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Abstract: Near-surface meteorological forcing (NSMF) datasets, mixed observations, and model
forecasts are widely used in global climate change and sustainable development studies. For practical
purposes, it is important to evaluate NSMF datasets, especially those released latest, and determine
their strengths and limitations. In this study, we evaluate the performance of Multi-Source Weather
(MSWX) in China over the period of 1979–2016. For comparison, ECMWF Reanalysis version 5
(ERA5), China Meteorological Forcing Dataset (CMFD) and Princeton Global Forcing (PGF) dataset
are also evaluated to determine the strengths and weaknesses of MSWX. The following variables
are compared with observations over 2400 stations: 2 m air temperature (T2m), 2 m daily maximum
air temperature (Tmax), 2 m daily minimum air temperature (Tmin), precipitation (P), and 10 m
wind speed (V10). The evaluation is conducted in terms of climatology, inter-annual variations and
seasonal cycles. Results show that MSWX reasonably reproduces the spatial pattern of T2m with root-
mean-square errors (RMSEs) below 1.12 ◦C and spatial correlations above 0.97, but underestimates
Tmax and overestimates Tmin, with biases ranging from −2.0 ◦C to 2.0 ◦C, especially over the North
China and Northeast China. Compared with ERA5 and PGF, MSWX can better simulate the inter-
annual variations of surface air temperature with high spatial correlations (>0.97) but shows higher
RMSEs than PGF. For precipitation, MSWX accurately captures the primary features of precipitation,
including significant characteristics or patterns of the precipitation climatology and inter-annual
variation. Its inter-annual variation shows low RMSEs ranging from 0.55 mm/day to 0.8 mm/day,
compared to ERA5 and PGF. However, regions with abundant precipitation exhibit higher biases.
Because the biased Global Wind Atlas (GWA3.1) is used for the wind bias correction of MSWX, MSWX
significantly overestimates the annual mean wind speed, but it is consistently well-correlated with
observations, with RMSEs less than 1.5 m/s and spatial correlations greater than 0.6 over the period
of 1979–2016. This study reveals both the advantages and disadvantages of MSWX, and indicates the
need for research into climate change and sustainable development in East Asia.

Keywords: MSWX; bias-corrected; meteorological forcing datasets; China

1. Introduction

Climate change is closely related to human sustainable development. Green and
sustainable development will improve the stability of social production and reduce fi-
nancial fluctuations [1]. Therefore, it is necessary to understand global climate change.
Meteorological datasets are a great way to understand climate change and are widely used.
There are typically two types of gridded meteorological forcing datasets: one is derived
from reanalysis products using assimilation techniques, and the other one is generated
using data blending methods, such as interpolation. Reanalysis datasets are the result of
combining state-of-the-art numerical weather prediction or climate models with the data
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assimilation of historical observations [2]. There are many global meteorological forcing
datasets that exist from global reanalysis, such as the National Centers for Environmental
Prediction and the National Center for Atmospheric Research reanalysis (NCEP/NCAR) [3],
the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis
(ERA-Interim) [4] and the fifth-generation reanalysis (ERA5) [5]). The other type of meteoro-
logical forcing datasets is generated using interpolation algorithms that consider elevation
based on in situ observations, such as Princeton Global Forcing dataset [6] and China
Meteorological Forcing Dataset (CMFD) [7]. These two kinds of datasets have inherent
uncertainties that arise from the parameterization of physical processes, observational
uncertainties, and data assimilation procedures [8]. These datasets can help researchers
to generate higher-resolution datasets and better understand the relationship between
climate change and sustainability [9]. Moreover, they can help governments to assess the
impact of meteorological variables such as temperature, precipitation and wind speed on
the economy and finance [10], as well as on water resource planning and production, such
as “the South-to-North Water Diversion Project”. Therefore, it is necessary to evaluate the
gridded meteorological forcing datasets before using them [11].

Many studies have been carried out to validate gridded meteorological forcing datasets.
By comparing the ECMWF reanalysis datasets with the observations, Nogueira [12] showed
that ERA5 had lower errors than ERA-Interim but overestimated precipitation, whereas
Zou et al. [13] found that ERA5-Land hourly temperature had generally high accuracy but
performed worse at high temperatures than at low temperatures. Yu et al. [14] evaluated
the performances of five sets of reanalysis datasets in reproducing the climatological
mean and inter-annual variation in near-surface wind speed in China, and found that
reanalysis datasets can reasonably reproduce the spatial distribution of the climatology
of near-surface wind speed. There are also several studies that focus on evaluating the
performance of gridded meteorological forcing based on the blending of observations.
Yang et al. [15] evaluated precipitation and shortwave radiation from different gridded
forcing datasets over the major land areas of China. They found that CMFD performed
well in producing annual mean precipitation and captured key features of the spatial
distribution of shortwave radiation. Xie [16] evaluated the accuracy and reliability of CMFD
meteorological forcing datasets for precipitation, surface air temperature and wind speed
over the Tibetan Plateau. The results showed that CMFD had a higher level of accuracy
and reliability in reproducing the observed meteorological variables than reanalysis. The
evaluation of these datasets is crucial for researchers, particularly when it comes to untested
or newly released datasets. Evaluating these datasets can provide a better understanding
of the inherent uncertainty and precision of climate models, which in turn can enhance
their effectiveness in weather forecasting.

Multi-Source Weather (MSWX) is a seamless global gridded near-surface meteorologi-
cal product. Recently developed and released by Beck et al. (2022) [17], it consists of four
sub-products, including MSWX-Past, MSWX-NRT, MSWX-Mid, and MSWX-Long. MSWX-
Past is derived by bias-correcting the ERA5 reanalysis based on high-resolution monthly
or annual reference climatologies. It is available at a spatial resolution of 0.1◦ × 0.1◦ and a
temporal resolution of 3 h. The MSWX-Past product includes 10 widely used near-surface
meteorological variables. It blends gauge, satellite, and reanalysis data to improve precip-
itation estimates, and it is compatible with the global Multi-Source Weighted-Ensemble
Precipitation (MSWEP). To date, few studies have evaluated the performance of MSWX-Past
over China.

In this study, the near-surface meteorological variables such as air temperature, wind
speed and precipitation, which were derived from MSWX-Past dataset over China, will be
evaluated using high-density in situ observations, and compared with those from the ERA5,
PGF and CMFD datasests. The remainder of the paper is organized as follows: Section 2
describes the study area, observations and near-surface meteorological forcing datasets, as
well as the analysis methods. Section 3 presents the results and discussion. Conclusions are
given in Section 4.
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2. Data and Methods
2.1. Observation Dataset

The observation dataset, which includes more than 2400 in situ observations in China,
is obtained from China Meteorological Administration (CMA) (http://data.cma.cn/ (ac-
cessed on 1 May 2023)). The dataset provides variables including 2 m air temperature, 10 m
wind speed and precipitation from 1979–2014. These observational records have undergone
strict control and are reliable (Lu et al. 2014; Qian et al. 2007) [18,19]. The dataset has been
widely used to evaluate reanalysis and gridded meteorological forcing [20]. Figure 1 shows
the location of observational stations in China. Considering the topography and regional
climate, eight sub-regions including Northeast China (NEC; north of 42.5◦ N, east of 110◦ E),
North China (NC; 35◦ N–42.5◦ N, east of 110◦ E), Yangtze River (YR; 27.5◦ N–35◦ N, east
of 107.5◦ E), South China (SC; south of 27.5◦ N, east of 107.5◦ E), Southwest China (SWC;
south of 35◦ N, 97.5◦ E–107.5◦ E), the west of Northwest China (WNW; north of 35◦ N, west
of 97.5◦ E), Qinghai–Tibet (QT; south of 35◦ N, west of 97.5◦ E) and the east of Northwest
China (ENW; north of 35◦ N, 97.5◦ E–110◦ E), are used for evaluation [21,22].
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2.2. Near-Surface Meteorological Forcing Datasets

Three variables, including air temperature, wind speed and precipitation, taken from
four meteorological forcing datasets, namely, ERA5, PGF, MSWX, and CMFD, are evaluated
against the observations.

ERA5 is the fifth-generation reanalysis from ECMWF. It provides hourly high-horizontal-
resolution (0.25◦) estimates for a large amount of land surface variables including precip-
itation, temperature, pressure, radiation, specific humidity, and wind. ERA5 applies the
new IFS (Integrated Forecasting System) “Cy41r2” four-dimensional variational analysis
(4D-var) and assimilates multiple observations from satellite or surface stations. Surface
wind from land stations is not assimilated.

PGF provides precipitation, surface temperature and other near-surface meteorologi-
cal variables that can be used to drive land surface models. It is constructed by blending
reanalysis data with observations and is disaggregated in time and space. The PGF prod-
uct (Version 3) has a high spatiotemporal resolution of 3-hourly and 0.25◦ globally for
1948–2016.

MSWX is a high-resolution bias-corrected near-surface meteorological product based
on ERA5, with a horizontal high resolution of 0.1◦. MSWX has a temporal resolution of 3 h
and includes 10 widely used near-surface meteorological elements. It was released in 2021
and has barely been evaluated in detail over China.

http://data.cma.cn/
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CMFD is a high-spatial–temporal-resolution (0.1◦, 3-hourly) near-surface meteoro-
logical dataset developed by the Institute of Qinghai-Tibet Plateau, Chinese Academy of
Sciences. The dataset is produced through fusion of remote sensing data, reanalysis data
and more than 700 in situ station observations. It contains seven near-surface meteorolog-
ical variables, including precipitation, surface air temperature, surface wind speed and
others, but not surface air maximum temperature and surface air minimum temperature.

Table 1 lists the datasets and variables which includes 2 m air temperature (T2m),
maximum air temperature (Tmax), minimum air temperature (Tmin), 10 m wind speed
(V10) and precipitation (P) used in this study. Due to the elevation difference between the
gridded datasets and in situ station observations, it is necessary to correct the surface air
temperature using the temperature lapse rate (0.0065 ◦C/m).

Table 1. Summary of the four NSMF datasets and observations used in this study.

Datasets Type Spatial
Scope Variables Temporal

Resolution
Horizontal
Resolution

Time
Scope Source

ERA5 Gridded Global V10, T2m,
Tmax, Tmin, P Monthly 0.25◦ January 1979–December 2017 https://www.ecmwf.int/

(accessed on 1 May 2023)

PGF Gridded Global V10, T2m,
Tmax, Tmin, P Daily 0.25◦ January 1979–December 2016

http:
//hydrology.princeton.

edu/data.pgf.php
(accessed on 1 May 2023)

MSWX Gridded Global V10, T2m,
Tmax, Tmin, P Daily 0.1◦ January 1979–December 2017

http://www.gloh2o.org/
mswx/ (accessed on

1 May 2023)

CMFD Gridded China V10, T2m,
P Daily 0.1◦ January 1979–December 2017

https://data.tpdc.ac.cn/
zh-hans/data/8028b944

-daaa-4511-8769-96561265
2c49/ (accessed on

1 May 2023)

Observations Station China V10, T2m,
Tmax, Tmin, P Daily over 2400

stations January 1979–December 2017 http://data.cma.cn/
(accessed on 1 May 2023)

2.3. Evaluation Methods

Three metrics, including bias, root-mean-square error (RMSE) and Pearson correlation
coefficient (CC), are used to assess the skill of various datasets.

Bias can show the skew between reanalysis and observations. Zero bias indicates
a perfect fit, a bias greater than zero means overestimation, and one less than zero
means underestimation.

bias =
∑m

i=1 (xi − xobs,i)

m
RMSE is widely used in model evaluation as an indicator of error spread. Low RMSE

means good performance, and high RMSE means poor performance.

RMSE =

√
∑m

i=1 (xi − xobs,i)
2

m

CC is a measure of the degree of similarity between two datasets, with values ranging
from −1 to 1. The larger the absolute value of CC is, the stronger the correlation between
the two datasets will be; the closer CC is to 0, the weaker the correlation between the
two datasets.

CC =
∑m

i=1 (xobs,i − xobs)(xi − x)√
∑m

i=1 (xobs,i − xobs)
2∑m

i=1 (xi − x)2

where xobs,i is the site observation value, xi is the value of analysis data, x is the mean of xi,
and m is the total number of samples that participate in inspection.

https://www.ecmwf.int/
http://hydrology.princeton.edu/data.pgf.php
http://hydrology.princeton.edu/data.pgf.php
http://hydrology.princeton.edu/data.pgf.php
http://www.gloh2o.org/mswx/
http://www.gloh2o.org/mswx/
https://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49/
https://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49/
https://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49/
https://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49/
http://data.cma.cn/
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3. Results

In this section, the systematic errors in the meteorological forcing datasets are investi-
gated. The surface meteorological variables, such as 2 m air temperature (T2m), maximum
air temperature (Tmax), minimum air temperature (Tmin), 10 m wind speed (V10), and
precipitation (P), are evaluated with in situ observations during 1979–2016. All the grid-
ded meteorological forcing datasets are interpolated to the observation stations using
bilinear interpolation.

3.1. Surface Air Temperature

Figure 2 shows the spatial distribution of biases of a 37 year (1979–2016) annual mean
T2m from the NSMF datasets. All the NSMF datasets can reproduce the distribution of T2m,
with the biases ranging from −2.0 ◦C to 2.0 ◦C. Except for ERA5, the spatial correlation
coefficient (SCC) of annual mean T2m between NSMF datasets and in situ observations are
all above 0.97, and the RMSEs are below 1.40 ◦C (Table 2). Being derived from the station
observations, CMFD shows the best performance in producing the distribution of T2m.
ERA5 significantly underestimates T2m over the Tibetan Plateau, with cold biases reaching
−3.0 ◦C, whilst MSWX reduces the biases and has lower RMSEs compared with ERA5.
For Tmax, cold biases exist in ERA5 and MSWX, especially for ERA5, where there are cold
biases of up to −3.0 ◦C over western China. MSWX can reduce the biases over western
China and reduce the RMSEs, but its use increases the biases over NC and NEC. PGF has
the best performance in producing the distribution of Tmax, with the lowest RMSE of
about 1.22 ◦C. All NSMF datasets can reproduce the spatial pattern of annual mean Tmin,
with high SCC (0.97) and low RMSE below 1.80 ◦C. ERA5 underestimates Tmin over most
regions of China, whilst MSWX shows warm biases, especially over NC. Table 2 also lists
the SCCs and RMSEs of seasonal mean surface air temperature between NSMF datasets
and station observations. All the NSMF datasets can reproduce the spatial distribution
of seasonal mean surface air temperature well, with high SCCs and low RMSEs. CMFD
exhibits the lowest RMSEs, which are all below 1.0 ◦C for seasonal mean T2m, whilst
ERA5 presents the highest RMSEs for seasonal mean T2m, especially in spring and winter.
Compared with ERA5, MSWX can significantly reduce the RMSEs of T2m, Tmax and Tmin,
especially in the cold season.

Table 2. RMSEs (unit: ◦C) and SCCs between NSMF datasets and observations for annual and
seasonal mean surface air temperature.

T2m Tmax Tmin

RMSE SCC RMSE SCC RMSE SCC

ERA5 1.36 0.97 2.1 0.95 1.71 0.97
Annual PGF 1.11 0.98 1.22 0.97 1.27 0.98

MSWX 0.97 0.99 1.84 0.98 1.59 0.98
CMFD 0.63 0.99
ERA5 1.49 0.96 2.29 0.92 1.97 0.97

Spring PGF 1.11 0.98 1.32 0.96 1.28 0.98
MSWX 1.02 0.98 2.12 0.96 1.75 0.98
CMFD 0.62 0.99
ERA5 1.21 0.96 2.16 0.91 1.36 0.97

Summer PGF 1.01 0.97 1.26 0.94 1.1 0.97
MSWX 0.97 0.97 2.01 0.95 1.5 0.98
CMFD 0.47 0.99
ERA5 1.3 0.98 2.07 0.96 1.63 0.97

Fall PGF 1.09 0.98 1.12 0.98 1.27 0.98
MSWX 0.97 0.99 1.65 0.98 1.6 0.98
CMFD 0.64 0.99
ERA5 1.69 0.98 2.22 0.96 2.23 0.97

Winter PGF 1.32 0.99 1.33 0.99 1.54 0.99
MSWX 1.12 0.99 1.7 0.99 1.71 0.99
CMFD 0.94 0.99
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Figure 2. Spatial distribution of temperature bias of NSMF datasets against observations (unit: ◦C).
From left to right column, the results of T2m, Tmax and Tmin are shown, respectively.

To evaluate the capability of NSMF datasets to produce the variation in annual mean
surface air temperature, the RMSEs between NSMF datasets and in situ observations are
calculated at each station and shown in Figure 3. CMFD is good at producing the variation
in annual mean T2m, with most of the RMSEs being lower than 0.4 ◦C over China. MSWX
also shows small RMSEs (<0.4 ◦C) over eastern China, but has large RMSEs (>2.0 ◦C) over
western China. ERA5 and PGF produce larger RMSEs than MSWX and CMFD, especially
over western China and northern China. For the variation in annual mean Tmax, ERA5
can reproduce the variability over the Yangtze–Huaihe River basin with RMSEs below
0.4 ◦C. However, ERA5 clearly overestimates the variation in annual mean Tmax over
other regions in China, especially over western China, where the RMSEs can be larger
than 2.4 ◦C. MSWX produces a similar distribution of RMSEs to ERA5 but reduces the
RMSEs over SC and increases the RMSEs over NEC. PGF shows the best skill in producing
the variation in annual mean Tmax, with the lowest RMSEs. For Tmin, MSWX produces
low RMSEs below 0.8 ◦C over southern China, but it has large RMSEs above 1.6 ◦C over
northern China. ERA5 and PGF can reproduce the variation over southeastern China with
low RMSEs, although they both have large RMSEs over western China.

Figure 4 shows the inter-annual variability of SCC and RMSE in terms of regional
averaged annual mean surface air temperature between NSMF datasets and observations
during 1979–2016. For T2m, both CMFD and MSWX show high SCCs (>0.98) during this
period, whereas PGF and ERA5 have relatively low SCCs, ranging from 0.90 to 0.92. CMFD
produces the lowest RMSEs, being below 0.7 ◦C, and ERA5 has the largest RMSEs each
year. PGF has larger RMSEs than MSWX, and this was especially on show in 2015. SCCs
of MSWX for Tmax remain above 0.97 over the study period, whilst the SCCs of ERA5
and PGF are all below 0.9. PGF shows the lowest RMSEs of Tmax, with most values being
below 1.4 ◦C. MSWX produces lower RMSEs than ERA5, but most RMSEs of MSWX are
higher than 1.8 ◦C. Similar to Tmax, MSWX has the highest SCCs for Tmin, whilst ERA5
has the lowest SCCs. For Tmin, the RMSEs of MSWX (primarily between 1.5 ◦C and
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1.7 ◦C) are higher than those of PGF over the period, whilst the RMSEs of ERA5 can reach
about 2.0 ◦C and are substantially larger than those of other datasets. MSWX shows the
highest SCCs and relatively low RMSEs among all NSMF datasets and exhibits a good
spatiotemporal consistency over this period. Generally, compared to ERA5, MSWX can
improve the simulation of the inter-annual variation in surface air temperature.
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3.2. Precipitation

Figure 5 presents the spatial distribution of biases of annual mean precipitation be-
tween NSMF datasets and in situ observations over the 37 years period. It is clear that
ERA5 overestimates precipitation over most parts of China except, for the coastal area of
South China. The largest wet biases of ERA5 are located over southwestern China, with
biases above 1.5 mm/day.
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The PGF dataset has dry biases throughout China, except for the Tibetan Plateau and
Yunnan province, and the dry biases can reach up to −1.3 mm/day over the Yangtze River
basin. MSWX can reproduce the spatial pattern of annual mean precipitation with SCC of
0.93 and RMSE of 0.64 mm/day and also shows better performance than ERA5 (SCC of 0.87
and RMSE of 0.89 mm/day) (Table 3). The dry biases of MSWX primarily exist over south-
eastern China, especially along the coastal regions, and are above 1.1 mm/day. By fusing
the ground-based observations with several gridded datasets from remote sensing and re-
analysis, CMFD shows the best performance in producing the spatial distribution of annual
mean precipitation, with the highest SCC (0.94) and lowest RMSE (0.6 mm/day), although
it slightly underestimates the precipitation over China, with biases below 1.1 mm/day.

Table 3. RMSEs (unit: mm/day) and SCCs between NSMF datasets and observations for annual and
seasonal mean precipitation.

Annual Spring Summer Fall Winter

RMSE SCC RMSE SCC RMSE SCC RMSE SCC RMSE SCC

ERA5 0.89 0.87 0.97 0.94 1.45 0.83 0.84 0.8 0.55 0.86
PGF 0.71 0.92 0.71 0.97 1.43 0.86 0.68 0.89 0.3 0.95

MSWX 0.64 0.93 0.59 0.97 1.34 0.92 0.63 0.89 0.3 0.95
CMFD 0.6 0.94 0.56 0.98 1.11 0.86 0.61 0.91 0.24 0.96

For all datasets, SCCs of annual mean precipitation are above 0.87, and RMSEs are
below 0.89 mm/day throughout the study period, indicating that all the NSMF datasets can
reasonably reproduce the distribution of annual mean precipitation (Table 3). CMFD has
the lowest RMSE and highest SCC, whereas MSWX outperforms ERA5 with lower RMSE
(0.64 mm/day) and higher SCC (0.93). For seasonal mean precipitation, all the NSMF
datasets can produce the spatial distribution of precipitation in spring with high SCCs
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above 0.94 and low RMSEs below 1.0 mm/day. In contrast, the performance is relatively
poor for summer mean precipitation, especially for ERA5 and PGF, which have RMSEs
larger than 1.4 mm/day and SCCs below 0.86.

Figure 6 shows the spatial distribution of RMSEs between the annual mean precipita-
tion from NSMF datasets and station observations.
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Figure 6. The same as Figure 5, but for RMSE (unit: mm/day) of annual mean precipitation.

The RMSEs decrease from south to north in China, which is similar to the distribution of
annual mean precipitation [23]. ERA5 has the highest RMSEs over China. This is especially
true over southwestern China, where the maximum RMSEs can be above 1.35 mm/day.
Obvious RMSEs also exist over the Tibetan Plateau and some regions in Xinjiang. By bias-
correcting the ERA5 precipitation based on reference climatology, which was generated by
resampling the station-based Climatologies at High resolution for the Earth’s Land Surface
Areas (CHELSA) dataset [24], MSWX greatly reduces the RMSEs over southwestern China
and the Tibetan Plateau, but it increases the RMSEs over southeastern China, especially
the coastal area. PGF also shows low RMSEs below 0.6 mm/day over northern China and
high RMSEs above 1.2 mm/day over regions south of the Yangtze River. Among the four
NSMF datasets, CMFD has the best performance in reproducing the variation in annual
mean precipitation, with most of the RMSEs being lower than 0.75 mm/day over China.

The inter-annual variation in SCCs and RMSEs of the regional average annual mean
precipitation for NSMF datasets from 1979–2016 is shown in Figure 7. CMFD shows high
SCCs (>0.94) throughout the years. PGF and MSWX also have relatively high SCCs ranging
from 0.90 to 0.95. Conversely, most of the SCCs in ERA5 have been below 0.90 during
the past 37 years, which is consistently lower than those in the other NSMF datasets. For
RMSEs, CMFD has the lowest RMSEs at below 0.6 mm/day, and ERA5 produces the largest
RMSEs among the four datasets (above 0.7 mm/day), with the maximum RMSE being
larger than 1.0 mm/day. MSWX and PGF show RMSEs ranging from 0.55 mm/day to
0.8 mm/day. Compared with ERA5 and PGF, MSWX clearly reduces the RMSEs, especially
before 2004. However, the RMSE of MSWX tends to increase after 2004. This may be due
to the bias correction method based on the reference climatology for 1979–2013, which
may record the large wet bias in ERA5 during 1979–2014. Although ERA5 has a small
bias in terms of precipitation after 2004, the same bias correction is applied to decrease the
precipitation in MSWX, something which leads to the increasing RMSE after 2004.
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Taylor diagrams [25] are further used to assess the NSMF datasets in producing
the inter-annual variability of precipitation in each sub-region of China for the period
1979–2016 (Figure 8). PGF generally shows the best consistency with in situ observations
over North China, Yangtze River basin and South China, with the highest correlations and
lowest RMSEs. CMFD has high correlations above 0.9 over most regions in China, and it
shows the best performance in simulating the inter-annual variations of precipitation over
North China. However, it shows the worst performance over Southwest China, with corre-
lations below 0.9. Although ERA5 can reasonably reproduce the inter-annual variations
of precipitation, it clearly overestimates the variability across China, especially over the
Yangtze River basin, Southwest China and Qinghai–Tibet. MSWX significantly underesti-
mates the variability over the Qinghai–Tibet and the west of Northwest China, and clearly
overestimates the variability over the Yangtze River basin. Overall, the correlations and
inter-annual variations exhibit significant differences in different regions. The ENW, NEC,
SC, and NC regions show high correlation and inter-annual variations across all NSMF
datasets. However, over the QT region, all NSMF datasets are notably distant from the
reference point. Additionally, in the YR and WNW regions, ERA5 and MSWX demonstrate
weaker correlations relative to PGF and CMFD. Although the MSWX has close correla-
tions with ERA5 in eight sub-regions, MSWX can significantly improve the simulation of
inter-annual variance with the results closer to the reference point (observation).

Figure 9 illustrates the seasonal cycle of regional averaged precipitation over eight sub-
regions in China. All NSMF datasets can reproduce the seasonal cycle of precipitation with
correlations above 0.99 and RMSEs below 0.25 mm/day over Northeast China and North
China. Over the Yangtze River basin, all the datasets can capture the peak precipitation
in June, although ERA5 tends to overestimate the precipitation during the warm season,
whereas the other datasets underestimate it. Over South China, the two peaks of monthly
precipitation in June and August are reproduced well in the NSMF datasets. ERA5 shows
the seasonal variation closest to the observations, whilst others have dry biases. Over
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Southwest China, the west of Northwest China and the east of Northwest China, ERA5
clearly shows wet biases at each month, whilst the others can produce the seasonal variation
well, with slight dry biases in summer. Large wet biases can be found in ERA5 over Qinghai–
Tibet, especially in warm seasons, and PGF also shows clear wet biases in summer. MSWX
and CMFD can produce the seasonal cycle over Qinghai–Tibet well, with an RMSE of about
0.24 mm/day, which is much smaller than that in ERA5 (1.45 mm/day).
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Figure 9. Seasonal cycles of precipitation (unit: mm/day) over eight sub-regions for observations
and the four NSMF datasets.

3.3. Wind Speed

Figure 10 depicts the spatial distribution of biases of 37 years annual mean wind speed
between the NSMF datasets and in situ observations. All NSMF datasets except PGF can
simulate the spatial pattern of annual mean wind speed well, with SCCs greater than 0.6
and RMSEs below 1.20 m/s (Table 4). PGF clearly overestimates annual mean wind speed
over western China, North China, and along the coastal region with a maximum bias up to
1.9 m/s. This results in a largest RMSE of 1.36 m/s and lowest SCC of 0.37. MSWX also
shows positive biases in most parts of China, and has a relatively large RMSE of 1.18 m/s.
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Table 4. RMSEs (unit: m/s) and SCCs of NSMF datasets for annual and seasonal mean wind speed.

Annual Spring Summer Fall Winter

RMSE SCC RMSE SCC RMSE SCC RMSE SCC RMSE SCC

ERA5 0.81 0.63 0.83 0.66 0.74 0.62 0.86 0.66 0.9 0.61
PGF 1.36 0.37 1.33 0.42 1.12 0.31 1.42 0.39 1.75 0.35

MSWX 1.18 0.63 1.19 0.68 1.09 0.6 1.25 0.63 1.27 0.6
CMFD 0.67 0.65 0.7 0.71 0.62 0.65 0.66 0.65 0.76 0.61

Although MSWX slightly overestimates the wind speed over the coastal area of China,
there is significant overestimation over the inland area, especially from SWC, QT and ENW
(Table 4). Compared with PGF and MSWX, ERA5 and CMFD show better skill in producing
the spatial pattern of annual mean wind speed, with RMSEs below 0.81 m/s. The SCCs
and RMSEs of the seasonal mean wind speed between the NSMF datasets and in situ
observations are also shown in Table 4. Except for PGF, these NSMF datasets can produce
the distribution of seasonal mean wind speed, with high SCCs above 0.6 and low RMSEs
below 1.27 m/s. CMFD shows the lowest RMSEs below 0.76 m/s for seasonal mean wind
speed, while PGF shows the highest RMSEs above 1.12 m/s for seasonal mean wind speed,
especially in fall and winter. Compared with ERA5, MSWX has similar SCCs but larger
RMSEs, a fact which is related to the stronger wind speed in MSWX. The large positive
biases between MSWX and in situ observations in the island area leads to the large RMSEs.

Figure 11 shows the spatial pattern of RMSEs for wind speed from NSMF datasets. It
is clear that CMFD and ERA5 can simulate the variation in annual mean wind speed well,
with most RMSEs being below 0.6 m/s. MSWX has larger RMSEs (most of RMSEs being
above 1.2 m/s) than ERA5, especially over western China, North China and Southwestern
China. This may be due to the bias correction of wind speed using the Global Wind Atlas
(GWA3.1, https://globalwindatlas.info/, accessed on 1 May 2023) dataset for a period
of only 10 years (2008–2017) as the reference climatology, possibly leading to biases in
wind speed in specific regions [26–28]. PGF can reproduce the variation in annual mean
wind speed over the Yangtze River Basin and southwestern China, but it significantly
overestimates the variation over other regions in China, especially western China, where
the RMSEs can be larger than 1.8 m/s.

https://globalwindatlas.info/
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Figure 11. The same as Figure 5, but for RMSE (unit: m/s) of annual mean wind speed.

Figure 12 describes the inter-annual variation displayed by SCCs and RMSEs in
annual mean wind speed between NSMF and in situ observations from 1979–2016. All the
NSMF datasets except PGF show high SCCs above 0.60 during 1979–2016, especially before
2010, and CMFD demonstrates a clear decrease in SCCs after 2010 [29]. PGF shows poor
performance in producing the spatiotemporal variation in annual mean wind speed. It has
the lowest SCCs, with most values being below 0.40. For the RMSEs, CMFD has the lowest
RMSEs, which are mostly below 0.8 m/s during the period, but the RMSE increases quickly
after 2010. PGF has the largest RMSEs, with the maximum RMSE being above 1.5 m/s.
Compared with ERA5, MSWX shows larger RMSE, which is related to the overestimation
of wind speed over most regions of China.
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4. Conclusions and Discussion

In this study, we have comprehensively evaluated four NSMF datasets (ERA5, PGF,
MSWX and CMFD) for five variables, including T2m, Tmax, Tmin, precipitation and wind
speed, during 1979–2016 over China. The performance of NSMF datasets is evaluated
in terms of climatology, inter-annual variability and seasonal cycle against observations
collected from more than 2400 surface observational stations.

All the NSMF datasets can reproduce the spatial pattern of T2m well, with high SCCs
above 0.97 and low RMSEs below 1.69 ◦C. MSWX underestimates Tmax and overestimates
Tmin to a larger degree than PGF, but to a lower one than ERA5, especially in western
China. However, MSWX shows more underestimation for Tmax and more overestimations
for Tmin over the NC and NEC. Compared with ERA5, MSWX significantly reduces the
RMSEs of seasonal mean T2m (≤1.12 ◦C), Tmax (≤2.12 ◦C) and Tmin (≤1.75 ◦C), especially
in the autumn and winter. For the inter-annual variations of surface air temperature, MSWX
shows higher SCCs and lower RMSEs than ERA5, but higher RMSEs than PGF. CMFD and
MSWX show better agreement with observations than ERA5 and PGF.

Evaluation of precipitation reveals that MSWX can produce the spatial pattern of annual
mean precipitation well, with high SCCs above 0.89 and low RMSEs below 1.34 mm/day,
but dry biases exist in southeastern China, especially the coastal area. On the contrary,
ERA5 substantially overestimates precipitation in China, especially in southwestern China.
CMFD generally shows the lowest biases over China, but still underestimates South China.
Compared to other seasons, all NSMF datasets show a relatively poor performance for
summer mean precipitation (RMSEs ≥ 1.11 mm/day), especially ERA5 (1.45 mm/day)
and PGF (1.43 mm/day). For the inter-annual variation in SCC and RMSEs, CMFD has
the best performance (RMSEs below 0.6 mm/day), while ERA5 is the worst one (RMSEs
above 0.7 mm/day). Compared with ERA5, MSWX and PGF increase the SCCs and reduce
the RMSEs. For the intra-annual variability of precipitation in eight sub-regions, Taylor
diagram shows that PGF has the best consistency with in situ observations, while ERA5
and MSWX show relatively low performance. All NSMF datasets can capture the seasonal
cycle of precipitation well, especially over Northeast China and North China (RMSEs below
0.25 mm/day and correlations above 0.99). ERA5 generally overestimates precipitation
over the 8 sub-regions, while other datasets generally underestimate precipitation. Further-
more, the characteristics of precipitation in different regions can result in varying degrees
of bias, with regions that receive abundant precipitation exhibiting higher bias.

All the NSMF datasets, especially PGF and MSWX, tend to overestimate wind speed
over China. PGF significantly overestimates surface wind speed over the Yangtze River
basin and western China, which leads to the lowest SCCs (below 0.42) and highest RMSEs
(above 1.12 m/s) among the four products. Because of the reference climatology from
GWA3.1 which has strong wind speed, significant positive biases exist in MSWX over China,
especially the inland area including SWC, QT and ENW, which leads to the relatively high
RMSEs above 1.09 m/s. CMFD performs the best in reproducing the distribution of wind
with the highest SCCs and lowest RMSEs. Time series of SCCs and RMSEs of these NSMF
datasets indicate that CMFD and ERA5 exhibit SCCs that are mostly above 0.6 and lower
RMSE than PGF, especially before 2010. MSWX has relatively low SCCs (slightly above 0.6)
and high RMSEs (above 1.0 m/s), indicating the poorer performance than ERA5 and CMFD.

Despite biases in NSMF and observations, these NSMF datasets have great potential
for use in climatological applications if used with care. The assessment also reveals that
MSWX needs to be further improved, particularly for wind speed. In the future, bias
correction of MSWX could be considered to bring it closer to the in situ observations.

Although CMFD provides good performance, it lacks consistency between different
variables. While MSWX is based on the bias correction of ERA5 reanalysis, the variables
in MSWX are spatio-temporally consistent. Additionally, MSWX also consists of four
sub-products, namely, MXWX-Past, MSWX-NRT, MSWX-Mid and MSWX-Long. These
products make it easy to be used for different research purposes. For example, MSWX can
be used in near real time and in mid-term forecast study.
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Although MSWX is produced based on bias correction of the ERA5 reanalysis, there
are several future issues that must be addressed in the future work, such as (1) the way in
which the bias correction method in MSWX affects the performance of MSWX; (2) or the
ways to reduce MSWX uncertainty.
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