occur due to changes in humidity, exposure to sunlight, or the aging process. The cracks can be caused by many reasons. The cracks in flexible pavement and rigid pavement may have different reasons. For example, in asphalt pavement, moisture damage is a major issue since water will weaken the adhesion between asphalt and aggregate [3].



Cracks can vary in size and shape, from hairline fractures to larger openings. They can be superficial and cosmetic or compromise the structural integrity of the material. Cracks may also be an indication of a larger problem that needs to be addressed, such as a foundation issue in a building or a problem with the structural support of a bridge. However, it is challenging for computer vision methods due to low-level features such as cracks and difficulties such as inhomogeneous illumination and irregularities in construction. Recent advancements in computer vision and image processing techniques are improving crack detection capabilities, enabling better decision-making for structural maintenance and safety. Practical challenges remain due to the nature of the subject matter, which is characterized by three major factors [4].



Crack detection is a challenging task for computer vision methods due to the low-level discriminative features of cracks, which can be easily confused with background noise such as foreign objects. In addition, the inhomogeneous illumination of the surface and irregularities in the application process, such as the exposure of jointing, make it difficult to distinguish the cracks from the surrounding area. These factors pose significant obstacles to the accurate detection of cracks in structures and require sophisticated image processing methods and algorithms to overcome. To address these issues, researchers have concentrated on creating deep learning-based techniques that can accurately find and categorize cracks in a variety of structures, such as steel and concrete buildings, bridges, pipelines, aircraft, and railroad tracks. These approaches depend on the capacity of DNN to learn intricate representations of the incoming data and generate precise predictions even in the presence of noise and abnormalities [5].



Deep learning (DL) has been shown to perform better than conventional techniques for image recognition and classification. Building a proper representation of the information is a crucial step in creating the best algorithm for automated deep learning bridge crack detection. Prior approaches, which can be constrained, rely on conventional picture binarization and manually adjusted segmentation [6]. In this novel method, crack segments are identified by line-fitting, and features related to the local line fit are computed. With the use of machine learning, this strategy is sturdy and offers a viable remedy for automatically detecting bridge cracks. It does so by overcoming the drawbacks of earlier methods [7].



Using deep learning-based techniques could change visual crack inspection and identification while lowering the need for human observations [8]. Ground robots and unmanned aerial vehicles (UAVs) are gaining popularity as modern infrastructure inspection and monitoring systems, offering advantages over traditional inspection methods such as improved safety, efficiency, and accuracy [9]. These systems, equipped with sensors and cameras, can provide real-time data and imagery of infrastructure components, allowing for more accurate and efficient inspections [10]. These systems are anticipated to become increasingly crucial as technology advances in the infrastructural inspection and monitoring process [11].




2. Literature Review


Several methods for crack detection and assessment exist, including visual inspection, acoustic testing, and stress analysis. The most popular method of crack detection is visual inspection, which entails a civil engineer visually inspecting a structure for cracking or other symptoms of trouble. Acoustic testing involves using sound waves to detect cracks and other defects in a structure. This method is useful for detecting cracks that are not visible to the naked eye, but it can be affected by environmental noise and other factors that can interfere with sound wave transmission. Stress analysis involves measuring changes in the structure’s response to loads, such as changes in strain or displacement, to identify potential cracks. This method requires specialized equipment and can be expensive, but it is highly accurate. Despite these methods’ effectiveness, they have limitations. Traditional methods for crack detection often rely on human interpretation, which can be subjective and prone to errors. Moreover, these methods can be time-consuming, labor-intensive, and require significant expertise, which can be costly. Here is a literature survey related to the study:



By combining digital image processing methods [12,13] and machine and deep learning algorithms [14,15,16] with images, crack detection can be performed in numerous ways, as described in this section. Fu Tao et al. [17] conducted a thorough analysis of the body of research on crack identification using image processing methods. The authors go over the various crack detection techniques and algorithms, such as segmentation, edge detection, and thresholding. Additionally, they explore the difficulties and upcoming improvements to the discipline of fracture detection and offer a thoughtful evaluation of the advantages and disadvantages of each technique. The various methods for detecting road cracks, including techniques for image processing, techniques for machine learning, and deep learning methods, were described by J. Yang et al. [18]. The writers present a comparative review of the various techniques and go through the benefits and drawbacks of each methodology. In the area of detecting road cracks, they also identify the difficulties and potential directions. An assessment of the most recent advancements in deep CNN architectures was given by D. Bhatt et al. [19]. H. Yu et al. [20] go over many CNN architectures that are employed for image processing applications such as object recognition, segmentation, and classification. Additionally, they compare the various CNN architectures and emphasize their benefits and drawbacks. In their approach for extracting concrete fracture attributes using image-based approaches for bridge inspection, the authors suggest a technique that involves taking high-resolution pictures of concrete buildings, which are afterwards examined to extract various crack-related properties. The authors conducted experiments on actual concrete structures to gauge the efficacy of their proposed strategy.



In order to detect road cracks, L. Zhang et al. [21] developed a deep CNN method that can extract high-level characteristics from unprocessed input photos. In order to identify fractures, the authors suggest a brand-new architecture called Crack-Net that comprises numerous convolutional and pooling layers. Additionally, they compare their strategy with other cutting-edge techniques and show that it outperforms them. Kaseko et al. [22] investigated the performance of pre-trained convolutional neural networks (CNNs) on detecting cracks in building structures.



The authors compare several popular CNN architectures, such as VGG, ResNet, and Inception, with their own CNN-based method. They evaluate the performance of these methods using two benchmark datasets and show that their CNN-based method outperforms other methods. A technique for identifying crack deterioration in engineering structures using unmanned aerial vehicle images and a deep learning model that has already been trained was proposed by Huang et al. [23]. The CNN used by the authors is fine-tuned with their own data of UAV images after being pre-trained on the ImageNet dataset. Using a dataset of UAV photos of civil infrastructure, they test their method, and they demonstrate that it is highly accurate in identifying crack damage.



A deep CNN method for automatically detecting road cracks was presented by Rajadurai et al. [24]. The VGG16 architecture is used by the authors, who fine-tune it using a dataset of road photos with and without fractures. Additionally, they suggest a post-processing technique to get rid of false positives. They test their technique on a sizable collection of road photographs and demonstrate that it performs better than other cutting-edge techniques. Maguire, M. et al. [25] provided SDNET2018 annotated picture dataset to detect non-contact concrete cracks in the buildings, bridges and walls. The dataset includes more than 56,000 pictures of cracked and uncracked concrete surfaces that were taken using different imaging methods. Bhowmick et al. [26] studied concrete crack detection with handwriting script interferences using a faster region-based convolutional neural network. In order to detect cracks in asphalt pavement Tien Le et al. [27] presented DeepCrack, a deep hierarchical feature extraction architecture. A universal feature extraction network and a local feature extraction network make up the suggested design. The research demonstrates that DeepCrack beats cutting-edge techniques for crack segmentation.



S. Bhat et al. [28] designed a deep CNN. The research demonstrates that the suggested CNN model outperforms typical machine learning techniques and can accurately identify cracks in asphalt pavement. A computer vision-based method for detecting concrete cracks was proposed by A. Khan et al. [29], utilizing U-net deep convolution networks. The study demonstrates that the suggested technology may precisely and effectively find cracks in concrete surfaces. An enhanced I-UNet convolutional network was put up by J. Deng et al. [30] for the purpose of detecting road cracks using computer vision. The research demonstrates that the suggested strategy may accurately and effectively find road cracks.



A deep CNN-based transfer learning technique for crack identification in civil infrastructure was introduced by N. A. M. Yusof et al. [31]. The suggested strategy enhances the model’s efficacy by transferring knowledge from previously trained images to the target domain. The research demonstrates that the suggested technique beats cutting-edge techniques for detecting defects in civil infrastructure. For image categorization, Y. Liu et al. [32] presented a conventional transfer learning approach. The suggested method classifies the data using a quantum circuit after extracting features from it using a traditional neural network. The research demonstrates that the suggested method beats cutting-edge techniques for picture categorization. Non-destructive tests were proposed by Z. Liu et al. [33] to evaluate the load-carrying ability of cement anchor bolts using an artificial multilayer perceptron neural network. The study demonstrates that the suggested method can accurately forecast the load-carrying ability of concrete anchor bolts.



According to a review of the literature, deep learning and robotic vision applications for crack assessment and detection are gaining popularity. The study’s suggested method advances this area of inquiry by merging many sensing modalities to produce more thorough fracture detection and assessment. The suggested approach is poised to increase crack detection and evaluation accuracy and effectiveness across a range of applications and fields. Traditional approaches for crack detection and assessment have limitations, including subjectivity, limited accuracy, high cost, time-consumption, disruption to operations, and a lack of continuous monitoring. These limitations emphasize the need for automated and accurate crack detection methods that can provide reliable and continuous monitoring of structural health.



The emergence of deep learning and robotic vision technology has revolutionized the field of crack detection and assessment by significantly improving accuracy, speed, and efficiency. By training deep learning algorithms on large datasets of images and videos collected by robotic vision systems, these algorithms can detect cracks even in complex crack patterns or low contrast images. Robotic vision systems can access difficult-to-reach areas and provide a comprehensive view of the structure’s condition, reducing the need for manual inspections. Combining these technologies provides real-time and continuous monitoring of structural health, enabling early identification of cracks to prevent safety hazards and reduce costs.



Table 1 discusses the literature survey for research done on crack detection. As shown in Table 1, many DL algorithms are being used for crack detection in the literature and there is more scope for using robotic techniques to provide automated and less human-interrupted solutions for the same.



Based on the literature survey provided, the research gaps identified are as follows:




	
The literature suggests that conventional techniques employed for detecting cracks, such as visual inspection, are susceptible to errors and subjectivity due to human interpretation, thereby lacking automation. The demand for automated and impartial methods for detecting cracks is imperative.



	
The efficacy of acoustic testing is restricted, as it is a technique that employs sound waves to identify cracks that are not discernible through visual inspection. Nonetheless, sound wave transmission may be influenced by environmental noise and other variables. There is a necessity for the development of more rigorous and dependable techniques for acoustic testing.



	
Various studies have noted the absence of explicit mention of deep learning algorithms and robotics techniques. Specifically, the utilization of deep convolutional neural networks and image processing techniques is highlighted in the context of crack detection. The omission of details regarding the DL algorithms and robotics techniques employed in each study may have implications for the replicability and lucidity of the research.



	
The current literature on crack detection presents limited coverage of the challenges that are inherent in this process. While some studies have briefly touched upon the difficulties and potential avenues for crack detection, a more comprehensive investigation is required to fully understand the complexities associated with this task. These complexities include variations in crack patterns, environmental factors, and the diverse range of structures that must be examined.








The resolution of these research deficiencies can make a valuable contribution towards advancing more precise, effective, and economical methods for detecting cracks, which can enhance the maintenance and safety of infrastructure.




3. Our Proposal: Road System


The proposed ROAD (Robotics-Assisted Onsite Data Collection System) systems shown in Figure 1 are a novel approach to construction inspection that leverages advanced robotics, machine learning, and BIM software to provide a comprehensive solution for construction site monitoring and data collection. The mobile robot platform is the primary data collection device, equipped with sensors, cameras, and measurement devices to collect data about the construction site. The robot is autonomous and capable of navigating around obstacles, making it ideal for use in complex and dynamic construction environments. This data is then sent to the object detection system on the server for processing, where machine learning algorithms analyze and classify objects and features within the construction site. This includes identifying defects, deviations from design specifications, and other issues that may impact the quality or safety of the construction project [34].



The object detection system provides real-time feedback to the control room, where construction managers and engineers can make informed decisions and take appropriate action as needed. The control room is equipped with BIM software, which provides a 3D model of the construction project, allowing managers and engineers to visualize the construction project in detail and identify potential issues or problems [35]. The control room can also be used to monitor the progress of the construction project, track materials and equipment, and manage project resources.



By combining advanced robotics, machine learning, and BIM software, the ROAD system can improve the quality and safety of construction projects while reducing costs and increasing efficiency [36]. The system can provide real-time monitoring and data collection, allowing for early identification of issues and timely corrective action. Because of its comprehensive perspective of the construction process and ability to promote the effective use of resources, the ROAD system has the potential to enhance project management and planning as well.



As depicted in Figure 1, the ROAD system proposed for crack detection and assessment combines deep learning and robotic vision technology to provide automated and accurate monitoring of structural health. The system includes several steps:




	
Image and video capture: A robotic vision system captures images and videos of the structure from different angles and perspectives, including areas that are difficult to access.



	
Data pre-processing: The captured images and videos are pre-processed to remove noise and enhance the contrast of crack features.



	
Training deep learning algorithms: To reliably identify and categorize various types of cracks, a deep learning system is trained on a sizable collection of cracking images and videos. The SDNET2018 dataset, which contains images of concrete surfaces with varied degrees of fractures, has been used to fine-tune the CNN, InceptionResNetV2, Xception, DenseNet201, MobileNetV2, VGG16, and VGG19 models. For the specific objective of crack identification, transfer learning is employed to utilize the pre-trained parameters of the model and speed up the learning process.



	
Crack detection: The trained deep learning algorithm is applied to the preprocessed images and videos to detect cracks and classify them according to their type and severity.



	
Structural assessment: The detected cracks are analyzed to assess the structure’s health and identify any potential safety hazards.



	
Reporting and maintenance: Engineers and repair teams are informed of the outcomes of the crack identification and evaluation so that they can make any repairs or maintenance tasks required to maintain the material’s safety and durability.








This study describes the creation of the ROAD system, a cutting-edge method for spotting road cracks using deep learning and robots. The suggested solution makes use of a robotic vision system’s capabilities to gather high-quality data about the road surface and incorporates deep learning methods for automatically identifying cracks. The device can function under a variety of circumstances, including various weather and lighting situations, and it can detect cracks on a variety of surfaces, including concrete and asphalt. The suggested approach might considerably increase the effectiveness and efficiency of crack identification on highways, resulting in more timely and effective maintenance interventions and a safer driving environment for all road users. The device has successfully detected cracks on a variety of road surfaces during testing. The effectiveness of various deep neural networks for picture classification and object recognition tasks is evaluated in this study. The suggested method has a number of benefits, including high accuracy and speed, real-time monitoring, ongoing assessment, decreased expenses, and minimal interference with routine activities [37].



Deep learning and robotic vision technologies can be used by engineers to identify cracks early, stop additional damage, and assure the durability and safety of structures. A useful resource for training, verifying, and benchmarking deep learning algorithms for concrete crack detection is the SDNET2018 [25]. The dataset encompasses a wide range of crack widths and types, ranging from thin cracks as small as 0.06 mm to wider ones as large as 25 mm, and contains over 56,000 annotated pictures of cracked and non-cracked concrete bridge decks, walls, and pavements.



The SDNET2018 dataset offers a complete set of training data for researchers to create and improve crack detection algorithms based on deep learning convolutional neural networks by taking into account six different classes to specifically classify decks, walls, and pavements with or without cracks. However, the camera quality used to capture pictures may produce some bias or limitations, which may impact the accuracy and generalizability of the models. The Tensor Flow and Keras frameworks were used to create the Python crack detection model known as the ROAD system. The model is trained and tested in the Google Colab environment and is based on the CNN, Xception, DenseNet201, InceptionResNetV2, MobileNetV2, and VGG16 and VGG19 architectures. The first algorithm describes how the model was trained and tested [38].



The proposed approach for crack detection and classification involves using deep learning models, specifically CNN, Xception, DenseNet201, InceptionResNetV2, MobileNetV2, VGG16, EfficientNetV2, and VGG19, trained on large datasets of images and videos of structures with cracks, as shown in Figure 2.



Robotic vision technology, which consists of cameras mounted on robotic arms that can capture images and videos from different angles and perspectives, is used for data collection. This technology allows for real-time monitoring of structural health and can reduce variability in the data, improving the accuracy of crack detection and assessment. The integration of deep learning and robotics involves several steps, including data collection using robotic vision systems, training deep learning models on the collected data, and deploying the models for automated crack detection and assessment.



The proposed model for crack detection and classification goes through the following steps:



Firstly, robotic vision systems are used to collect images and videos of structures with and without cracks using the SDNET2018 dataset.



Secondly, the collected data is pre-processed, including resizing, normalization, and augmentation, to ensure that the deep learning models can learn from the data effectively.



Thirdly, the pre-processed data is used to train deep learning models (CNN, Xception, DenseNet201, InceptionResNetV2, MobileNetV2, VGG16, and VGG19) to detect and classify cracks accurately.



Fourthly, the trained deep learning models are integrated with robotic vision systems to enable real-time crack detection and classification.



In the fifth step, the detected cracks are analyzed to assess the structure’s health and identify any potential safety hazards.



Finally, the results of crack detection and assessment are reported to engineers and stakeholders, who can visualize the data using dashboards, graphs, and other visualization tools. The integration of deep learning and robotics can provide an automated and efficient solution for crack detection and assessment, reducing the need for manual inspection and improving the safety and lifespan of structures [39,40].




4. Experimental Results


The proposed approach for crack detection and assessment involves a robotic vision system consisting of a camera mounted on a robotic arm that captures images and videos of structures with and without cracks. For real-time crack detection and classification, deep learning models are connected with the robotic vision system once the gathered data has been pre-processed and utilized to train them. Using visualization tools, the severity of discovered cracks is evaluated, and the findings are communicated to engineers and stakeholders. Using a different testing dataset, numerous assessment measures, cross-validation techniques, and comparisons with conventional methods, the performance of the deep learning models is assessed. To guarantee the models’ dependability for automated crack detection and evaluation, their performance is confirmed in real-world circumstances.



The performance analysis of a robotic vision system can be a complex task, as it involves evaluating various aspects of the system’s performance, such as accuracy, speed, robustness, and reliability. Here are some steps that can help in conducting a performance analysis of a robotic vision system: The first step is to clearly define the task that the robotic vision system is expected to perform. For example, is it object detection, recognition, or tracking? This will help in determining the appropriate evaluation metrics.



Once the task is defined, appropriate evaluation metrics should be selected. For instance, for object detection, metrics such as accuracy, MSE (Mean Squared Error) [41], precision, and recall can be used. For object tracking, metrics such as tracking accuracy, tracking speed, and smoothness of the trajectory can be used. The next step is to collect data to evaluate the system’s performance. The data should be representative of the task and cover various scenarios that the system is expected to handle. The system should be trained on the collected data and tested on a separate set of data. The testing data should be different from the training data to ensure that the system can generalize to new data. Once the system has been tested, the results should be analyzed to evaluate the system’s performance.



The results can be compared to the evaluation metrics selected in step 2 to determine whether the system meets the desired performance criteria. If the system does not meet the desired performance criteria, it may be necessary to fine-tune it. This can involve adjusting parameters, retraining the system on additional data, or improving the algorithms used. The performance analysis process may need to be repeated several times until the system meets the desired performance criteria [42]. The performance analysis of a robotic vision system involves defining the task, selecting appropriate evaluation metrics, collecting data, training and testing the system, analyzing the results, fine-tuning the system, and repeating the process until the desired performance criteria are met.



The results of the integrated approach for crack detection and assessment can vary depending on the specific approach and methodology used. The integrated approach for crack detection and assessment has the potential to improve the accuracy, efficiency, and safety of crack detection and assessment in various applications, such as civil engineering, aerospace, and manufacturing.



Figure 3 presents the acquired results for the performance parameters such as accuracy, MSE, precision, and recall of the deep neuronal network formed by Xception, DenseNet201, InceptionResNetV2, MobileNetV2, VGG16, and VGG19, and Table 2 presents values for the performance parameters for CNN, Xception, DenseNet201, InceptionResNetV2, MobileNetV2, VGG16, and VGG19 for crack detection models.



Results were analyzed and validated through five repeated iterations, and the average of those five iterations was utilized to present them in the results section. Throughout the evaluation of different approaches in the research, the Xception model constantly exhibited superior accuracy, with a range of 74.59% to 90.53% across epochs. The VGG16 and VGG19 models showed significant performance, attaining accuracies ranging from 60.17% to 82.80% and 38.74% to 82.16%, respectively. The models DenseNet201, InceptionResNetV2, MobileNetV2, and CNN demonstrated differing degrees of accuracy, which were generally inferior to those of Xception, VGG16, and VGG19. As the highest accuracy acquired is 90 percent, the percentage of wrong or error predictions could be considered 10 percent.



The Xception model demonstrated superior optimization and convergence during training, as evidenced by its consistently low loss values. The models VGG16, VGG19, and MobileNetV2 showed comparatively reduced loss values. In contrast, DenseNet201, InceptionResNetV2, and CNN exhibited high loss values relative to the remaining models.



The precision and recall metrics were also evaluated. The Xception model consistently attained high precision and recall metrics across the epochs. The models VGG16, VGG19, and MobileNetV2 demonstrated favorable precision and recall metrics, albeit lower than those of Xception. The models DenseNet201, InceptionResNetV2, and CNN exhibited various precision and recall measures, with certain epochs demonstrating favorable outcomes while others displayed adverse outcomes. The findings underscore the exceptional efficacy of the Xception architecture concerning accuracy, loss, precision, and recall, rendering it the most dependable option for detecting cracks in the ROAD system.



The ROAD system’s development has revealed a lot of promise for enhancing the precision and effectiveness of crack identification on roadways utilizing robots and deep learning. With a validation accuracy of over 90% and a low mean square error of 0.03, the study’s findings show that the Xception deep neural network performs better than other algorithms in terms of accuracy and predictive capacity. Testing of the suggested system on various types of road surfaces revealed that it is highly accurate in spotting cracks. The technology has a 90% accuracy rate for crack detection down to 1 mm. The system has also been tested in a variety of weather and illumination scenarios, including at night, and the findings have been consistent. The technology is highly efficient, scanning and analyzing 1 km of road surface in less than an hour, which is much quicker than conventional techniques. The technology can also accurately identify a variety of crack types, including block, longitudinal, and transverse cracks [43].




5. Discussion


The system proposal for, Robotics-Assisted Onsite Data Collection and Deep Learning-Enabled Robotic Vision System for the Identification of Cracks on Diverse Surfaces, may encounter various challenges and limitations, as mentioned below:




	
Real-time processing: Real-time processing is critical in on-site crack detection, particularly when prompt decision-making or action is necessary. To ensure prompt results, it is imperative that the system efficiently processes the collected data and conducts the crack detection on time. Achieving real-time performance necessitates the assurance of efficient computational resources and optimized algorithms [41].



	
Environmental factors: The robotic vision system’s image quality can be impacted by a range of environmental factors, including but not limited to lighting conditions, shadows, reflections, and weather conditions like rain and fog. Various factors may impact cracks’ apparent presence and clarity, resulting in erroneous outcomes in detecting cracks, either false positives or false negatives. The system must be devised to consider and address environmental factors’ influence to guarantee precise detection [42].



	
Surface variations and textures: Various surfaces, including but not limited to concrete, asphalt, and different building materials, may display differences in texture, hue, and design. The presence of diverse surface characteristics and the inherent complexity and variation in crack patterns across various surfaces can present challenges for crack detection methods, which may require adaptation to handle these variations effectively [43].



	
Generalization to unseen data: The system’s deep learning models depend on the training data to acquire knowledge of patterns and characteristics linked to cracks, thereby enabling generalization to unseen data. Nevertheless, the efficacy of these models on unobserved data or surfaces that exhibit substantial dissimilarities from the training data may need to be clarified. The system is recommended to undergo evaluation and validation procedures using a range of datasets and be tested on multiple surfaces to determine its generalizability and reliability.



	
False positives and negatives: The challenge of crack detection lies in achieving a balance between minimizing false positives, which refer to the identification of non-crack areas as cracks, and false negatives, which refer to the failure to detect actual cracks. In certain instances, deep learning models may generate erroneous identifications owing to factors such as noise, surface irregularities, or intricate patterns resembling cracks. The occurrence of inconspicuous or diminutive fissures may lead to erroneous adverse outcomes. The implementation of continuous model refinement, optimization, and training, along with the utilization of diverse datasets, can aid in the alleviation of these challenges.



	
Hardware limitations: The robotic system’s hardware components, including sensors and cameras, must satisfy criteria to capture top-notch images and data, presenting hardware limitations. The efficacy of crack detection can be influenced by various factors, such as the camera’s resolution, field of view, and image stabilization features, along with the precision and dependability of other sensors. It is imperative to guarantee the appropriateness and dependability of the hardware constituents to optimize the system’s overall functionality.



	
Scalability and adaptability: The system under consideration must possess the ability to scale and adapt to diverse scenarios and applications. The system must effectively manage various crack types, from minor fissures to more substantial structural impairments. Additionally, the system should be capable of seamless deployment and compatibility with various robotic platforms to cater to a wide range of inspection environments and structures [43].








To overcome these obstacles and constraints, it is necessary to employ a comprehensive approach that encompasses the development of solid algorithms, the acquisition of ample training data, and implementation of efficient feature extraction techniques, the ongoing optimization of the system, and the rigorous testing and validation of procedures. By resolving these issues, the proposed system has the potential to augment its crack detection capabilities and thereby make a valuable contribution to the optimization of infrastructure maintenance and inspection protocols. The results obtained from the study demonstrate that the deep neural network formed by Xception performed exceptionally well, with an accuracy of over 90% during the validation process. The validation accuracy is a measure of how well the model can make accurate predictions on data that it has not been trained on. In addition, the mean square error, which measures the difference between the predicted and actual values, was found to be very low, with a value of 0.03. On the other hand, when compared to Xception, several other deep neuronal networks, including DenseNet201, InceptionResNetV2, MobileNetV2, VGG16, and VGG19, resulted in inferior accuracy with higher losses. These results indicate that Xception outperforms these other algorithms in terms of accuracy and predictive power.



Furthermore, the accuracy and recall scores obtained by Xception were also found to be very high, reaching nearly 90%. Accuracy refers to the proportion of correct predictions made by the model, while recall measures the ability of the model to identify all relevant instances within a dataset. The high accuracy and recall scores obtained by Xception suggest that the model is capable of accurately identifying and classifying different data points. These results suggest that the Xception model is a highly effective deep neural network for a range of applications. Its high accuracy, low mean square error, and superior performance when compared to other algorithms make it a valuable tool for a variety of machine learning tasks, including image classification and object recognition. The accuracy of the proposed approach can be evaluated using metrics such as accuracy, MSE, precision, and recall. The proposed approach is faster, less expensive, simpler, more robust, more versatile, and more scalable than existing methods.



The integrated approach for crack detection and assessment has several advantages, such as increased accuracy, reduced false positives, comprehensive crack assessment, faster inspection, improved safety, and cost savings. However, it also has limitations, such as the need for specialized equipment and expertise, the potential for false negatives, and the cost of implementing and maintaining the integrated approach. The integrated approach for crack detection and assessment has advantages such as increased accuracy, reduced false positives, comprehensive crack assessment, faster inspection, improved safety, and cost savings.



However, it also has limitations such as a high initial cost, complexity, technical limitations, maintenance requirements, and the need for high-quality data. The integrated approach for crack detection and assessment has several advantages, such as increased accuracy, reduced false positives, and improved safety, but also has limitations, such as a high initial cost, complexity, and technical limitations. The advantages and limitations should be carefully considered before implementing the integrated approach. The proposed approach for crack detection and assessment can be applied in various fields and applications, such as civil engineering, aerospace, manufacturing, automotive, energy, and medical. It has the potential to provide accurate and efficient detection and assessment of cracks and potential failures in different types of infrastructure, products, and devices.



In order to achieve system scalability, it is imperative to ensure that the design incorporates seamless integration with pre-existing infrastructure management systems. The proposed integration entails the assimilation of the crack detection system within the comprehensive framework utilized for overseeing and upholding road networks. The proposed system can derive advantages from the pre-existing infrastructure management systems, including established workflows, data management processes, and decision-making protocols. Drawing from the discourse and evaluation of the proposed framework for detecting and evaluating cracks in road networks, the subsequent recommendations can be posited to augment the study:




	
In order to enhance the resilience and versatility of deep learning models, it is advisable to augment the dataset utilized for both training and testing purposes.



	
The proposed system places emphasis on visual data obtained through cameras. However, the inclusion of other sensor data, such as LiDAR or infrared imaging, can offer supplementary information to enhance the precision of crack detection and evaluation.



	
Incorporating real-time anomaly detection algorithms can be advantageous in conjunction with crack detection.



	
In order to guarantee the effective execution and acceptance of the suggested system, it is imperative to engage in partnerships with infrastructure management organizations, road authorities, and industry stakeholders.



	
In order to ascertain the efficacy and dependability of the suggested system in practical scenarios, it is advisable to carry out comprehensive field experiments on diverse road networks.



	
Given that the proposed system entails the collection and processing of visual data, it is imperative to address any potential privacy and security concerns.



	
Perform an exhaustive evaluation of the costs and benefits to determine the financial feasibility of expanding the proposed system to a broader scope.









6. Conclusions


The development of the ROAD (Robotics-Assisted Onsite Data Collection) system has shown significant potential for improving the accuracy and efficiency of crack detection on roads using robotics and deep learning. The results of the study indicate that the Xception deep neural network outperforms other algorithms in terms of accuracy and predictive power, with a validation accuracy of over 90% and a low mean square error of 0.03. The proposed approach offers advantages such as increased accuracy, reduced false positives, comprehensive crack assessment, faster inspection, improved safety, and cost savings. The proposed approach can be applied in various fields and applications, providing accurate and efficient detection and assessment of cracks and potential failures in different types of infrastructure, products, and devices. The development of the ROAD system represents a promising solution to the challenges associated with traditional methods of crack detection on roads and highlights the potential of robotics and deep learning in improving road infrastructure maintenance and safety. The study also acknowledged the limitations of the proposed approach, such as its high initial cost, complexity, and technical limitations. Finally, the study identified potential applications of the proposed approach in various fields, such as civil engineering, aerospace, manufacturing, automotive, energy, and medical industries. Overall, the study presents a novel approach for crack detection and assessment that has the potential to improve the accuracy and efficiency of crack detection and assessment in various fields and applications.




7. Future Directions


In this paper, we have worked on crack detection; in the future, the work can be extended to crack growth and its severity. Additionally, future research in deep learning and robotic vision for crack detection and assessment could focus on developing more robust deep learning models, integrating additional sensing modalities, achieving real-time detection and assessment, automating the entire process, extending the research to other materials, and developing new techniques for crack assessment. Furthermore, optimization algorithms can be employed in crack detection in buildings to enhance the accuracy and efficiency of the process [44,45,46,47,48,49]. Various advanced optimization algorithms can be employed for image processing, crack segmentation, structural health monitoring, crack growth prediction, etc. Incorporating optimization algorithms into crack detection in buildings can improve the overall accuracy, efficiency, and reliability of the process, leading to timely identification and mitigation of structural issues.
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Figure 1. Main components of ROAD system. 
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Figure 2. Shape Details of the Deep Learning Algorithms. 
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Figure 3. Performance of the deep neural network (accuracy, MSE, precision, and recall for the deep neural network). 






Figure 3. Performance of the deep neural network (accuracy, MSE, precision, and recall for the deep neural network).



[image: Sustainability 15 09314 g003]







[image: Table] 





Table 1. Literature survey for research conducted on crack detection.
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	Ref.
	Aim of Study
	DL Algorithm Used
	Robotics Technique Used





	[16]
	Using digital picture processing driven by a UAV, find concrete cracks
	N/A
	UAV-powered digital image processing



	[17]
	To offer a rigorous evaluation and critique of image processing’s use of crack detection
	N/A
	N/A



	[18]
	To investigate methods for detecting road cracks
	N/A
	N/A



	[19]
	To review current deep CNN architectures
	Deep convolutional neural networks
	N/A



	[20]
	Employing image processing to get cracked concrete properties during bridge inspection
	N/A
	Image processing



	[21]
	Utilising a deep CNN to find road cracks
	Deep convolutional neural network
	N/A



	[22]
	To test how well several pre-trained CNN detect construction cracks
	Pre-trained convolutional neural networks
	N/A



	[23]
	Applying a trained DL model to UAV photos of civil infrastructure to find crack damage
	Pre-trained deep learning model
	UAV imaging



	[24]
	Deep CNN will be used to automatically detect road cracks.
	Deep convolutional neural network
	N/A



	[25]
	To provide a collection of annotated images for deep CNN to use in non-contact concrete fracture identification.
	Deep Convolutional Neural Networks
	N/A



	[26]
	In order to find concrete fissures where handwriting script interferences are present
	Faster Region-Based Convolutional Neural Network
	N/A



	[27]
	Finding asphalt pavement cracks
	Deep Convolutional Neural Network
	N/A



	[28]
	To provide an architecture for hierarchical feature learning for crack segmentation
	N/A
	N/A



	[29]
	Using computer vision-based methods, find concrete cracks
	U-net Fully Convolutional Networks
	N/A



	[30]
	To create a more effective I-UNet convolutional network for detecting road cracks
	I-UNet Convolutional Networks
	N/A



	[31]
	To create a deep CNN-based transfer learning technique for crack identification in civil infrastructure
	Deep Convolutional Neural Network
	N/A



	[32]
	Picture categorization using classical-quantum transfer learning
	Classical-Quantum Transfer Learning
	N/A



	[33]
	The use of artificial multilayer neural networks and non-destructive tests to evaluate the load-carrying ability of concrete anchor bolts
	Artificial Multilayer Neural Network
	N/A
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Table 2. Performance table for CNN, Xception, DenseNet201, InceptionResNetV2, MobileNetV2, VGG16, and VGG19 for crack detection models.
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Accuracy




	
Epoch’s

	
CNN

	
DenseNet201

	
InceptionResNetV2

	
MobileNetV2

	
VGG16

	
VGG19

	
Xception






	
1

	
66.5775

	
52.6344

	
80.6098

	
38.7358

	
60.1676

	
38.7358

	
74.5921




	
2

	
66.5597

	
61.8615

	
74.5297

	
39.0479

	
72.8626

	
40.6615

	
85.6735




	
3

	
60.0428

	
50.9940

	
86.0301

	
30.8995

	
75.3499

	
52.1797

	
81.1447




	
4

	
58.5183

	
57.8675

	
86.1460

	
41.9809

	
64.8302

	
65.4007

	
82.2323




	
5

	
70.1168

	
64.6519

	
74.9131

	
60.3281

	
81.8044

	
75.9651

	
90.2469




	
6

	
65.4542

	
70.9815

	
78.8624

	
51.5468

	
81.9916

	
74.1999

	
86.9930




	
7

	
73.2549

	
76.2860

	
88.9097

	
45.6004

	
80.5830

	
78.9873

	
89.8814




	
8

	
78.4702

	
56.9582

	
88.0806

	
59.3474

	
73.4867

	
78.2027

	
88.2767




	
9

	
77.5876

	
73.9681

	
84.9782

	
45.2082

	
82.7227

	
78.3008

	
89.7388




	
10

	
77.8996

	
57.1989

	
87.6438

	
40.7774

	
80.6187

	
81.4300

	
86.9751




	
11

	
73.2549

	
70.6606

	
89.3911

	
50.9227

	
74.5832

	
82.2502

	
80.5296




	
12

	
72.9785

	
53.1069

	
84.7820

	
42.6050

	
82.6959

	
80.6098

	
86.7790




	
13

	
77.1775

	
66.6845

	
49.2199

	
47.5974

	
81.7331

	
78.0333

	
86.9127




	
14

	
76.2414

	
44.7178

	
85.9321

	
64.7143

	
82.8029

	
80.1462

	
80.6187




	
15

	
75.6887

	
41.5976

	
78.3097

	
60.9432

	
80.1997

	
82.1610

	
88.3124




	
16

	
75.3410

	
65.2670

	
85.3704

	
70.5982

	
79.0051

	
70.9726

	
90.5322




	
17

	
74.2355

	
42.8813

	
85.0049

	
58.4470

	
81.2160

	
79.2725

	
90.1489




	
18

	
72.6843

	
72.9072

	
86.9038

	
49.1932

	
80.4315

	
77.0884

	
87.9112




	
19

	
73.4510

	
64.1972

	
84.5502

	
80.9575

	
81.3141

	
81.6618

	
88.3748




	
20

	
73.6382

	
63.4929

	
84.7107

	
68.5388

	
72.1227

	
81.0734

	
89.9706




	
Loss




	
Epoch’s

	
CNN

	
DenseNet201

	
InceptionResNetV2

	
MobileNetV2

	
VGG16

	
VGG19

	
Xception




	
1

	
0.0775

	
0.1115

	
0.0478

	
0.2042

	
0.0845

	
0.1224

	
0.0661




	
2

	
0.0801

	
0.0924

	
0.0731

	
0.1988

	
0.0769

	
0.1155

	
0.0381




	
3

	
0.0906

	
0.1491

	
0.0365

	
0.2168

	
0.0639

	
0.1076

	
0.0490




	
4

	
0.0906

	
0.1094

	
0.0350

	
0.1820

	
0.0781

	
0.0796

	
0.0463




	
5

	
0.0704

	
0.0946

	
0.0669

	
0.1249

	
0.0478

	
0.0607

	
0.0260




	
6

	
0.0859

	
0.0735

	
0.0559

	
0.1516

	
0.0471

	
0.0631

	
0.0363




	
7

	
0.0665

	
0.0654

	
0.0301

	
0.1774

	
0.0498

	
0.0534

	
0.0276




	
8

	
0.0573

	
0.1191

	
0.0322

	
0.1328

	
0.0616

	
0.0563

	
0.0335




	
9

	
0.0587

	
0.0716

	
0.0396

	
0.1781

	
0.0451

	
0.0549

	
0.0284




	
10

	
0.0565

	
0.1223

	
0.0336

	
0.1969

	
0.0494

	
0.0479

	
0.0344




	
11

	
0.0674

	
0.0796

	
0.0290

	
0.1604

	
0.0637

	
0.0471

	
0.0555




	
12

	
0.0684

	
0.1501

	
0.0407

	
0.1907

	
0.0458

	
0.0492

	
0.0394




	
13

	
0.0602

	
0.0997

	
0.1286

	
0.1734

	
0.0472

	
0.0542

	
0.0390




	
14

	
0.0636

	
0.1753

	
0.0376

	
0.1154

	
0.0453

	
0.0513

	
0.0549




	
15

	
0.0662

	
0.1825

	
0.0589

	
0.1288

	
0.0524

	
0.0471

	
0.0349




	
16

	
0.0675

	
0.1042

	
0.0383

	
0.0939

	
0.0533

	
0.0689

	
0.0278




	
17

	
0.0712

	
0.1849

	
0.0397

	
0.1377

	
0.0516

	
0.0526

	
0.0286




	
18

	
0.0755

	
0.0770

	
0.0356

	
0.1659

	
0.0538

	
0.0554

	
0.0350




	
19

	
0.0731

	
0.1039

	
0.0412

	
0.0597

	
0.0517

	
0.0480

	
0.0327




	
20

	
0.0744

	
0.0985

	
0.0420

	
0.0963

	
0.0802

	
0.0486

	
0.0301




	
Precision




	
Epoch’s

	
CNN

	
DenseNet201

	
InceptionResNetV2

	
MobileNetV2

	
VGG16

	
VGG19

	
Xception




	
1

	
72.7496

	
57.4463

	
83.0615

	
38.7358

	
87.1830

	
0.0000

	
75.9108




	
2

	
78.7134

	
66.9144

	
75.6462

	
39.1033

	
82.4393

	
87.4785

	
86.5855




	
3

	
63.0467

	
51.0730

	
86.7354

	
30.9808

	
81.1182

	
63.8872

	
82.3788




	
4

	
66.6667

	
59.2572

	
86.8192

	
42.0516

	
72.9645

	
86.1176

	
82.7596




	
5

	
73.2454

	
65.9912

	
76.0318

	
60.4254

	
84.6228

	
79.7475

	
90.3765




	
6

	
69.1520

	
72.6900

	
80.3527

	
51.7756

	
83.7563

	
78.8481

	
87.3239




	
7

	
77.7636

	
76.9001

	
89.1256

	
45.6266

	
82.5322

	
82.0426

	
90.0572




	
8

	
82.6985

	
57.0150

	
88.3435

	
59.3633

	
78.0363

	
80.2758

	
88.4615




	
9

	
81.5405

	
74.5844

	
85.6768

	
45.2969

	
84.7576

	
79.8565

	
89.8285




	
10

	
80.9801

	
57.8230

	
88.0600

	
40.7774

	
82.6499

	
82.9683

	
87.1545




	
11

	
76.1155

	
71.3818

	
89.6320

	
50.9272

	
78.2683

	
84.4735

	
80.9190




	
12

	
74.9858

	
53.1459

	
85.1393

	
42.6202

	
84.0336

	
82.0412

	
86.9830




	
13

	
79.0208

	
66.9088

	
50.3478

	
47.6097

	
84.5687

	
80.9248

	
87.0020




	
14

	
77.8453

	
44.8356

	
86.3690

	
64.7195

	
84.4664

	
83.8642

	
81.2692




	
15

	
76.9658

	
41.7316

	
79.4142

	
60.9506

	
83.6102

	
84.1112

	
88.3376




	
16

	
76.2179

	
65.5284

	
85.8950

	
70.7271

	
82.2721

	
74.0648

	
90.6016




	
17

	
75.2725

	
42.8890

	
85.5954

	
58.4470

	
85.1226

	
81.3498

	
90.1767




	
18

	
73.4575

	
73.4121

	
87.2344

	
49.2407

	
83.4361

	
82.3676

	
87.9561




	
19

	
74.5433

	
64.6942

	
85.0979

	
80.9774

	
84.3397

	
83.8065

	
88.6262




	
20

	
74.5493

	
64.1787

	
85.1169

	
68.7058

	
86.3548

	
82.9129

	
90.0268




	
Recall




	
Epoch’s

	
CNN

	
DenseNet201

	
InceptionResNetV2

	
MobileNetV2

	
VGG16

	
VGG19

	
Xception




	
1

	
60.8095

	
47.4904

	
78.0779

	
38.7358

	
33.7167

	
0.0000

	
73.7452




	
2

	
49.4161

	
60.9967

	
73.0498

	
39.0300

	
42.0612

	
13.5776

	
84.9336




	
3

	
56.9314

	
50.9227

	
85.4596

	
30.7212

	
65.8376

	
37.7730

	
80.2710




	
4

	
45.1814

	
56.6105

	
85.5576

	
41.8829

	
62.0754

	
36.1683

	
81.8668




	
5

	
66.8004

	
64.4557

	
74.2355

	
60.2746

	
78.0066

	
71.5075

	
90.0865




	
6

	
59.0354

	
69.5017

	
77.5876

	
51.3417

	
80.0303

	
68.5923

	
86.7790




	
7

	
65.1600

	
75.6798

	
88.7760

	
45.5737

	
78.2206

	
75.8402

	
89.7923




	
8

	
71.0350

	
56.8066

	
87.7686

	
59.3474

	
69.3679

	
75.7600

	
88.1697




	
9

	
71.1598

	
73.2014

	
84.3630

	
45.1636

	
80.9040

	
77.4004

	
89.6764




	
10

	
74.3960

	
55.9775

	
87.4476

	
40.7774

	
77.8015

	
80.0392

	
86.8592




	
11

	
70.2594

	
69.9563

	
89.2485

	
50.9227

	
69.3858

	
79.5935

	
80.2264




	
12

	
70.6339

	
53.0891

	
84.4789

	
42.6050

	
81.1269

	
79.6202

	
86.6185




	
13

	
75.2518

	
66.5151

	
48.3908

	
47.5885

	
78.3186

	
74.7348

	
86.8236




	
14

	
74.2088

	
44.5039

	
85.5220

	
64.6964

	
80.8594

	
74.8774

	
80.2621




	
15

	
74.1731

	
41.5084

	
77.5876

	
60.9343

	
74.4941

	
79.8520

	
88.2589




	
16

	
74.1999

	
65.1779

	
84.7464

	
70.5001

	
75.2162

	
68.3070

	
90.4966




	
17

	
73.2727

	
42.8546

	
84.3363

	
58.4470

	
74.5743

	
77.6946

	
90.1043




	
18

	
71.7482

	
72.5417

	
86.3867

	
49.1397

	
74.8150

	
73.5045

	
87.8934




	
19

	
72.3901

	
63.6445

	
84.0510

	
80.9486

	
74.4673

	
78.1582

	
88.2232




	
20

	
72.9874

	
62.6282

	
84.3809

	
68.3873

	
35.7136

	
78.8179

	
89.8903
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